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Abstract

This paper studies the asymptotic validity of the bootstrap for nonstationary panel
factor series. The analysis assumes a linear process for serial dependence, and sieve
bootstrap is proposed to approximate the autocorrelation structure of the processes
involved in the model. Two main results are shown. Firstly, a bootstrap Invariance
Principle is derived pointwise in ¢, obtaining an upper bound for the order of truncation
of the AR polynomial that depends on n and T'. Consistent estimation of the long run
variances is also studied for (n,T) — oo. Secondly, joint bootstrap asymptotics is also
studied, investigating the conditions under which the bootstrap is valid. Particularly,
the extent of cross sectional dependence which can be allowed for is investigated,
showing that, in the presence of strong cross dependence, consistent estimation of the
long run variance (and therefore validity of the bootstrap) is no longer possible. The
paper also considers extensions to the case of a mixture of stationary and nonstationary
common factors.
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1 Introduction

In recent years, factor models have achieved great popularity in applied econometrics and
statistics. Panel factor series have been extensively used in macroeconometrics to model
parsimoniously the presence of cross sectional correlation, e.g. in the analysis of business
cycle models (Forni and Reichlin, 1998). Many other applications are possible - see e.g.
the discussion in Bai (2004), Bai and Ng (2006a, 2006b, 2010), and the references therein.
Nonstationary panel factor series have also been paid noticeable attention in applied sta-
tistics, where Lee and Carter’s (1992) model for mortality forecasting has generated a huge
body of literature (see Girosi and King, 2007).

The literature has recently produced significant developments in the inferential theory.
Joint asymptotic theory for (n,T) — oo has been studied for the case of stationary and
nonstationary data, allowing for serial and cross sectional dependence and heterogeneity
- see, inter alia, Bai (2003, 2004) and Bai and Ng (2002, 2004). The main focus of this
paper is to complement the existing asymptotic theory, by investigating the validity of the

bootstrap for nonstationary panel factor series defined as

Tit = N Fy + wt, (1)

with¢=1,...nand t=1,...,T and

Ft = Ft—l + Et. (2)

Model (1) is a standard nonstationary panel factor model - we also refer to Bai (2004) and
the references therein for a discussion of the various possible applications. Bootstrapping
(1) could prove useful for at least three reasons. Firstly, as the theory developed in Bai
(2004) and Kao, Trapani and Urga (2011) shows, the asymptotics heavily depends on
nuisance parameters, and the bootstrap could help deal with this. Moreover, limiting
distributions are often complicated and depend on somewhat arbitrary assumptions on
the relative speed of divergence of n and T'. Finally, the common factors F; are often not
observable and need to be estimated, thereby adding a further component to the error term

ui in (1). In light of this, and in order to accommodate for serial dependence, this article



proposes a sieve bootstrap algorithm (Biithlmann, 1997), building on the theory developed
by Park (2002, 2003) and Chang, Park and Song (2006). Whilst this paper moves from a
similar research question, namely to show an Invariance Principle (henceforth, IP) for the
bootstrap counterpart to z;, proving an IP for nonstationary factor models is a different
type of exercise to the pure time series case studied by Park (2002) and, in a cointegration
framework, by Chang, Park and Song (2006). This is due to two distinctive features of
model (1): (a) the presence of the latent variables F;, which are replaced by generated
regressors, thereby affecting the asymptotics and the bootstrap asymptotics, and (b) the
fact that the asymptotics, in this framework, depends jointly on two indices, n and 7.

This article makes two main contributions. In the first part of the paper (Sections 3
and 4), a bootstrap IP is derived and applied to the estimation of loadings, common factors
and common components. The resampling algorithm is based on extracting the common
factors from (1) by using the Principal Components estimator (PC) and thereafter fitting
a Vector AutoRegression (VAR) of order ¢ to the estimated common factors and to the
residuals. Two ancillary technical contributions of this section are the asymptotic theory
for A, = F, — Ft,l, and the derivation of an upper bound for ¢, which depends on both
n and T. These results are based on a “one cross sectional unit at a time” resampling
algorithm, and therefore are only pointwise in i. Thus, cross sectional dependence among
the u;s is not taken into account. This is useful in some applications of (1), e.g. when
applying bootstrap to approximate the limiting distribution of the estimated A;s, or when
cross sectional dependence is negligible - see Section 4 for discussion. In the second part
of the paper (Section 5), joint bootstrap asymptotics as (n,T") — oo is developed, to also
accommodate for the possible presence of cross dependence in the u;s. We show that the
estimation of the long run variance matrix of the wu;s is fraught with difficulties, due to
its high dimension (growing with n). Section 5 contains a negative result, highlighting
that consistent estimation of long run covariance matrices is not possible in this context,
unless there is very little cross dependence. Finally, the paper also provides some initial
results for the extension of bootstrap theory to the case of a mixture of stationary and
nonstationary common factors in (1).

The paper is organised as follows. Section 2 introduces the model and discusses the

main assumptions. Section 3 contains the resampling algorithm and the relevant asymp-



totics. Applications to univariate and multivariate problems are in Sections 4 and 5
respectively. The extension to a mixture of stationary and nonstationary common factors
in in Section 6. Section 7 concludes. Preliminary lemmas and proofs are in Appendix A
and B respectively.

NOTATION Throughout the paper, ||A||, denotes the L,-norm of a matrix A, i.e.
max; || Az, / ||z[[, (the Euclidean norm being defined simply as [[A[]), “i»,” indicates a
unit column vector of dimension m, “—” the ordinary limit, « b weak convergence, «Lyy
convergence in probability, “a.s.” stands for “almost surely”; generic finite constants that
do not depend on n or T" are referred to as M. Stochastic processes such as W (s) on [0, 1]
are usually written as W, integrals such as fol W (s)ds as [ W and stochastic integrals
such as fol W (s)dW (s) as [ WdW.

Also, we extensively use the following notation: d,,7 = min {\/ﬁ, VT }, Cyr = min {y/n, T},

ok = min {n, /T/log T} and gty = min { v/, \/T/10g T }.

2 Model and assumptions

Consider model (1) and the data generating process of F;

!
Ty = NIy ugy,

Fy = Fiq+e,

where we assume that the (unobservable) factors F; are a k-dimensional process. We refer
to Bai (2004) for the estimation of k. All the theory is studied for (n,T") — oo jointly -

see Phillips and Moon (1999) for definition and discussion.

Consider the following assumptions:
Assumption 1: (time series and cross sectional properties of wit) let uy = [wg, ..., Unt]’;

then u; admits an invertible M A (c0) representation
[e.e]
w =T (L)ef =) Tjef,
5=0

where (i) e} is i.i.d. across ¢ with E[e}'] = 0, E [e}'e}’] = X,; also, letting el be the



i-th element of e, max;; F |e%|® < oo; (ii) > 20 [;L7 # 0 for all |L| < 1 and, letting
I; ; be the i-th row of I';, max; 3322 7% [|I'; || < oo for some s > 1; (4ii) (cross sectional

dependence) (a) |I'(1)|l; < M,

T, < M 0], < M and |24, < M;

o0
(b) E{n_l/2 oy [wisui —E(uisuit)]‘4 < M for every (t,s); (iv) (initial conditions)
E|ui|* < M for all i.

Assumption 2: (time series properties of €;) €; is a k-dimensional vector random
process (with finite k) and it admits an invertible M A (c0) representation where g, =
a(L)ef = Y2 gajllef ; with (i) ef is iid. with E[ef] = 0, E [efef’] = ¥, and
E|lef'||" < oo for some r > 4; (ii) >0 a; L7 # 0 for all |L] < 1 and > 7203° lleyll < oo
for some s > 1; (i) the matrix Xap = Y 72 a;¥ca} is positive definite; (iv) (initial
conditions) E | Fp||* < M.

Assumption 3: (identifiability) the loadings A; are (i) either nonrandom quanti-
ties such that ||| < M, or random quantities such that E | N||* < oo; (ii) either
n~ISN NN = Bp if nois finite, or limy oo Y0 AN, = By, if n — oo with
YA positive definite; (7ii) the eigenvalues of the matrix E}\/ 2EAFZII\/ % are distinct, and
the eigenvalues of the stochastic matrix Z}Xﬂ (T*2 Zthl FtFt'> E}\/Q are a.s. distinct as
T — oo.

Assumption 4: (i) {e;}, {uir} and {\;} are three mutually independent groups; (7i)

Fy is independent of {u;} and {&;}.

Parts (i) and (7i) of Assumption 1 allow to establish an IP for the of the bootstrap value
from the general linear process ;.. Part (i) is slightly more stringent than Assumption 3.1
in Park (2002, p. 474), where the existence of the fourth moment suffices. In this context,
assuming r > 4 is needed for the validity of inferential theory for factor models; see also
Assumption C(1) in Bai (2004). Part (ii) of the assumption is needed in order to approxi-
mate the AR (00) polynomial with a finite autoregressive representation - see e.g. Hannan
and Kavalieris (1986). Letting E (ujzujr) = 745, part (i) entails that Y " | |74;] < M for
all 7, since E (uu;) = T(1) .17 (1) and || E (wgy)||; < |7 (1)]|3]/Zu]l;. Similar require-
ments on the (weak) cross dependence of the error term are in Pesaran and Tosetti (2011)
and Chudik and Pesaran (2011). That ||~ (1)||, be finite could be derived in principle

from more primitive assumptions on I' (1) - see e.g. Kolotilina (2009). Part (7ii) allows for



some cross sectional dependence in the error term w;;; part (74i)(b) is the same as Assump-
tion C(4) in Bai (2004). Note that parts (i)-(ii) entail that 7-1 7 ST [vet| < M,
where v,_; = n 13" | vis-¢ and 7;,5—t = E (uiu;s), which is part (2) of Assumption C
in Bai (2004, p. 141).

Assumption 2 mimics Assumption A in Bai (2004) and is required in order for the di-
mension of the factor space to be estimated consistently, and also to derive the asymptotic
theory for the estimated factors. Part (i) is enough for both purposes, and it is equivalent
to Assumption 3.1(a) in Park (2002, p. 474); part (i) plays the same role as Assumption
1(ii). Note that part (%ii) rules out cointegration among the Fs, which is the same as
Assumption A(2) in Bai (2004, p. 140). Also, Assumption 2 entails a Law of the Iterated
Logarithm for F; (see Phillips and Solo, 1992, Theorem 3.3) to hold, whence liminfp_,
(loglog T') T2 Zthl F,F] = D where D is a nonrandom positive definite matrix; this is
part (3) of Assumption 2 in Bai (2004). Assumptions 3 and 4 are standard requirements

for the asymptotics of the estimates of \; and F;. See Bai (2004) for further details.

PC based inference on \; and F; is studied in Bai (2004). The common factors F}; are
estimated by F, under the restriction that 72 Zthl FtFt’ = I;. The estimated common
factor F} is T times the eigenvectors corresponding to the k largest eigenvalues of matrix
XX' where X = [21,...,x,] with 2; = [z;1,...,2;7]. Then ); can be estimated applying
OLS to

zit = NPy + v, (3)

~ ~ A 11 N
thus \; = [Zle FtFt’} [Zthl thit}. It is well known that \; and F; are identifiable
only up to a transformation. Therefore, PC estimates the space spanned by the factors Fi
(and the loadings )\;), thereby finding H'F; instead of F} and H —1)\; instead of \;, where

H is a k x k invertible matrix given by
1< 1 «
H= <n > A,;AQ) <T2 > FJ{) Vo (4)
i=1 t=1

with V7 a k x k diagonal matrix containing the eigenvalues of #X X' in descending

order. The effect of replacing the true, unobservable factors F; with their estimates Ft is



to inflate the error term w;; in (1):
Vit = Uit + )\; (H/Ft — Ft) . (5)

Consider the following notation, which is henceforth used throughout the paper. Let W,
be a k-dimensional Brownian motion with covariance matrix Xar; also, W, ; denotes a
scalar Brownian motion independent of W, with variance o2, = T; (1) X,T% (1), where

(TR

[ (1) = 32720 I'i is the i-th row of I' (1).
Proposition 1 Let Assumptions 1-4 hold. As T — oo for every i

1 & AR |, | HW.(s)
T Z - ) (6)
T t=1 Uit Wu,i (S)

uniformly in s. Also

t=1
| L
72 B 4 H / WedW,, (8)
t=1
As (n,T) — oo with 7 — 0
— uip — oy Wy (), 9)
nl = =
1 ™ -
WZ Fuiy 5 o H' / W.dW,, (10)
t=1 i=1

uniformly in s, where Wy, is a standard Brownian motion independent of W, and o, =

limy, oo n 1L T (1) B, IV (1) 4.

Proposition 1 contains two types of results: equations (6), (7) and (8), which are
univariate, pointwise in ¢, and (9) and (10), which are joint limits. These results, used
in conjunction with the Continuous Mapping Theorem (CMT), are the building blocks to

prove the validity of bootstrap approximations.



In the remainder of the paper, we show bootstrap analogues to (6)-(8) - Sections 3 and

4. We also show bootstrap counterparts to (9) and (10) - Section 5.

3 Univariate sieve bootstrap: algorithm and IP

This section contains the algorithm to generate the bootstrap sample using a “one cross
sectional unit at a time” resampling scheme. Asymptotic theory (pointwise in 7) is reported
in Section 3.2. The main output of this section are bootstrap analogues to (6)-(8).

Since (1) is a cointegrating regression, one may apply the algorithm of Chang, Park
and Song (2006) to its observable counterpart (3). This would impose a unit root in the
bootstrap counterpart to Ft, which is needed in order for the bootstrap to be consistent
- see Park (2003). Henceforth, we define &;, = [AF/, uy], with &, = > 52 By + eity

also denoting 1 — Zjoil 5@' as f3; (1).

3.1 The generation of the bootstrap sample

The presence of serial dependence in AF; and wu; requires a bootstrap algorithm that
preserves the autocorrelation structure over time. This can be accomplished by approx-
imating the infinite AR polynomials « (L) and T' (L) by truncating them at lags ¢r and

qu,i Tespectively:
ar

AF;, = ZquJ‘AFt_j —|—€5q, (11)
j=1
Qu,i )
it = D Vgtit— + €l (12)
j=1

The values of gr and ¢,; depend on n and 7', as discussed in the following assumption.

Assumption 5: As (n,T') — 00, gp — 00 and ¢,; — oo for each i, with gr = 0 ((pf;T)

and g, ; = o (¢pp) for each i.

Assumption 5 contains an upper bound on gr and g, ;. In order for gr and g, ; to pass
to infinity, it is necessary that (n,7) — o0o; no assumptions are needed on the relative
speed of divergence of n and T. No lower bounds are required for gr and ¢, ;, as long

as they pass to infinity. Using Assumption 5, one could think of selecting ¢r and g, ; by



using some information criteria such as e.g. AIC or BIC, under the restriction that the

maximum lag allowed for be of order o (gpgT) and o (pl,) respectively.

We propose an algorithm similar to Chang, Park and Song (2006) for the case of a
cointegration regression (where n is fixed). The main differences here are the presence of

unobservable variables and the double-indexed asymptotics.
Step 1. (PC estimation)

1.1) Estimate A\; and F} in (1) using the PC estimator.
( i t g
Al A ~ ~ /
1.2) Generate the residuals 4;; = x; — )\/»Ft and define &;, = |AFY, ;] .
1 it t
Step 2. (estimation)

(@)

q,J

)

(2.1) Estimate ag; and 7,7 (obtaining éy ; and '?((;;j respectively) by applying OLS (or

some other estimator, e.g. the Yule-Walker estimator) to AFt = Z?il Qq.j Aﬁ’t_j—i—

F Ao N (1) u
€iq and u;; = j=1 Vg, Wit—j —I—eit7q.
" ~F ~ ar A 2 U Qu,i A(z‘)A‘ ]
(2.2) Compute the residuals Erq =AF— > it1 gy AF;_jand €t g = Uit — D ;01 Vg lit—j-

/
Define itq = |eF3, % |

Step 3. (bootstrap) for b = 1, ..., 3 iterations

(3.1) (resampling)

(3.1.a) Center the residuals é;; 4 around their mean, as €4 = €1, — 71 Zthl €it,q-
(3.1.b) Draw (with replacement) 7" values from {éit,q}thl to obtain the bootstrap sample
{eit’b}thl, defining also e p = [efé, e?t,b]l.
(3.2) (generation of the bootstrap sample)

(3.2.a) Generate recursively the pseudo sample £;; |, = [AFAb, uit,b:|/ as AF,, = Z?il g j
AF;_jp +e£b and w;p = jq:l ;Yég'uitfj,b +67;f,b’ using as initialization {fi%b, e fil,b} =
{€r - &in }-

(3.2.b) Generate Fyp as Fyp = Fop + Z;Zl AF}p, with initialization is Fpp = Fy, or
alternatively 71 ZtTZI Fy.

(3.2.c) Generate the pseudo sample {xit’b};f:l.



Consider Step 2.1. Since AF, estimates AF} up to a rotation, &y ; estimates a rotation
of a;; this however suffices for our purposes (see Lemma 2 below).

As a comment to Step 3.2.c, te possible schemes to generate x5 are discussed in
Section 4. The output of the algorithm above is therefore the bootstrap sample {fit’b}le.

In the next section, an IP for {§it7b}?:1 is shown.

3.2 Bootstrap asymptotics

Based on a typical approach to prove the validity of the bootstrap, the main purpose of
this section is to show that 7—1/2 Zg? §i1p converges (in probability) to the same limit

as T—1/2 Z}Z? &1, uniformly in s.

Define the partial sums of e; = [ef " eft]/ as Wir (s) =T —1/2 Zt{iJ e;t. Assumptions
1 and 2 ensure that an IP holds whereby Wz (s) < W, (s) where W;(s) is a (k+ 1)-
dimensional Brownian motion. This convergence is in the weak form, and it holds in the
space of cadlag functions D [0, 1] endowed with the supremum norm. Weak convergence
can be strengthened by defining, on the probability space (X2, F, P), a copy of W;r (s), say

1 (s), which has the same distribution as W (s) and can be chosen such that

P{ sup ||[Wir (s) — Wi (s)]| = 5} < MTPE e (13)
0<s<1

where 0 > 0, 7 > 2 and M depends only on r. Such results are known as “strong (weak)
approximations” (see e.g. Sakhanenko, 1980) and they ensure that W/, (s) converges a.s.
(in probability) to W; (s). Assumptions 1 and 2, where r > 4, entail that (13) holds. In
essence, (13) states that, as long as T'~"/2E |le;s]|” — 0 either in probability or a.s. for
some 7 > 2, an IP holds (in probability or a.s. respectively).

Consider the bootstrap sample {eit’b}:{:l. This is an i.i.d. sample conditional on
{éit}le, on the probability space induced by the bootstrap, say (Qb, Fe, Pb). Henceforth,
we denote convergence in probability and in distribution in the bootstrap space (with

s

b
respect to Pb) as “257 and «L7 respectively.

Moments existence for the bootstrap sample is granted by the following Lemma.

10



Lemma 1 Let Assumptions 1-5 hold. As (n,T) — oo, for all (i,t) and r > 4

E[lety

BN+ 0y ) + 0y (Cap) 0, |(5) | )

max B eyl = maxBletl” + 0, (47) +.0,(6:0) +0, [ (2] ] )
7, 2, nT

This result is useful to prove an IP for e;; j using (13). The type of IP that we are able
to prove is in the weak form, since (14) and (15) hold in probability. Note that having qp,
Qu,; — oo with upper bounds gpﬁT and ¢ is necessary for the higher order moments of

the bootstrap sample to converge to the population values.

Lemma 1 and (13) yield 7-1/2 ZLTSJ

€it b LN W (s) in P. In order to extend this result
to the bootstrap sample {§it7b}tT:1 generated in Step 3.2(a) above, we need the following

result as well.

Lemma 2 Let Assumptions 1-5 hold. As (n,T) — oo, for all i

. - n-lll logT 1 1
12;2; bq; — H'oy (H) H = 0, (\/ T ) + O, <n> + 0p <qf;) ) (16)
) 0] _ [log T 1 1
el KU A E N Op ( T ) +0p <\/ﬁ> +op (‘ZZZ - (17)

Lemma 2 states that Bfg is a consistent estimator of the space spanned by 3;;; the issue

of identifying F} affects the estimation of the a;s, which are estimated up to a rotation.
The rate O, (y/log T/ T) is a well-known result in time series analysis (see e.g. Theorem
2.1 in Hannan and Kavalieris, 1986). The rates O, (1/n) and O, (\/1/n> are due to the

use of generated regressors, Fy and AF).

Using Lemmas 1 and 2, a bootstrap IP for 7-1/2 ZE;J &it,p can be proved. Consider

the partial sums of &;;, We;r (s) = T~1/2 ZLTSJ &;- Assumptions 1 and 2 entail Wer (s) — <

Wei (s) = 871 (1 ) W; (s). Proving the bootstrap IP requires showing that Weirp (s) =

T-1/2 LTS Eitd 4 W@( s) as (n,T) — oo. This can be done by noting that, using the

Beveridge-Nelson decomposition

[ Ts] ~—1

S I
Z gzt b — Bz,q Z Cit,b l’\q/T EiO,b - giLTsj,b ) (18)

11



; 0
where &, = Y20y [0 By | €ir—j14- It holds that;

b
Lemma 3 Let Assumptions 1-5 hold. As (n,T) — oo, it holds that ﬁzgfj Eitd U

Wei (s) in P, for all i.

Lemma 3 entails that the partial sums of the bootstrap process {fit,b}thl have the
same limiting distribution as the partial sums of {fit}thl. In order for this to hold, two
results are needed. First, an IP for {eit,b}thl is needed; this follows from Lemma 1. Also,

P

A1
it must hold that 3, , (1) = 5;1 (1); as shown in the proof, this is a consequence of Lemma

2. Lemma 3 is the bootstrap counterpart to (6).
Lemmas 1-3 yield a bootstrap analogue to Proposition 1.

Theorem 1 Let Assumptions 1-5 hold. Then, as (n,T) — oo and for all i

T
1
t=1
1 T b
72 Fupiy = H' [ WedWoj, (20)
t=1

in P, with We and W, ; defined in Proposition 1.

Theorem 1 is a similar result to Lemma 3.4 in Chang, Park and Song (2006), and it is
the bootstrap counterpart to equations (7) and (8) in Proposition 1. Results are pointwise

in 7; no joint limit theory is developed here.

4 Univariate bootstrap

The algorithm proposed above is applied to each unit separately, thereby imposing cross
sectional independence. This approach is valid when cross sectional correlation does not
need to be taken into account. This is the case when certain “time series problems” are
considered, e.g. the estimation of the loadings; in such cases, the bootstrap boils down
to a problem similar to Chang, Park and Song (2006). However, when “cross sectional
problems” are considered (such as the estimation of common factors) results that are

pointwise in ¢ are sufficient only in presence of little or no cross sectional dependence. In

12



this section we consider three applications: we present validity results for the bootstrap
estimates of loadings (Section 4.1), common factors (Section 4.2), and common components

(Section 4.3).

Throughout the section, we consider two alternative DGPs for x;; :

1 f

xz(t,)b = NEp A+ wigh, (21)
2 o

1‘5& = Ny o+ i (22)

We show that using either (21) or (22) has a marginal impact on the bootstrap theory. Also,
when studying the bootstrap approximation of loadings, factors and common components,
we consider two alternative estimation techniques, OLS and PC. With OLS, the loadings
are estimated through a time series regression, using F} as observable regressors. Similary,
the factors are estimated through a cross sectional regression with \; treated as observable.
With PC, loadings and factors are extracted from :I:Etl)b or :Ez(f )b, without treating \; or
as observed. The same restrictions as for the computation of (5\1, Ft) can be used at each
bootstrap iteration. It can be expected that this approach is less dependent than OLS on
the quality of the first step estimates (;\Z, Ft>; also, the bootstrapped errors are allowed
to have an impact on the bootstrapped factors.!

However, PC cannot estimate factors and loadings directly, but only up to a rotation.
Bai and Ng (2011) study under which restrictions the rotation matrix is (asymptotically)
the identity matrix, but these restrictions need not always hold in practice. The issue of
rotational indeterminacy affects the bootstrap in two ways.

Firstly, it is possible to provide bootstrap approximations for N — H™1)\; and for
F,—H F;, but the bootstrap is not able to estimate H. Whilst this is a general limitation
of PC, in many applications knowing (H I\, H Ft) is as good as (\;, F}); examples include
computing common components; confidence intervals for diffusion index forecast (Bai and
Ng, 2006a); IV estimation (Bai and Ng, 2010); and testing whether observable economic
variables overlap with estimated latent factors (Bai and Ng, 2006b). In these contexts,
the bootstrap can be useful.

Secondly, rotational indeterminacy also affects the bootstrap when PC is applied to

'T thank an anonymous Referee for pointing this out to me.

13



(21) or (22). To illustrate this, we consider the estimation of the loadings as a leading
example. When using OLS, F} is treated as observable. Thus, there is no rotational inde-
terminacy, and the bootstrap estimator estimates i directly. Conversely, when applying

PC to e.g. (21), the loadings are estimated up to a rotation matrix Hy, given by

v (23)

1 T
73 FiFl,
t=1

H = [}1 SA
=1

b(1)

where Ft,b is the PC estimate of the common factors and V, ;’ contains the first k

eigenvalues of #Xél)Xél)l in descending order with Xlgl) = [a:glg, a:(l)} and l‘(l)

’¥n,b
!/ A
g)b, . E})b . The matrix H; is computed using Fy, as in (23), or Fy, according as

(21) or (22) is used. Thus, H; is observable: there is no identification issue here. The
bootstrap IP, (25) and Proposition 5 below ensures that Hj is invertible.

4.1 Loadings

Consider )\;. Lemma 4 in Bai (2004, p. 147) states that A\; — H~'\; = O, (T~1) with

-1

T T T
N—H N = Y BF H'Y " Fuy S RF|  x (24)
= t=1 t=1
r T T - T
3 (Ft - H’Ft) wie| + | SR E Z (H F— ) H—lA,-]
Lt=1 t=1 t=1
= [+II+III

Lemma B.4 in Bai (2004, p. 171) entails that I1 and III are negligible. Using (7) and (8)

T (A - H‘lAi) < g (/ W5W6’> - (/ WEdWm) : (25)

which is the same as Theorem 3 in Bai (2004).

As mentioned above, OLS can be applied to (21) and (22), treating F, as observable,

obtaining S\QLS(D nd j\iObL 5@ respectively. Alternatively, PC can be applied to xftl )b and
l(t)b, obtaining )\ o and S\ZPbC(Q).

OLS estimation

14



~OLS ~OLS
When using OLS to compute A, M and A, (2), the estimation errors are given by
OLS(1) [ Tz
v =A== DOBRF| DY Fug (26)
= t=1
OLS(2) [ T
)\’i7b - )\z = Z Ft,th/,b Z Ft,buinb] . (27)
= t=1

Proposition 2 Let Assumptions 1-5 hold. As (n,T) — oo for some 6 > 0

-1
T [AObL e A} LY ( / WEW6’> < / WEqu,Z) in P, (28)

‘24-(5

Eb HT [ OLS(I)( ) j\z}

—0,(1) inP. (29)

. . . ~OLS(1),(2
Equation (28) is a weak convergence result: the bootstrap estimation error, A; , .3 _

Q <OLS(1
Ai, has the same limiting distribution as in (25), which stipulates the validity of )\Z b L) _
i in approximating the limiting distribution of A\; — H~1\;. Equation (29), in essence, is

an application of Lemma 1. It ensures that T [)\( " _ 5\,} is uniformly integrable, which

is useful when an approximation of the moments of T [5\1 —H _1)\i] is needed.

PC estimation

<PC(1)

When using PC, A, ree

and 5\“) estimate H; ');, with H; defined in (23).

Proposition 3 Let Assumptions 1-5 hold. As (n,T) — oo for some 6 > 0

—1
P Y [ ( / WEW'> ( / WadWm)

‘2+5

in P, (30)

o HT [S\fbc(l),(?) B Hflj‘i}

= 0,(1) in P. (31)

Equation (30) is, in essence, the same as Theorem 3 in Bai (2004): the limiting dis-

1Pe(),(2)

tribution of )\l b H 15\1‘ is the same as the limiting distribution of 5\Z — H ')\,

except for the presence of the rotation matrix Hy. This is a consequence of the rotational
indeterminacy which is typical of PC estimation. Since Hj is observable, the limiting
PCM),(2)

distribution of \; — H1), is approximated by H; [)\ H Hi

15



4.2 Common factors

The building block of the analysis is Theorem 2 in Bai (2004, p. 148): as (n,T) — oo

with 75 — 0, it holds that

Jn [Ft - H’Ft} 4 H'S) x N(0,T)), (32)

1
n

with T' = limy oo = D iy 2?21 E [)\i)\;-uitujt] . Under the “one unit at a time” resampling
scheme, cross dependence among the wu;s is forced to be zero; thus, it can be expected that
the bootstrap provides valid inference on factors only under E (u;uj;) = 0 for ¢ # j, which
entails I'y = lim,,— %Z?:l E [)\Z-)\;u?t]. Indeed, as discussed in Section 5, the “one unit
at a time” scheme can provide valid inference when cross correlation is different from zero
but “negligible” as n — oo - see Theorem 3 and the discussion thereafter. More generally,

consistent estimation of I'y is fraught with difficulties; as Bai (2003) points out, HAC-type

estimators are not feasible since, in general, the order of cross correlation is unknown.

As in the case of the loadings, there are two possible ways of estimating the common
factors from (21) and (22). A cross sectional OLS estimator can be applied, considering

LS(1) ~OLS(2)

\; observable and computing respectively F tOb and F} . Alternatively, PC can be

used, obtaining FthC(l) and FthC(Q),

OLS estimation

The estimation error is

n -1 n

R ]_ ~ At ]. S

FtiLS(Q) . Ft,b — (n E >\’L)\7,> (n E )\i'lj,it}b) . (33)
i=1 =1

The same equation holds for FtObLS(l) — F}. No identification issue is present when using

OLS.

Proposition 4 Let Assumptions 1-5 hold. As (n,T) — o

NG [Fgfs@) - Ft,b} 2 H'SA x N (0,Ty) in P, (34)
Eb Hﬁ {Ft%“@) - Ft7b] HM =0,(1) in P, (35)
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for some 6 > 0. The same holds for ﬁg)LS(l) —F.

Equation (34) stipulates the validity of F’ tObLS(Q) —F;p (and of FtObLS

@ —Ft) in approxi-
mating the limiting distribution of F; — H'F} given in (32). Note that, unlike Theorem 2 in
Bai (2004), no restrictions are needed on the rate of divergence between n and T'. This is
because the OLS estimator uses \; as an observable regressor, thereby not introducing any
extra error terms, unlike PC. However, this does not entail that \/n [F&LS@) - Ft,b} can
be used to approximate the limiting distribution of \/n [Ft — H' Ft] for any combination
of n and T. When #z — ¢ > 0, the limiting distribution of \/n [Ft — H’Ft} is not given

by (32), and therefore \/n [FtObLS(Q) — Ft,b} is no longer valid.
PC estimation

Similarly to the case of the loadings, PC identifies the common factors up to the

rotation matrix Hyp, defined in (23).

Proposition 5 Let Assumptions 1-5 hold. As (n,T) — oo with 75 — 0

Vi [EC0 — 1R L H{[H'Sy x N (0,1,)] in P, (36)
~ 2446
Eb H\/ﬁ [Ftﬁf(?) - H{Fw} H ~=0,(1) in P, (37)

~PC(1)

for some 6 > 0. The same holds for F — H{Ft

Proposition 5 states the validity of \/n [Fﬁc(z) - H {Ft,b] to approximate the limiting
distribution of /n [Ft — H' Ft}, and it is the bootstrap counterpart to Theorem 2 in Bai

(2004).

4.3 Common components

~ Al A
The estimated common components are given by Cj;; = A; F3, with

Ciy — Gy = (Ft - H’Ft>l H'\ + F (A - H‘l)\i) — [+ (38)
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Bai (2004, Theorem 4, p. 149) shows that, as (n,T") — oo with 7 — =, for each (i,¢) with
t=1|Ts]

Vi (Cie = Cie) 4 NEAN (0.1) + VAW, (5 ( / Wawg) h [waw. @9

where the first term on the right hand side comes from I in (38) and the second one from

II.

Choosing either (21) or (22) for the bootstrap approximation of Ci1— Cy; does not make
a difference. However, the estimation technique employed (i.e. OLS or PC) has profound
consequences: OLS should not be employed when computing the bootstrap approximation
of C’it — Cjt. In order to illustrate this, let /A\gbL § be the OLS estimator of 5\Z in either (21)
or (22), and let F” denote the common factors in either (21) or (22) - we omit superscripts

~OLS!
to save space. The bootstrap estimate is C% = Aib F}. Thus, the estimation error is

~OLS 2 ~OLS A\ A
Aib IFtb - )\;Ftb = ()‘z}b — )\i> F}: the asymptotics of C% — Cj; is driven only by part 17
in (38). This is due to F}” being treated as observable, so that there is no estimation error

of the form Ft — H'F;. Therefore, C’ft — C’it cannot be used to approximate the limiting

distribution of Cj — Cj, unless 7 — 0, which limits its practical use.
~PC A A N
Thus, PC should be used. Let \;, and FthC be the estimates of \; and F} under either
N ~PC/ ~

(21) or (22) - superscripts are again omitted to save space. Define Cjrp, = A; /Ftlfbc; we
have

A A ~PC 1\ =13, ppor (R FC ~13

Civy — Cao = (BLC = HIR) BTN+ BLY (N — HI'A). (40)
In view of (40), it can be expected that the limiting distribution of \/n (éit,b — CA’M> is the

same as that of \/n (CA’M — Cit) for all combinations of n and T as they pass to infinity.

Proposition 6 Let Assumptions 1-5 hold. Then, for all (i,t) such that t = |Ts], as

(n,T) — oo with 7 —

~ A~

-1
vn (C’it’b - Cit) L NN (0,Ty) + VaWe (s) < / W€W€’> / W.dW,; in P.  (41)
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Also, for all (i,t) such that t = [T's], as (n,T) — oo with 7= — 7w for some § >0

Eb ‘\/ﬁ ((Zyt,b - Cit) ‘M ~=0,(1) in P. (42)

Results for 7z — 0 and % — 0 are in Appendix. The case 7= — 7 is, as pointed out
in Bai (2004), the most useful one, since 7 can be replaced by 7, thereby making the

bootstrap approximation of C’it — (Cj; usable for all combinations of n and T'.

5 Multivariate bootstrap

Results in Sections 3 and 4 are pointwise in ¢, and only consider the time series dimension.
This is sufficient for some applications, but in other cases the cross sectional dimension
and the presence of cross sectional correlation need to be taken into account. Also, in
some applications joint asymptotics results are needed.

The main output of this Section is the derivation of a bootstrap counterpart to equa-
tions (9) and (10). It is shown that the moment existence conditions granted by Lemma
1 are sufficient also for joint bootstrap asymptotics. However, consistent estimation of
the long run variance of u; is fraught with difficulties, due to its growing dimension (see

Theorem 3).

To study multivariate bootstrap, the algorithm in Section 3.1 is modified by resampling
the whole vector &} = [ézft’q, ey é}‘mq]l, and estimating an n-dimensional VAR of order ¢
for @y = [ti1¢, ..., Un¢]’. In order to prove bootstrap analogues to equations (9) and (10), let

the VAR (co) representation for u; be uy = Y 72| Bjug—j + ef, truncated at lag g as
q
Ut = ZBjut,j + 6?, (43)
j=1

and let B (1) = 1 — 377, Bj; by definition, B (1) = I'~1(1). Also, define the bootstrap
counterpart to e}, ezb, and let B;f be some estimator of Bj; thus, B* (1) =1 — ;1-:1 B}‘
is an estimator for B (1). Note that the number of parameters to be estimated is gn?.
Thus, we require that gn? < 7. This constraint on the relative speed of divergence of n

and T is stronger than the typical requirement that 7+ — 0. The bootstrap sample uy
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can be generated using u;; = Z?:l B;fut_j,b + e}j’b. No modifications are required to the

algorithm in Section 3.1 as far as the generation of F}; is concerned.

Theorem 2 Let Assumptions 1-5 hold, and assume further that ||B* (1) — B (1)||; =

op(1). As (n,T) — oo with gn®> < T

n |Ts]

\/ﬁzzultbﬁau u()y (44)

i=1 t=1

n

1
/aT > Z Foyuiy & oo H' /W AW, (45)

i=1 t=1

uniformly in s, in P, where o, W, and W, are defined in Proposition 1.

Theorem 2 is a joint asymptotics result. It shows that the distributions of n=/27-1/2 Yoy
Zf:l witp and n~1/2p-1 Yo Z?zl F pugtp are asymptotically the same as the distrib-
utions of n~1/27-1/2 Yoy Ethl w;y and n~1/27-1 Yoy Zthl Fiug.

Equation (44) could be generalised to study multiparameter partial sum processes such
as (nT)~Y/2 Zanj ZtLTlJ uit, with (p, s) € [0,1]x[0, 1]. Having max; ; £ gt < oo yields
(nT)_l/ZZanJ EtLTiJ uip ouW (p,s), where W (-,) is a standard two-dimensional
Brownian sheet. This is a standard result in the random fields literature - see, inter
alia, Bulinski and Shashkin (2006), and Rio (1993) for strong approximations. Therefore,
Lemma, 1 is sufficient to prove a multiparameter IP for the partial sums of the bootstrap
sample u;p. This could be useful when resampling across ¢ as well as across t (see e.g.
Kapetanios, 2008, and Levina and Bickel, 2006), although this postulates the existence of

some ordering among the units which is not always obvious - see also Goncalves (2010).

In essence, Theorem 2 states that joint asymptotics can be derived for the bootstrap
samples under the same assumptions as univariate results, as long as there exists a con-
sistent (in Lj-norm) estimator for B (1). Since B (1) is n x n (with n — o0), Lemma
2 is not sufficient for this, as it only grants element-wise consistency for B*(1). Al-
though the details are in the proof, here we give a preview of the rationale of the require-
ment that |B* (1) — B (1)||; = 0p(1). As an illustrative example, consider showing that
(nT)~1/? ELTSJ >y Uit p has the same limiting distribution as (nT")~ 1/2 ZLTSJ Doy Uit

Writing this in matrix form, a requirement for this is that (nT") /2 th‘SJ ! (B* (1))t ety
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and (nT')~1/2 }Z? i [B(1)]"* e should have the same distribution. An IP holds for the

partial sums of ej and e},. Thus, following the same lines as in the proof of Lemma 3,
_ T * _ _

we need (nT) ™2 LI S0 S {1B (W] - (BT ey = 0p (1), where {A),

denotes the element in position (¢,7) of matrix A. Since € p has finite variance, it is

sufficient that sup; [> i, {[B* 1] ' —[B (1)]71}

| = op (1), for which it is sufficient
that H[B* L] - [B(1)]—1H1 — 0, (1). This holds if || B* (1) — B (1)|l, = o, (1), since
| =B < Iet ol [0 0], 187 (1) = Bl and [T ()], and
HF_l (I)HOO are finite by Assumption 1 (4ii).

In order to estimate B (1), consider (43). Defining ug = [uj_;, ...,ug_q]/ and B, =

[Bg.1|..| Bg,q), we have

w = Byugt + €qy; (46)

the feasible estimator of By is

T T !
By= | > dwigy| | Y dgeiy| (47)
t=q+1 t=g-+1
Thus, B (1) can be estimated by B/q\(l) =1- Z?:l B, - note that (47) requires the
inversion of an ng X ng matrix. More importantly, the VAR approach introduces fur-
ther restrictions to the applicability of the bootstrap. As pointed out above, in order to
implement this approach we need that gn? < T.

We also consider also an alternative estimator of B (1) which does not take into account
the cross sectional correlation among the w;s. This can be computed from the 4, ;s
estimated from (12), and defined as g;\/(l) =1- Z?Zl B, ;, with B, j an n x n diagonal
matrix whose elements are given by @gg In this case, no VAR is fitted and thus the

restriction that gn? < T is not necessary.

It holds that:

Theorem 3 Let A = (A1, A2, ..., \n)', and let Assumptions 1-4 hold with |All; = O, (n).
Then

[0 - 80), =0, (/57 0, ot o) a0 o
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Assuming sup; Z#]‘ |Tij| = O (n_¢) with ¢ > 0, it holds that

ngv(l) - B (1)H1 =0y <901ng> +Op (qn_¢> t+o (q_s) : (49)

—

Theorem 3 states that By (1) is inconsistent in Li-norm. This result, somewhat con-
strained by the choice of the matrix norm, can be compared with the analysis in Fan, Fan
and Lv (2008). Theorem 3 is a result of independent interest, even outside the context
of bootstrap. As far as sieve bootstrap is concerned, the inconsistency of B/q(\l) entails
that an IP for w; ;, cannot be proved - this can be viewed following the same lines as in
the proof of Lemma 3. In spite of Assumption 1(7i), which limits the amount of cross
dependence among the wu;s, inconsistency arises due to the presence of A=A (H' )_1 F;
in the 4;s (see the proof). This could be compared with the results in Chudik and Pe-
saran (2011), where an assumption similar to 1(7i) is sufficient to ensure consistency of
the estimated long run covariance matrix. Other, residual-based estimators of the long
run variance would similarly be affected by the presence of |A — A (H' )71 F;. Intuitively,
this result reinforces the well-known fact that PC estimation can accommodate for weak
cross dependence only.

—_~—

Turning to B, (1), this is consistent only under ¢ > 0, as long as Assumption 5 is mod-

ified to ¢ — oo with ¢ = o (min{, /%,n‘z’}). In this case, ||B, (1) — B(l)”1 = o0p (1),

as required by Theorem 2. The first term on the right hand side of (49) represents the rate

P

of convergence of the elements on the main diagonal of B, (1), as warranted by Lemma
2. The assumption that sup; >, [7i;| = O (n™?) poses a limitation on the amount of
cross dependence among the u;:s. Although some dependence is allowed for, this is weaker
than in an ordinary approximate factor structure framework (see e.g. Assumption C(1) in
Bai, 2004), where it suffices to have n=1 Y"1, > i—1|mijl = O (1), for which it is sufficient
that sup; >, |7ij| = O (1). Conversely, the assumption is more general than in classical
Principal Component Analysis, where 7;; = 0 for all ¢ # j. Thus, in essence (49) states
that neglecting cross dependence is harmless (and, in fact, advantageous over B/q\(l)), as
long as there is “very little” cross dependence. This result illustrates the fact that the

“classical” assumptions of Principal Component Analysis can be relaxed when n is large,

but only up to a certain extent. Finally, note that, as long as sup; Y i |Tij] = O (n*‘z’),
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any consistent estimation technique (e.g. a nonparametric one) for the long run variances
of the u;s would yield a consistent estimator for B (1).

The results in Theorem 3 extend to other, more general contexts, whenever the long
run variance of u; needs to be estimated. As an example, consider the asymptotics of F,
and Cy, reported in equations (32) and (39) respectively. In both cases, the quantity I'; =
lim, 0o n YA'T (1) £, T (1) A is present. Unless cross sectional independence is assumed,

it is necessary to estimate I' (1), with the difficulties highlighted in Theorem 3.

6 Bootstrapping mixed panel factor series

In this section, we discuss the extension of the bootstrap theory derived above to the case

in which both I (1) and 7 (0) common factors are present in the DGP of z;, viz.

Tyt = )\f/Ft + )\Z-G/Gt -+ U4t (50)

= MNYK; 4w,

with A = [\, )\iG/]/ and K; = [F/,G}]'. We assume that, as before, F} is a k-dimensional
nonstationary process, and G; is an h-dimensional stationary process.

Model (50) is a useful extension for at least two reasons. Firstly, the presence of
common I (0) factors in (50) can accommodate for dynamic factors, i.e. A; in (1) replaced
by Z;; AFLE: and for cointegrated factors, i.e. F; in (1) being cointegrated. Secondly,
the presence of stationary common factors also means that, in (1), strong cross dependence
among the u;s can be accommodated for - as far as weak dependence is concerned, the
considerations in Section 5 still hold.

The purpose of this section is to provide some initial results for the extension of boot-
strap theory to (50). The relevant inferential theory is in Bai (2004, section 5); see also
Maciejowska (2010). In particular, we present extensions of Lemmas 1 and 2. This pro-
vides the theoretical framework from which more specialised results, such as validity results
for the estimates of A and K; can be derived in a similar way as in Sections 4 and 5.

The bootstrap algorithm requires a modification of Section 3.1. More specifically,

after estimating H'K; (for some invertible matrix H defined analogously to (4)), with
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. NN . Y o
K, = {F{,Gt} , define AK; = [AF{,Gt] . As well as estimating 4 = ;11!1 ’y((;’;@it,j
+ej; ,» the algorithm is based on fitting the (k + h)-dimensional VAR
A qK A~
AK: = ZAq,jAKt—j + 6{,{17
j=1
generating the residuals é{fq. After recentering, the sequence {é{fq} is resampled as in Step
/ !
3.1.(b), obtaining [et]i)’, e%jb} . After generating the pseudo sample f§;; , = [AK£7b, uit’b} =
!/

AF{,b,G;’b,uwb} similarly to Step 3.2.(a), the first k elements can be integrated as in
Step 3.2.(b), thereby getting the bootstrap sample of the nonstationary common factors,
Fip.

The following Assumptions are extensions/variations of Assumptions 1-4 and of As-

sumption 5 respectively, reported here for convenience.

Assumption 6. (a) Assumption 1 holds; (b) the (k 4 h)-dimensional process [AF/, G}]'
satisfies Assumption 2; (c) the loadings A/ satifsy Assumption 3; (d) {[AF/, G|}, {u}

and {/\ZK } are three mutually independent groups, and Ky is independent of {u;} and

(N

Assumption 7. As (n,T) — o0, gg — o0 and ¢,; — oo for each i, with ¢x and g, ;

both o (ppy) for each 1.

The two Assumptions are very similar to Assumptions 1-5. One difference, in As-
sumption 7, is that the upper bound for ¢ is given by min {\/ﬁ, \/W }, whereas in
Assumption 5 the order of the VAR fitted to AF} is min {n, \/W}

It holds that
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Lemma 4 Let Assumptions 6 and 7 hold. As (n,T) — oo, for all (i,t) and for r > 4

E |ty = Elef]]" +Op (ax™) + Op (0,7) (51)
[ arx \']

+0 ,
P _<90:§T> i

max B [elyy|” = maxElehl" + 0y (a,07) + 0, (557)  (52)
1, 2y ’

[ Qu,i "
<0, (2],
"\eur/ |
. —1 log T 1 1
s s = a0 07 = 00 ((B5T) w0, () o () o
B log T 1 1
B O”<V T >+0p<ﬁ>+op (qz)'(“)

Lemma 4 is the building block to extend the theory developed in Sections 4 and 5 to

o |30 o

1<5<qu,i

(50). Results such as Lemma 3 and Theorem 1 can be proved directly using (51)-(54). The
main feature of the Lemma, in terms of rates of convergence, is that according to (53),

Ay jn is still consistent but at a slower rate than in Lemma 2. In essence, instead of being

consistent at a rate min {n, \/log T/T}, fquA is consistent at a rate min {\/ﬁ, \/log T/T}.

This result is directly related to the findings in Bai (2004) and Maciejowska (2010).

7 Concluding remarks

This paper contains results on the validity of sieve bootstrap applied to large, nonstation-
ary panel factor series. Building on a similar research question as in Chang, Park and
Song (2006) in the context of cointegrated, finite dimensional VARs, an IP is proved for
the bootstrap sample which, together with results on the consistent estimation of long
run variances and on the convergence to stochastic integrals of transformations of the
bootstrap sample, provides a formal justification to the use of the bootstrap in the con-
text of panel factor series. Whilst the first results are only pointwise, in order to extend
the applicability of the sieve bootstrap, joint bootstrap asymptotics is also studied. In
this case, the findings are ambiguous: the presence of cross sectional dependence makes
bootstrapping invalid, unless cross dependence is very weak. Although this is a negative
result, it illustrates the pitfalls and limitations of bootstrapping panel factor models and,

more generally, of large panels with cross dependence. As an ancillary result, the paper
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contains an investigation on the consistency in Li-norm of the estimated long run variance
of panel factor models, showing that, whilst element-wise consistency holds, matrix-type
consistency is in general hampered by the presence and the extent of cross dependence.
These results are of independent interest, and the issue remains as to the consistent esti-
mation of large covariance matrices under general forms of cross dependence. Finally, the
paper considers the extension to the case of stationary and nonstationary common factors.

This issue is currently under investigation by the author.
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Appendix A: useful Lemmas
Lemma A.1 Let Assumptions 1-4 hold. Then
R 2
A1) TP, HAFt - H'AFtH =0, (Crf),
A1) TS, (AR - H/AFt)IAFt =0, (T7'2C,z),
T 2 " AT
A1) T71Y, (AFt—H’AFt) AF; =0y (3) + 0y (T3/2>

Proof. For the sake of the notation, we omit H whenever possible. Consider A.1(7).
It holds that AF, — AF, = (Ft — Ft) — <Ft—1 — Ft—l); using equation (B.1) in Bai (2004,
p. 167) we have

T T T T
VnT (Ft - H,Ft) = T_2 Z FA‘S’}/S*t + T_2 Z FSCst + T_2 Z anst + T_2 Z FSEsta
s=1 s=1 s=1 s=1

where v, = n 7 E (ujus), (o = 1 (Wus) = Yeopy Mg = 1 (FiA ) and & =
1 (F/Aus). We omit H and V,r whenever possible; note that they are both full rank

matrices, with ||H| = Op (1). We have

T , . ,
AF,—AF, = T2y FRE <A“t“5> + 723 F, [Aut“‘s —E <A“t“5>]
n n n
s=1

T ! A/ I A/
Y <F8AnA“t> 1Y, <AF31A “)

s=1
= [+II+III+1V.
~ 2
It holds that 7-1 7| HAFt - AFtH <MT ' (||IH2 T2+ I + |]IV|\2)

2) (T2l A =

Op (T72) using Lemma B.1 in Bai (2004) and Assumption 1. Also, letting (o, =

A, — B (uju,)], wehave TV S, 112 < TS0, 27, B (S Cauan) <
9 1/2
= <T2 22:1 F ) [T2 25:1 2321 (Z?:l CAstCAut) } = Op (nilTiz) using
2
the fact that E <EtT:1 CAstCAut) < T?max,; E|[Cagyl* and Assumption 1(i). As far
AN Aug

2 PP SETINT
NG ) <T 2 Zs:l ‘ FS
(T*2 ST HFSH2> = Op(n~'). Similar passages as above yield 7! STV <

Let yae—s = n LB (Aujuy); then T Y |[1])* <772 <T2 > et \ Fy

as I11 is concerned, T-'S°F | I1T))> < n~? <T—1 ZL’
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12 o |12 L
o (0 S arE) (re L)) (rrsn s ]) - oo,
Putting all together, we get A.1(7).
Part A.1(ii) can be proved in a similar way. We can write
1= [\ ¢ /
=3 <AFt - AFt) AF,
t=1
T T T T
. Aulug ~ FIN'A
= TS Y AR (S 10 STy AR (BU5)
t=1 s=1 " t=1 s=1 n
T T
~ AF]N ug
+7733 S EIAR, (“‘)
n
t=1 s=1
= I+1I+1I1I

Using Lemmas B.1 and B.4 in Bai (2004), we have ||I]| < n~—17~3/2 HZ?:1 (T—l ST Fu>
!/ ~
(112 5L, ARAw,) H ~ 0,(1°92). Ao, 1] < w72 (12 51, BF)

!/
(n—1/2T—1/22?:1 T A;AFtAuit)‘ = 0, (n"V2TY2). Last, |III|] < n~ Y27~}

(n*1/2T*1 ST A;FsAuis) (T*1 ST AFtAFt’> =0, (n~Y/2T~1). Combining these
results, A.1(ii) follows. Equation A.1(7i) follows from A.1(i)-A.1(%) upon noting that
TS, (AF - AR) AR =T SL, (AR - AR) AR 4T 5L, |ag - AFtH2
=0, (T72C7) + 0, (Cr7).

Lemma A.2 Let Assumptions 1-4 hold. Then
A2() TP, HAE - H/AFtHT =0p (Co1),
A2(i) T HAEHT =0,(1),

A.2(iii) TV i — ua|” = Op (8,7),

A2(w) TS |aw]” = 0, (1) for v > 2.
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Proof. We omit H whenever possible. To prove part A.2(i), note that

|z A . |z 1 I 2T/21T LI 277/2
TZHAFt_AFtH < TZ ﬁst’Ms—t +TZ ﬁZFsCst
t=1 t=1 s=1 t=1 s=1
T [ T 27/
1 ~ F’A’Aut
- — Nk
M| DM Cy
T T T 21 7/2
1 1 & [ AFIN,
33 || o (5
t=1 L s=1 ]
= I+I1I+I1IT+1V.

A 27‘/2
2
<

Consider I. The Cauchy-Schwartz inequality yields I < T~ T tT 1 [le ZST:1 ’

r/2 .

[25:1 WQAS—J . Assumption 1 ensures that Zstl Y4, ;= O(1). Also, T2 Zstl ‘ Fy
. 2

T2 IR+ T2 S, A | =0 (rre?)

according to Lemma B.1 in Bai (2004). Given that T2 ZST:1 |yl = O, (1), it holds that

2 T
W with 72T ‘

A

917/2 . .
Fs :| T_l Zt:l [% Zs:l §2Ast
Since T .1 A, =0, (n~1) - see Bai (2003, p. 159) - we have I = O, (n~"/2). Con-

r/z

I =0,(T™"). Asfaras I1 is concerned, note II < {7}2 Zstl

sidering I11, it holds that

T
szp (F’A’Aut || —7"/2 A

T A
W

Aut
7”L

—r/2

Note that T2 S0, By F) = T2 X1, FFAT 2 21, (B = Fy) FL = 0, (1)+0, (T71C)
from Lemma B.1 in Bai (2004). Also, n~"/? Hn 1/2A’utH =n"/2 Hn 1/2 POEPY Uth
O, (n*T/Q) after Assumptions 2(i) and 3. Thus, II] = O, (n*T/2). Finally, IV can be

rearranged as

1 ZT: . AF{A/U ‘T 1 i A 27 7/2
— F <8> = — Foau AAF;
2 2 s
T = n nT p—
27 7/2
I ES 3
s=1 i=1

27 /2
. !

TnAu)\'
DRV

IN

n2T ||| AE?

'ﬂ \
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~

with [AF|? = 0, (1) and |[(7) " £1 (072 20y wishY)
Lemma B.4 in Bai (2004). Hence, IV = O, (n™"/2T~"). Thus, we have 7! ST HAE - AFtHT =

2
‘ = 0, (1)+0, (C,}) from

Op(T7")+ 0, (n™") +0p (n™") + O, (n_T/QT_’") = 0, (C,1). Part A.2(ii) follows from
TN ||AR|] < T S AR+ TS AR - AR| = 0,(1) + 0, (Cf).
Finally, consider A.2(%i). Since U; = X — 5\;13}, in light of (1) we have w; — ui =

N.F, — \.Fy, and therefore

1 1 « NN "
fzmit—uit\r = Tz (Az_)\l) Ft_)\i (Ft_Ft)
t=1 t=1
1| /s A L QAN .
< Mz |(A=x) B + Mz YN (B-R)
t=1 t=1
= I+1I
~ A ~
Consider I; we have I < ‘ Xi— N T71 Zthl |Fi||". Note that A\; — A; = O, (T!) -

see Lemma 3 in Bai (2004, p. 148). Also, Assumptions 1(7), 1(ii), 2(i) and 2(ii) en-
sure that Zle |Fi|" = Op (TH%T) - see Park and Phillips (1999, Theorem 5.3). Thus,
~/ N T A~

X (- ) LB - R

o |Ai +0p (1)[|" = O(1), similar calculations as before (based on the the-

r

i

T
<|

I=0, (T_%T). As far as I is concerned, Zthl

A

Since ‘
ory developed in Bai, 2004) would lead to Y7, HFt . FtH = 0, (TC¥). Thus, IT =
O, (C’;TT) and therefore 7! Zthl |tit — wit]” = Oy (57}}) Part A.2(iv) follows from simi-
lar calculations as for the proof of A.2(%i). m

Lemma A.3 Let Assumptions 1-4 hold. Then T~} Zle a3 =T1 Zle u+ O, (C;r})
+0p (Cp1)-

Proof. It holds that

(Ui — i)

M| =
E

wit (Qir — wit) +

=l
E
:So
+
N
E

N

T
1 o)

E Uy =

t=1

o~
Il
—
o~
Il
—
~~
Il
—

+1+11.

I
=l
]~

So

&
Il
—

1/2 1/
We have I < 2 {T‘l S uft} [T_l S i — uit’2]

2
=0,(1) O, (C_%), in view
of Assumption 1 and Lemma A.2(44). Also, A.2(%i) yields I1 = O, (Cgﬁ) Putting all

n
together, the Lemma follows. m
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Lemma A.4 Let Assumptions 1-5 hold. Then, for some r > 2
A '

Ad4(i) T'Y, HFt,b - HiFt,bH =0 (Cpr)
Ad(ii) T, (Ft,b - Hiﬂb) F{, =0, (Cop),
A.4(iii) TP 1(Ftb—H1Ftb> 7= 0y (Cirp),
A4(iv) By — H{F,, =0, (n V%) + 0, (T73/7?).

Proof. Prior to starting the proof, recall that 5\1-—H*1)\Z' =0, (Tﬁl). Also, F HFMH =
0] (\/T) by construction. Defining 72 ts| = nt oy E (uipuisp), note that, by con-
struction, w;p is a stationary AR process of finite order; thus, 71 Zthl Zstl 72 (| <
M < oo. Also, under the “one unit at a time” bootstrap, the u; s are independent
across ¢ and E |u;, buisb|2+5 < FE |uit’b|4+6, which is finite (uniformly in i) according to

Lemma 1. Thus, n 1/22 1 (uztbuzsb 'ys’l |t—s\> = Op(1). Let A= A1,y Ap] and

U p = [Uitp, ...,um’b] . It holds that

VT?T (Ft,b B HiFtvb) = T2 ZFS b'yn Jt—s| + T2 ZZFSb <ut bls,b — 7n JJt— s|><55)

= s=1 i=1

~ 1 ~ N
g FoF  Nuyy+ —— g Foou' AF, .
N2P) Sb s,b t,b D) s,b s,b t,b
nT nT o

Consider A.4(7): we show it for » = 2; similar passages as in the proof of Lemma A.2(7)

yield the result in the general case. It holds that

1|5 2 T S &L,
!
TZHFtvb—HlFtva = M;Z 77 2 Pty
t=1 t=1 s=1
T | I.on 2
n b
Mz, Z rED P DY CATNEE Ny
t=1 s=1 i=1
T 1 I 2 L I . I
TZ 75 D P Fo N | + Mz || =5 > Fapul A,
t=1 s=1 t=1 s=1
= MI+IT+III+1V),

for some M < co. Terms I and II are O, (T~2) and O, (n™') respectively in light of
Bai (2004), since Bai’s assumptions on the summability of the 'YZ t—s[S and on n~1/2 Sy

(Wit pUisp — ’y?bm,\t—s|) being O, (1) hold here. Turning to I11, we have II] < M ﬁ
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2 .
7 H ; note A'ugp

2 2
Y H {7}22?:1 b ] [%Zil HFS’bHQ]. Consider

~ ~ n
=" . \u;rp. Conditional on the sample, the sequence 3 \ju;rp has mean zero, and
=1 ) p ’ q I i=1

in view of the “one unit at a time” resampling scheme, it is i.i.d. across i. Also, due to the
H2+5 246

~

E |Uit,b|2+6, which is finite

independence between \; and w3,

)
in view of Assumption 3(%), Proposition 2 and Lemma 1. Thus, a CLT yields H/A\'u,;bH =
2

| and [ ST 117,
we obtain 11T = 5,0, (n) = O, (). Similar passages yield IV = O, ().

s,b

O, (n). Hence, applying the bootstrap IP to {T2 ST ‘
Consider part A.4(ii). Omitting V2,

T T T
1 . 1
T Z (Ft,b - H{Ft,b) F, = T3 ZZ FopF b Jt—s| T 73 ZZFs am (Ut plsb — Vo lt— s|>

t=1 s=1 t=1 s=1 t=1
T T Al ’ T T /A
1 Autthb 1 Fs,bu b
LA Ly
s=1 t=1 s=1 t=1
= I+ I1I+1IT+1V.

As far as I and I are concerned, the same arguments as in Bai (2004) can be applied:
I and II are O, (T’l). Consider I1I; neglecting Fs,b — H{Fs,b which is dominated
(after adding and subtracting), IIT = (% 23:1 Ft,bF{,b> (% PRSPl 1)\ FY ywit, b)
The term %Zle iy, is Op(1) in light of the bootstrap IP; also ﬁ py thl
AFbuztb 1 H doina t 1 /\Fbuztb + nT > IZt 1 <)‘ _Hfl)‘i> Ft/,b“it,b- The
first term is O, (n_l/ 2), see Bai (2004). Turning to the second term, it is bounded by
R 911/2 911/2
s -] s R = 0y @), s 1ir -

O, (C’;}) Finally, we turn to IV = (% Zle Ft,bui,b]\> (% Zthl Ft,thI,b) Consider

the first term, the second being Oy, (1)

T A 1 T A )
=D Y Fauph = —HIY Fuup AHT 3 (Fty,, _ H{Ft7b> uj  AH™

=1 t=1 t=1 t=1
1 n T . ,
to5 D> Fpuie <)\i - Hil)\i)
n i=1 t=1
1 n T . . ,
+ﬁ Z <Ft,b — H{Ft,b> uit’b <)\z — H_l)\i) .
i=1 t=1
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The first two terms are O, (n_1/2) and O, (n_l/QC';Tl) respectively - see Bai (2004). The

971/2 ) s 911/2
n
] [n doict HT >t Ft,buit,bH ] as

above, and thus it is O, (T_l). As far as the fourth one is concerned, it is bounded

571/2 oo 971/2
by [i Yo ‘ ] [711 Sy H% p ] (Ft,b - H{Ft7b> Uit,bH ] , which can be

shown to be O, (TﬁlC;%) using similar passages as above. Putting all together, part

third term is bounded by [711 Yo ‘ N — H 1)\

j\i — H_l)\i

A.4(ii) follows. Also, part A.4(iii) follows from A.4(i) and A.4(ii).

Turning to A.4(i), consider (55). The terms I and I have the same asymptot-
ics as in Bai (2004), since the assumptions are the same. Thus, I = O, (T*3/ 2) and
II =0, (n_1/2T_1/2). As far as II1 is concerned, recall that A’ut,b = O, (v/n); thence,
given that % 23:1 F&bF;b =0,(1), IIl = 0O, (n_1/2). Finally, consider IV; the same
arguments as in Bai (2004) yield IV = O, (nil/QTflﬂ). Putting all together, A.4(iv)
follows. m

Lemma A.5 Consider (50). Under Assumption 6, it holds that, for some r > 2

A5E) TS | K- BE =0, (57),
A5 (id 1T 17/ " -

5(ii) TS ||AF - HLAR| = 0, (6,7),

-1 T 2 / I -1

A5 (i) T2, (Kt - H Kt) Ki =0, (5nT)’
A.5(iv) T1 E?:l (AFt - H%AFt) AF =0y (Tﬁl/?égil“)’
As@w) T1T (Aﬁt - H;AFt) AE =0, (6.2),
A.5(’UZ) T_l Zle HAFtHT = Op (1)7
A5 (vii) T HGtH — 0, (1),
A5 (iii) TV — ul” = O, (6,7),
A5 (i) TPSE " = 0, (1),
A5(x) T 0% = 7 50, ud + Op (6,7)-

Proof. Most of the passages in the proof are similar to the other proofs; thus, some

of them are omitted. Consider the following notation: let u be the T' X n matrix defined
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as [u1, ..., up] With u; = [u;1, ..., u;r]’; define D = diag {le, \/TI;L}; let Y =F (“T“/) and

== “T“/ — Y. It holds that (see Maciejowska, 2010)

K—-KH = (iuAK’JrEJrT) KD™2, (56)
Il = 0, (VT), (57)
— T
== 0 ( ). (5%)

with, K = KV},

f«faﬂ“ =0, (1) and HK'KD—2H =0, (1).
We show parts (i) and (ii) for r = 2; the proof for general r can be adapted from the

. 2
proof of Lemma A.2. Consider A.5(i). Using the C,-inequality, 71 HK —KH| <M

~ 2
<T—1 |fusk &2 41

Ef(D_2H2 +71 HTKD—ZH2>. Tt holds that 7! H%uAK’f(D_2H2
1

EI?D*QH2 <77’ Hf(D’lH2 [ =171 0, (%) 0,(1) 0, (| D71*) =

0, (% HD—1H2>. Finally, 7! HTKD—2H2 < 71|72 HKD—1H2 |DY* = 771 0, (T)

< (n1)! HﬁuAHZ HK’f{D—2H2 = (7)1 0, (T) 0, (1) = O, (}). Also, using (57),
71

Op (1) Op (HD_1H2> =0, (HD‘1H2). Putting all together, 7~ HIAQ - H’KtH2 =0, () +
Op (% HD71H2> + O, (HD%HZ), whence, by definition of D, A.5(i). As far as A.5(4i) is
AF — AFHFH2 <7 |f - Hg,FtHQ

concerned, similarly to the proof of Lemma A.1, 7! ‘

. 2
+7-1 HFt,l — HLF,_1|| , whence the desired result.

Turning to A.5(iii), using (56) it holds that T~ 'K’ (K - KH) = LK'KNW/KD™2
+LK'SKD 24+ LK'TKD™ = [ + 1T+ I11. We have I < = | K'K|| ||A"u| Hf(D‘lH
_ 2 —1112
HD 1H - % Op (HDH ) Op<VnT) Op(1) Op (HD 1H ) = Op (\/%) Also, Il =

T1DK'EKD '+ T-'D1K'=E (I%—KH) D' = II, + I,. Tt holds that II, <
T D K| =) KDY

. this has the same order as T-'||Z|| = O, (ﬁ) Simi-
larly, 11, < 71 [D7'K|| 2] ||& = K H|| D71 = 7710, (1) 0, (&) 0, (VT3,1)
o, (|ID71) = 0, (\/fég} HD—1||>, by virtue of A.5(i), which is dominated. Thus,
IT = 0, (). Finally, IIT = T-'D"'K'TRD "'+ TD'K'Y (K~ KH) D! =
IIT, + ITI,. Tt holds that IT1, < T-L||D~1K|| 1| HKD—lu = 7710,(1) O, (x/T)
0p(1) = 0, (Jy)- Also, 115, < T-H[DTUK|| 0| |[K — KH| [D7Y]| = 770, (1)
0 (VT) 0y (VT631) 0y ([D7H]) = Op (54 | D7), which is dominated in light of

the definition of D. Putting all together, A.5(%ii) follows.
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Turning to A.5(iv), we show it by considering 71 (AK — AKH) AK' first. Using
(56) T~ AK’ (Af( - AKH) = LAK'AuAK'K D2 +T—1AK'§KD—2+ T-'AK'YED™?

= [+ II+III, with T = E (Agﬂ) and 2 = &9 _ ¥ Hence, I < L | AK'Aul|
HK'KD—2H = %0, (VaT) 0,(1) = 0, (A5 ); also, 1T < L|AK]| || HKD H
DY = Lo ( VT) 0, (VT) 0y (||D||—) Oy (pby)- Fimally, ITT < 4

x| 7 HKD 10 = b0, ( ) 0, (%) 0,0, (1017) = 0, (/E by ).
Thus, T~ (AK _ AKH) AK' =0, (ﬁ) +0, (”D”) +0, <\/§”})); A.5(iv) follows
from noting that, when considering 7! (AF — AFHF) AF', |D|| = O(T). Also, A.5(v)
follows from combining A.5(7i) and A.5(iv). Similarly, A.5(vi) and A.5(vii) follow from
A.5(iw) and A.5(ii) respectively, using Assumption 6.

As far as A.5(viii) is concerned, the proof is similar to Lemma A.2 (i ) it holds that
Tt Zle @i — uge|” < MT™1 ZtT:1 (5\Z —H '\ ) K; —i—MT 1 Zt L

I+ I1. Further, Theorem 6 in Bai (2004) states that \; — H~'\; = O, (HDH_1> ie. A s

\ (K; — H'E) ‘ _

VT or T consistent according as it estimates the space spanned by AZG or )\zF . Consider I;

Ol ST ST K s 0, (1
il 2= M 20y BT 38 Op (1) or
O, (T") according as Gy or Fj is considered. This yields I = O, (T_%”>. Also, omitting

it holds that (omitting M) I < T~ ’ N~ H-

M, II< ‘ Ai Tt ST K — H'K|"; A5(ii) entails that IT = O, (6,,+). This proves

A.5(viii). Equations A.5(iz) and A.5(z) follow from the same passages as in the proof of
Lemma A.2(iv) and Lemma A.3. m

Appendix B: proofs and derivations

Proof of Proposition 1. Consider (6). It holds that

Isl 1 AR, LTsI | H'AF, LTI | AE, — H'AF,
1y t Z LS ! Yl or4ar
VT t=1 Uit \F Uit VT t=1 0

The weak convergence to a Brownian motion of [ is a standard result; a detailed proof can

be found in Phillips and Solo (1992). As far as IT is concerned, 7-1/2 S177) (AFt - H’AFt>

1/2
<M [T S Ak - AR } : this is O, (C7}) in view of Lemma A.1(i), and it

holds uniformly in s. Thus, (6) holds. As far as equation (7) is concerned, 72 thzl FF] =
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H (T2 S, FiF)) H +H [T2 SR (B - H’Ft)'] T2, (Fo- B'R) B H
T2y (B-H'F) (B - H’Ft)' = [+II+III+IV. Term I converges to H' ([ W.W/) H
see Phillips and Solo (1992) for details. As far as I and 1] are concerned, using Lemma
B.4 in Bai (2004, p. 171), II = O, (T7'C,;}) and similarly I1]. Lemma in B.1 Bai
(2004, p. 167) also entails that IV = O, (TﬁlC;%). Turning to (8), T} Zthl Fuy =
H' <T‘1 Zthl Ftul-t> +711 Zthl <Ft — H’Ft> uit = I+I11. Convergence of I to H' [ W.dW,,;

. 211/2 1/2
is a standard result; as far as I is concerned, I < [T‘l 23;1 HFt — H’FtH ] [ -1 Zt 1 ult}

= O, (C;7) Op (1), which is negligible. This proves (8).
Consider (9). Let the martingale approximation of u;; (derived from the Beveridge-
Nelson decomposition) be «. This is a martingale difference sequence (MDS) with vari-

ance o2 .: it holds that

u7,7

n

T
WZZ it = iT Zuft—i- ! ZZRW_HH

i=1 =1 i=1 =1 VnT i=1 =1

where Ry ;; is defined as u}, — u;. Standard panel asymptotic arguments (Phillips and

Moon, 1999) yield that IT = O, (\/?) As far as I is concerned, define ¢,, = n=*/23"

*
i=1 Uit

The process (,,; has mean zero and is an MDS for every n: that n passes to infinity is merely

incidental. Also, consider E|C,,,|*™. We have E ([>T’ < n= 0t/ 5" Flut [>T <

n~=%/? max; E |u;‘t|2+5. Thus, in view of Assumption 1, E \Cm|2+5 < oo uniformly in n.

This entails that an IP for MDS (see e.g. Theorem 4.1 in Hall and Heyde, 1980) can be

applied: T7—1/2 ZtTSJ (¢ converges uniformly to a Brownian motion with variance

lim E((nt) = lim ZZZE ztujt —nh_{go (1) X, (1), .

(n,T)—o0 nT—>oo7’LTZ 1901 =1 n

where the last equality holds by definition of 02; Assumption 1(iii) ensures that o2 < oc.
Finally, consider (10). We have ﬁ Yo thl Fuy = ﬁ > Zt:l H' Fuug +% thl (Ft - H’Ft>

R 211/2
(ﬁ Py uit) = I+11. Using the Cauchy-Schwartz inequality, 11 < [7{ Zthl HFt — H/FtH }

571/2
[% S (ﬁ S uit> } , which is O, (C;}}) in view of Lemma B.1 in Bai (2004). As

far as I is concerned, let the martingale approximations to F; (from the Beveridge-Nelson
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decomposition) be Fy*. Then

1 T 1 n . 1 n T
;;Ftuzt = TZF: (\/ﬁZud/)—i_ TL = ltleZt
- ZF*gm ! zn:f:R”_I + I,
\/ﬁTz 1t=1

where R = Fjuj, — Fiu;. As shown above, an IP holds for T-1/2 LTS

Cpe and for
T—Y2F}; also, ¢,; and F} are independent for all n in light of Assumption 4(i). Thus,
standard arguments in the theory of convergence to stochastic integrals (see e.g. Phillips,
1988) yield I, LA ou | WedW,,. Finally, from Phillips and Moon (1999), it can be proved
that I, = O, (/%) Putting all together, (10) follows as (n,T) — oo with % — 0. =

Proof of Lemma 1. For simplicity, we suppress the subscripts in gr and g, ;

whenever possible. Consider (14); recall (11) and

q

AFy = Y ag;AFj+eéf, (59)
7j=1
oo

AR, = ) oyAF, j+¢f. (60)
7=1

T
Using the definition of {6t b} 1’

1 1 T
E° = T; égq_Tgégq]
1 & 1 & 1 &
T T
< VHI S NI + I & S ey = ef |+ = 3 ef, - Eef, |+
t=1 t=1 t=1
= T+ IT+IIT+IV.

Assumptions 2 and 3 entail that ||H|| = O, (1). Consider I; Assumption 2(7) and the Law
of Large Numbers (LLN) ensure that %Zthl HefHT L E Heer < 00. As far as IT is
concerned, it holds that efj ¢ el = zj‘?’;q 11 @jAF;_; and therefore Minkowski’s inequality
and the stationarity of AF; yield

T T || " 1 7 0 r
ZHet,q S wan | < S IAR Y ol
=1 t=1 ||j=q+1 t=1 j=q+1
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oF

T > ey
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Assumption 1(41) entails that 3322, [laj|| = o (¢°); Assumption 2(i) and the LLN yield
T-1! thl |AF||" = O, (1). Thus, II = o0,(¢""*). As far as II] is concerned, we have

-1 ~ A -1 n
etq H'ef, q Z?:o H'ag; (H') (AFt—j - HlAFi—a‘) - Z?:l [aqvj — H'ag; (H') } AFj,

where ay0 = —1. Hence
T | ¢ " A X "
I < Z ZH’% ) (AR - H'AF) tE | (g = Hlag, (H) '] AR
t: j= t=1 ||j=1
= IIl,+ IIIb

Using Minkowski’s inequality, 111, < MT~! Zthl HAE — AF;

(o lagll), with
Lollagsll £ Do lagll = 0(1). Also, TV 2L ||AF — H'AR|| = 0,(Cy7) ac-
cording to Lemma A.2(7). Thus, I11, = O, (C ) As far as 111, is concerned, [11, <

! Zt:l HAFt (Z?;o qu,j — H'ag (H)!
Op (1). Also, Zq‘ 0 quj —Hay; (Hl)_lH < gmaxi<j<g quj — H'ay,; (H)™!

) . Lemma A.2 ensures T~} thl HAFtH

, and Lemma,

2 yields [qmax1<]<q Haqj H'og; (H')” H] =0, [qTT /2 (log T)"/? +q"n"] + o0, (1).
Thus, I11 =0, (CnT) +0, (q <pnT). Finally, consider I'V; we have efq = - ijo &q,jAFt,j

with &40 = —1. Thus
1 T q L 1 T . q ) 1 T .
_T Zéfq = ZH/aq’j (H/)_ (T ZAFt]> +Z [ééqﬂ' — H,Oéq,j (Hl)_ } (T ZAFt]> =1V, +1V}.
j t=1

Since T~ 2y ARy = T H ) AR+ T L, (AR — H'AF, ) = 0, (T7/?)+
op (T_1/2) for all js

1/2 o\ 1/2
q q 1 T
) A
1V, < > lleg,ll > TZAFH
=0 j=0 t=1
27 1/2

A
Q
=
=
o
"

2 R 2 1/2
also, IV, < <Z]q=o }dq,j — H'ay; (H’)_lH > ( =0 H%ZL AFH'H ) < (gmaxi<j<q

2
Gqj — H'ayg (H’)_1H > O, (ﬁ), and thus it is dominated. Lemma 2 yields maxi<;<q ||Gq,;

— H'ag; (H’)_1H2 Oy (¢5r) + Op (n _3/2T_1/2). Hence, IV = O, (qr/QT_T/Q). Com-
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bining all these results

BNl = ENlf I +0, (477 +0, (C) + 0y | () |00 1) = E [l I 0, 1),

nT

T
thus Assumption 5 ensures E° Hefij =E|lef'||" + 0, (1). Also

TER | = 0y (1) 40, (T E ) £ 0, (T E G l) +
@)

P <T1_%TC;:F> +0p (Tl_rqér> +0p(1).

Thus, T3 Eb HefbHT = oy, (1) for r > 2.

As far as (15) is concerned, recall that u; = ?:1 Wéig'uit—j + e%‘n g and let
q .
Uy = Z&ff,}&iw + €it g (61)
j=1
e .
Uig = Z’Y?Uitﬁ' + €ip- (62)
We have

T r
zt,q Z zt,q]

Ellef|” = *Z
ti

1 T 1 <

R T DI
t=1

t=1
= I—i—II—i—III—i—IV.

r

1
Tzégf/,q

t=1

AU u T
Citq — eit,q‘ +

Assumption 1(3) and similar arguments as in Park (2002) yield I = O, (1) and II =

op (¢7"%). Note that

s T

T q
111 < — Z qu,j (Tit—j — Uir—j) +%Z > (’yq,] ’yqj> Qi j| = I11,+ ITI,

tl]O t=1 [j=1

with %o = 1. Tt holds that 1T, < 13T Ja — ugel” ( <, ‘v(i)- ) and Lemma A.2

50 —0)"
(i

d " ag
= ‘%w' ~ g

entails 111, = O, (¢/3,7) for all i. Also, IT5, < T~ 20 Jaul” (S,

Lemma A.2 yields 7! Zt:l |tite|” = O, (1). Also, ;1:0 "AVq,j - ’y((]

(i)
q,]

7j -

}r = O, (¢"¢%). Finally, similar pas-

and from Lemma 2 we have {q maxj<;j<g ”AY(% -7
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sages as for the proof of 7! Zthl éf:q above, IV = O, K\/%) } Thus

N |T - _ q r
B et | = B |ef| + 0, (¢77%) + 0y (¢70,7) + Oy K . ) ]+op(1),
PnT
el "—Ele “(Z) +0p (1). Assumption 1 (i) then entails max; ; F° € b <

0. W
Proof of Lemma 2. For the sake of simplicity, the proof is reported for £k = 1, and
suppressing the subscripts in ¢gr and ¢, ; whenever possible.

Consider (16). Recall (11), (59) and (60) and let

AF;, = Z Qg ;AF_j + etq,
j=1
which is the fitted version of (11). It holds that maxi<j<, ‘dqyj — H'a (H’)_l‘ < maxi<j<q
Gg,j — H'dg g (H') ™| + maxi<j<q ‘H' (G, — aq,) (H')_l‘ + maxi<j<q ‘H' (g, — ) (H’)_1’
= I+II+111. Asfaras IT is concerned, Assumptions 1(i7) and 2 (4) yield maxi<j<q |aq; — o] <
Z?:l lag,j — aj| =0(q?%) - see e.g. Theorem 2.1 in Hannan and Kavalieris (1986). Turn-
ing to III, Theorem 2.1 in Hannan and Kavalieris (1986) yields II1I = O, (W)
We now show that I = O, (T_I/QCT:%) +0, (C ) This is based on adapting the proof

of Lemma A.l1 in Chang, Park and Song (2006): it suffices to show that maxi<j,j<q

! Z?:rnax{i,j} AFt—iAFt/—j -7 Z?:max{i,j} HIAFt—iAF/ ’ T 1/2CnT) +O (C )
Since
(I 1 <
7D ARLAF - Y HAFRAF H
t=max{4,j} t=max{4,j}
1 T . , , 1 T , R , /
= T Z | (Athi —H AFt,i) AFt_]H + f Z ‘ H Athi (A-thj —H AFt*j)
t=max{4,j} t=max{i,j}
1 < - . /
o Z | (AFH . H’AFH) (AFH . H’AFt,j)
t=max{%,j}
— L4+

Using Lemma A.1(71), I, and I, are of magnitude O, (T_l/QC;%); Lemma A.1(%ii) entails

that I. = O, (C, 7). Putting all together, max; <<, ‘aq] H'o; (H')_l‘ =0, (N/log T/T)
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0, (T742C,1) + 0y (T*2) 0 (a7).
The proof of (17) follows similar lines. Consider (12), (61) and (62), and

q
~ (%) Su
Ujp = E Vq,j%it—j T €it g5
i=1

(i)
q,]

which is the fitted version of (12). We have maxi<j<q ‘fAygL; — fyj‘ < maxi<j<q “yfjg -7
(4) (i) (1)
0] FMmAxI<i<g ‘Vql,j -

are o(¢~*) and O, ( 0og T/ T) respectively. As far as I is concerned, we show that [ =

=1+ 11+ 1II. As above, I and II]

+maxi<j<q \&fji -7

O, (C’T:Tl) + O, (C;TQ) This holds because 7! ZtT:max{Lk} Tjt—jlip— — T71 Zf:max{j’k}
Uit—jUit—k = Op (C;%) + 0, (C’;%), by adapting Lemma A.3. Thus, max;<; j<, |T* ZtT:maX{j7k}
i jti— T Y et uit,juit_k‘ — 0,(C:}) + 0,(C;2). Putting all together,
maxi<j<g [ = ;| = Op (VIR T/T) + 0, (Cyf) +0(q™*). m
Proof of Lemma 3. Consider (18) and note that 3 3{_, B((;; =2 521 Bij= g1 Bijt
;1-:1 (Bq,j _ﬁqJ)‘ Assumption 1(ii) and 2(ii) entail > 22 ., 18,1 = o(g™*). Using
Lemma 2, 23-:1 (BQJ - ﬁqg’) < gmaxi<j<q ‘Bqd — Bq,j‘ = 0p (1), where the last equality
follows from Assumption 5. Thus, fi’q_l (1) & B71(1). Furthermore, from the boot-
strap IP in Lemma 1 it holds that 7—1/2 }ZjJ €it b d—b> Wi (s). Also, following the same
lines as Park (2002, proof of Theorem 3.3, p. 486), we have, for all i and some § > 0,
pb [maxt HT_l/QEit,bH > 5] < g2 b ||Eit’b}|r. Using Minkowski’s inequality and the
Bl] B sl
Lemma 2 yields, for all i, ?:lj H@Eji” = Z;’;lj Hﬁ”H + 0, (1); also, from Lemma 1,

fact that Eit’b is stationary by construction, E° ||Eit7bHT < [ 3’:1j

Eb||¢;0,||" < o0 Thus, for every i, T2 supy <o || €| = 0p (1). Therefore

| Ts] |[T's]

1 ~— 1 b
s Z ity = Bi,ql (1) 7T Z eitp | +0p (1) ult Bt (1) Wi (s).
t=1 t=1

Proof of Theorem 1. The proof is similar to the proof of Lemma 3.4 in Chang,

Park and Song (2006); thus, some passages are omitted. Consider (19), and assume, for

\T
t

simplicity, that Fy, = 0. Letting WE(QT (s)=T"1/2 :‘ij AFip, Lemma 3 states that, as
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(n,T) — oo, WS;ET (s) <ow. (s). Then

T T
1 b b 1
2 Yo Full = [ WO WO () + 75 Y FraFh,
t=1 t=1

and T~Y2Fr;, = 0, (1), which proves (19). As far as (20) is concerned, define the martin-
gale approximations to F}; and w;p as Ft":b and u;‘t’b; also, let ﬁt,b and 1 be the first

k and the last element of Eitb respectively. Then

1 1 1 « 1
T > Ry = T b, + T > AF, iy — T Lrptiry
t=1 t=1 t=1

1 a 1 &
+TAF0JJ Z Uiy — T Z AF 1 Uiy
t=1 t=1

= I+I1I4+1IT+1IV4+V.

1/2
It holds straightforwardly that III+IV+V = O, (T~Y/2); also, IT < |T* S A
1/2
T 23:1 ”@it,b||2 =0, (1) Oy (T_1/2)~ Thus, 71 23:1 Fipupp=T"" Z?:l Fiyud, ot
0p (1). The convergence of 71 Zthl Flyuy g to [ W.dW,,; follows from Lemma 3 using

the same approach as in Phillips (1988). m
<OLS(1)

Proof of Proposition 2. Equation (28) follows from Proposition 1 (for A;," )
< OLS < OLS
or Theorem 1 (for )\M)L (2)) and the CMT. The proof of (29) is reported for )\“,L ® _ the
case of j\gbL 51 follows very similar passages. Note that
_ 240
T 1 T
COLS(2) < 1219 1 1
e P2 =5 = (2l mefls) (520 P
t=1 t=1
—1||2+6 2+4

IN

T
1
\/% <J‘QZFt7thl,b>
t=1

A
(T Z Ft,b%‘t,b)
=1

1

~1
(T—z ST Ftth”b) H1 =L (T—2 ST Futh”b), where fmin (-) de-

notes the smallest eigenvalue. Theorem 1 ensures that, for sufficiently large n and T,

By symmetry,

T2y FiyF), = T72H'Y,[_| F,F{H + 0, (1); thus, in light of Assumption 2(iii) and
-1 246
‘ (T_2 PO Ft,th’,b)

T 2+6
far as H <T‘1 >t Ft,buz’t,b) H

the invertibility of H, is bounded with probability 1. As

1

. ] 1 T 246
is concerned, it holds that H (T ) Ft,b“z‘t,b) H <
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ﬁzlil ||Ft,b|’2+6 |uit7b|2+5. Lemmas 1 and 2 (and the fact that k is fixed) ensure

2448 . 246
that H(T*I ST Ft7buit7b>H — 0, (1). Thus, [AZOI,LS@) Al ‘ — 0, (1), thereby

proving (29). m
Proof of Proposition 3.  The proof of equation (30) is similar to the proof of

<PC(2)

Theorem 3 in Bai (2004). We report only the main passages for the proof of A;, . We

have

T
~PC
Z F, t,b uzt b (63)

T —1
Z PC(2 /]
T ,
§ FHC® ( c@) _ H{Ft,b) Hflj\i] .

*ﬂ \

‘ﬂ \

PC( ) £PC(2)1

Consider the denominator. Using Lemma A.4, is given by T~ QZt 1 F F,, =

Hj (TQZt 1Ftthb>H1+O (C,; ) In view of (19):

1 A :
S EhC@pheer 4 [ < / WEW’> ] Hy in P.

!
Turning to the numerator, Lemma A.4(iii) yields 7! Zt B PC(Q) ( FPe® — H|F, b)
1_1)‘i =0, (Cy, ) Also, 7 T Et B PC( )“iub HlT Zt 1 Frpuity + 7 Zt 1 ( tiC( : H{Ft’b)
911/2
wirp, = I+11. As far as I is concerned, it is bounded by [T Zt 1 HFPC H{Ft7bH ]

1/2
1
[T thl u?t,b}
tion (20) entails

; using Lemma A.4(3), and by virtue of Lemma 1, IT = O, (C;%) Equa-

1% mm / W.dW,; in P.

Equation (30) follows by applying the CMT. Turning to (31), from (63)

-

~PC
T Z Fy iy

2+9

T
1 ~PC(2) /PC(2)1
T2 Z Ft,b Ft,b

1

+

T

1 PC(2) ( £-PC "1y

T E :Ftb @ (Ft,b @ —HiFt,b> Hi' )
=1

As far as the denominator is concerned, the proof is similar to that of (29), in view of

(36) and of the invertibility of Hy. As far as the numerator is concerned, the first term
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: £ PC(2 244 _ 2+4 _
is bounded by | £5°0, B P < 1H|1 SL Foua| + 720

(Fticm — H{Ft,b) Uz‘t,b||2+6 =1+1I; Iis O,(1) following similar arguments as in the

(2496)/2 .
] [Tfl D1 uzzt,b

which is oy, (1) using Lemma A.4(%) and Lemmas 1 and 2. The second term in the numer-

245
, which

. 2 (2+4)/2
proof of (29). Further, IT < [Tfl Zthl HF:DZ)C(Q) - H{Ft,bH }

9

A

. ke .
ator is bounded by HT‘l Zthl FtlzC(Q) (th;C(Q) — HiFt,b) HH{ )y

1H2+5 )

is 0p (1) in light of Lemma A.4(%i), the invertibility of H; and (29). m

Proof of Proposition 4. Consider (34). It holds that

n -1 n
SOLS(2) _ Iy LS5
v | Fpy Ft,b} = [n ;mz] [ NG ;Alum] ,

and the same expression holds for FtObLS

(' _ £, Recall that \; — H=1\; = O, (T1); thus,
the denominator of Ft%LS(2)—Ft7b is given by n=! >0 | A= H1 (N300 AN (H) T
+0, (T71). This and Assumption 3 () yield n=! Y7 5\15\; L, H1 £ (H')"'. Turning
to the numerator, we showed in the proof of Lemma A.4 that a CLT holds whereby
ﬁzyzl Aittirp. Thus, ﬁZLl Aittit 4 N (0,Vy) in P, where V) = lim, o0 = 37 ;
j\ij\;u%b, in view of the cross sectional independence imposed by the “one unit at a time”

scheme. Hence

R Y _ -1 R N _ -1
dim SNy = HOT ()T i 3 (- ) X 0)
n
+ lim ST HT (Az—H*AZ) uZ,
=1
n

1=

— H 'y (H') '+ T+11+11I,

where the first term, H~1T, (H')"" follows by definition. Term I is bounded by |H|
5\1' - H_l)\i

max; ||\;|| max;

(% > “?t,b>’ which is O, (T_l) in view of Proposition 2
and Lemma 1; the same holds for /1, and the same logic yields 111 = O, (T*2). Putting
all together
A b
N [Fﬁfs(?) — F,;b] &S HH ™ < N[0,Ty],
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in P, which proves the first part of the Proposition. Turning to (35), the proof is similar,
in spirit, to the proofs of (29) and (31), and therefore we report only the main passages. It

246 S P 2+6 246
| < vE | [FEm A H

holds that H\/ﬁ [Ft%“@) - Ft,b] Hﬁ S At
1
For sufficiently large 7', Lemma 2 entails that n=1 Y"1 | 5\15\: =ntH-1 S0 NN, (H) ™

40, (1); Assumption 3(ii) ensures that the smallest eigenvalue of n=1 3" | A\;\] is posi-

246
-1
. < < , . .
tive, from whence [% Sy )\i/\i] is bounded. As far as the numerator is concerned,
H2+

1
J —1(|2+6 n 244 n 3 — §
<P | s o s |+ || F i (N = H) il

= [+11. Term [ is bounded in light of Assumption 3(7), Lemmas 1 and 2 and the cross sec-

1 n 3
H 7= D oiq it

. 4+671/2
tional independence of u;t . As far as I1 is concerned, it is bounded by n=0/2 [E H N — H71)\ }

1/2
[E (u4+6)} . This is finite in view of Lemmas 1 and 2; (29) only stipulates that

it,b
“ 246
E‘ Ni — H7 M\ is finite, but the proof can be modified to accommodate for 4 + §

using the same arguments. =

Proof of Proposition 5. The proof is very similar to the proof of Theorem 2
in Bai (2004, p. 171) and therefore only the main passages are reported. In light of
Lemma A.4(iv), under 75 — 0, /n [Ffbo@) - H{Ft,b] = ﬁ (V;fT)_1 23:1 Fs,bF;bAlut,b
+o0, (1). It holds that

1 b\t S RV
W (VnT) ;Fs,bFs,bA ut,b
_ <VbT>_1 <1ZT:F JE ) Lim
! T2 s=1 st \/ﬁ =1 B
()" (1 S FE ) (1 im’-) (1 im’) RN ST
T2 s=1 o n =1 ' n i=1 ' \/ﬁ i=1 7

= Hj [H'n, (1) ] T HON[0,TY 4 0, (1),

which proves (36). The proof of (37) is very similar to the proof of (35), and thus it is

omitted. m
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Proof of Proposition 6. Consider the case 7 — 0. We have

) [V (55— i) A [ (0 — 1)

1)~ ()~ v (B - HiFt)]

() G [ (48 = )] #5703 )
.

= 1

\/ﬁ (éit,b - ézt) = 5\1

IT+II1.

Using Propositions 3 and 5, I/ = O, (T‘l). Also, }3’5)0 = 0, (\/T) by construction,
whence I1] = (\F) VnOy (I'') = 0, (1). Turning to I, Proposition 5 entails that
1% )\; (H)"'(H) "' H{H'S\ x N (0,T}) in P.

As % — 0, it holds that

VT (Cap—Cu) = N (H) ' [VT (LS = HiR)| + BL VT (Ap,f - i)
= N ()" VT (B - HiR) | + FlHE (VT (APZ,C - 1)
+ (F{;C - F;Hl) [\/T (APbC . H;%)} + (Ft - Ft’H) H, [\/T (AP,,C _ H;lxi)]
+

= I+I1T+1IT+1V.

Proposition 5 entails that I = o, (1); also, in view of Propositions 3 and 5, I/ and IV
are both 0, (1). The asymptotics is driven by IT. The IP entails that T-'/2F, = O, (1)

and T-/2F, 4, We (s) uniformly in s; using Proposition 3,

-1
PR W!(s) HH H,! [Hl ( / Wan> < / WEdWw)

Equation (41) follows from combining the two results. The proof of (42) follows from

in P.

combining (31) and (37). m

Proof of Theorem 2. Consider (44). Similarly to the proof of (9), we may write

1 n |Ts| 1 |T's| 1 |[T's] n |Ts]
. Uiy = ——= Y i D(D)eft+—= i, [[*(1)-T(1 Rup,i
— T+ IT+III
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where the superscript “*” denotes the martingale approximation, I'* (1) = [B* (1)] ! and
Ryp,it denotes the remainder in the Beveridge-Nelson decomposition. Consider I, and
define (), = n~1/2 {7 (1) ef%. The sequence Cnep is an MDS by construction. Also,

246
E Knt,b‘ ‘

view of Lemma 1, E ‘Cnt,b‘ZJﬂ; is bounded uniformly in n. Thus, an IP for MDS holds

246 _ . . .
T < 02 max; E Ujy ; where uy, , is the MDS approximation to . In

b
whereby, uniformly in s, I UR Wep (s). The variance of Wep, (s) is n™t i/ I' (1) E [e;‘}’;e;‘%’]
I (1)4,. We now turn to showing that IT and I1I are negligible. Consider II. We have
T X y
=257 L[S AT (1) = D (},] €5t = & S0 &g For each [Ts),

é j|7s) has mean zero and is weakly dependent. Thus, a sufficient condition for I1 to be

negligible is that, as T' — oo, sup; F¥ (C?LTSJ) = 0y (1). Since

2

LTSJ n
~ 1
i £ (Ghr) = s 3 [0 0T )| B ()
=1

j T—o00 7 T—oo T’ =
] 2
b

where the last inequality comes from Assumption 1(%) - note that this holds uniformly in s.

IN

J

M sup [Z () -1 ()},
=1

Thus, a sufficient condition for limr_.o sup; £ (Z?LTSJ) = 0p (1) is that sup; > iy [{T™ (1)

T},
I'(1) = [B(1)] ! and I* (1) = [B*(1)]'; using Taylor’s expansion

= 0p (1), which, by definition, is equivalent to || (1) — I' (1)||; = op (1). Recall

|5t -may| = [rroso-soro)’|

1 1

< O Tt @ 1B (1) = B M)l

= 0p(1)O0p (1) 0, (1) =0, (1),

by Assumption 1(74) and from assuming ||[B* (1) — B (1)]||; = 0p(1). Thus, II is neg-
ligible. Finally, standard panel asymptotics (see e.g. Phillips and Moon, 1999) yields
I11 = O, (1/%), which is negligible.

Consider (45); ﬁ Iy Zthl F; pujt p can be decomposed as

T T n T
1 1 1
=S i+ S Fit [0 ()~ D (D] eff - S R = 14 11 4 111,
T pat t,bSnt,b \/’ET ot t,b'n t,b \/ﬁT Lt s i
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where, as before, the superscript “*” denotes the martingale approximation and R;; is the
remainder in the Beveridge-Nelson decomposition. Consider I. Theorem 1 and (44) ensure
that an TP for MDS holds for 7/ 2Ft*:b andT—1/2 Zg‘lﬂ Cpe,p Tespectively. Also, Fy, and
Cntp are independent by construction and for each n. Thus, the theory of convergence to
stochastic integrals (see e.g. Phillips, 1988) entails 1 gy oy H' [ W.dW, in P. We now turn
to 15 we have IT = =320 AL Ry, [0, {1 (1) - T (1)}@} ey = d= S0 i
Conditional on CT, ¢ 7 18 a zero mean weakly dependent sequence. As before, a sufficient
condition for 11 to be negligible is therefore that, as T — oo, sup; (EfT’ C};) =0, (1).
Since

2
E ()’

T
5 1
lim B (&r|Cr) = suwp lim - 3" By F
WP, B\ G| ) = P i 7 2 P

Y AT () -T ()},
i=1

IN

T n 2
. ]‘ * */ *
o 2 3 o | S 0 - o

where the last inequality comes from Assumption 1(3). Again, this is o, (1) if sup; > ;" {T™ (1)

—I'(1)};;| = op (1). Finally, as far as I1] is concerned, similar passages as in the proof of

=0, (\/g), which

is of order o, (1) under 7 — 0. The proof is now the same as above. m

Theorem 1 yield n= /2715 ST Ry < n/2sup, [T S| Ry

Proof of Theorem 3.  Consider equation (48); note that HB/Q-\(l) —B(l)H =
1

HZ}Ll (Bq,j - Bqu’)
As far as I is concerned, note ) i_; (quj - Bq7j> = (Bq — Bq) (ig®Ip). Thus, I <

’1 + HZ;‘;QH BjH1 = [+ 11. Assumption 1 (%) implies [T = o(q~*).

HBq — BqH1 lig ® In|l; = q HBq — Bqu. To study the magnitude of
(47)

Bq_Bq‘

, consider
1

T T -t
A~ ]- NN ]- A~ A/
B, = T E Uglige | | 75 E Ugtlgy
t=q+1 t=q+1

_ 15T ’ ] 15T no) ;
Let dg =T7" 3 41 ugttg and dg =T >, 1 Ugtiy, Then we can write

T T T
A 1 . 1 1
Bq = Bqdq + T Z utU;t - T Z utu;t + T Z €§u)'u;t (64)
t=q+1 t=q+1 t=q+1

X [dq—l +d;! (dq _ dq) ! +op (qu — dq‘m .

o1



Let £ = 1 for simplicity; in this case, H is a scalar, but we employ the matrix nota-
tion for consistency. By definition g = ug+ Fq’t —(H®Iy) Fgi| ® A (H’)_1 —&—Fq’t ®
[A —A (H’)fl}, where F,; = [Fy_1,..., F;_4]', and similarly F, ;. Assumption 1(ii) yields

qu_1H1 = Op (1); also, note

_l’_
t=q+1
1 7o ~ ~1[% -17’
35 O [Fue— (HO 1) Fya| By p @ A (1) [A= A (1) 7]
t=q+1
1 d 1
2ED [Fq,t —(H® 1) th} wy v @A (H')
t=q+1
1 T 1
- ! A n—
+ thq;lﬂtuqt ®[A—A(H) }+A+B

= I+II+1II+IV+V+A+B,

where A and B are the transposes of IV and V respectively. It holds that |I]|; <
A ~ /!
1 HT_l Z?:q+1 [Fq,t - (H ® Iq) Fq,t] [Fq,t - (H ® Iq) Fq,t] H = Op (”) Op (qq;z%)v
1
using Lemma B.1 in Bai (2004). Recalling that A — A(H’)_1 = O, (T™') element-

) HT_l ZtT:qH Fq,tpé,t ‘1
= 0, (nT72) 0, (qT) = O, (gnT=Y); similarly, |I11], < HA(H’)‘1 [A—A(H’)_l}l
1

HT_I Z:?F:qﬂ [Fq,t - (H® 1) Fq7tj| F‘;’tH1 =0, (nT‘l) O, (qC;%) Considering IV, [IV||; <

HA (H'H)™ A

wise, it holds that ||II]|; < H [f\ - A(Hl)il] [A - A(H,)il},

~

HA (H’)_lHl HT‘l Zz:q+1 [qut - (H®1,) Fq7t:| umel = 0, (n) O, (¢C,7); similar calcu-

-1 T 7 1
T Zt=q+1 Fq,tuthl

=0, (nT _1) Op (q). Thus, the terms that dominate are of magnitude O, (nqC;%) Con-

lations yield that || A||; has the same order. Finally, [|[V||; < HA —A (H’)_lH1
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sidering the numerator of (64), recall HTfl EtT:qH eﬁu)u

_ logT Al
. Op <\/ ) S0

qt

T

1
L - 3w,
t=q+1 t=q+1
1 o /- ) , 1
= T Z (Ft - H,Ft) |:Fq,t - (H (%9 Iq) Fq,t] X A (H/H) A/
t=q+1

. ;ET: B, | @ [A-a ) [A-a ()]

t=q+1

N Z (Ft H'F) | @A (H')

T
1 - A 1
|7 X g | @ [A-a@) | +C+D
t=q+1
— T+II+IIT+IV+V+C+D,

with C and D being the transposes of IV and V. Similar results as for the denominator
hold. We have [I||, = O, (nC.7), |[II||, = Op (ngT™Y), |[II1||, = O, (ngT~1C,}),
IV, = O, (ninl) and V||, = O, (ngT™'). Putting all together, it holds that
HB/q\(l) H ) + g0, (ngC. 1) + qO, (ﬁ)

Consider now (49), and let B, = Bd B"d7 where Bd [Bgl]...\B(‘iq] with Bf;i,j =
diag {’y((]g} and Bgd = [Bgﬁ|...|Bgff1] defined so that Bgfij contains the off-diagonal el-
ements of By ;. As before, l?q\(T) - B(1) = (E] — Bq> (ig ® In) + 3252 .11 Bj. Since
B, - B, = By — BY — B, HE - BqH1 < HE - B;j”l +||Be?]|,. By construction,
HBgdHl = sup; 22‘7&]‘ ITi5] = Op (n_¢) where the last equality holds by assumption. Also,
],

= sup; ; “yg — 7, ]‘ = O, (pptr) in light of Lemma 2. Thus, putting every-

<§; - Bq) (ig ® I,)

thing together ‘ < qHBq - Bqu < qO, (¢%r) + qO, (n™9); this

1
proves (49). m
Proof of Proposition 7. The proof follows the same passages as in the proofs of

Lemmas 1 and 2, based on the results in Lemma A.5. =
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