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Abstract

Stochastic mortality, i.e. modelling death arrival via a jump process
with stochastic intensity, is gaining increasing reputation as a way to rep-
resent mortality risk. This paper represents a �rst attempt to model the
mortality risk of couples of individuals, according to the stochastic inten-
sity approach.
On the theoretical side, we extend to couples the Cox processes set up,
i.e. the idea that mortality is driven by a jump process whose intensity is
itself a stochastic process, proper of a particular generation within each
gender. Dependence between the survival times of the members of a cou-
ple is captured by an Archimedean copula.
On the calibration side, we �t the joint survival function by calibrating
separately the (analytical) copula and the (analytical) margins. First, we
select the best �t copula according to the methodology of Wang and Wells
(2000) for censored data. Then, we provide a sample-based calibration
for the intensity, using a time-homogeneous, non mean-reverting, a¢ ne
process: this gives the analytical marginal survival functions. Coupling
the best �t copula with the calibrated margins we obtain, on a sample
generation, a joint survival function which incorporates the stochastic na-
ture of mortality improvements and is far from representing independency.
On the contrary, since the best �t copula turns out to be a Nelsen one,
dependency is increasing with age and long-term dependence exists.

Keywords: stochastic mortality, joint survival functions, copula func-
tions, model selection
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1 Introduction

Longevity risk, that is the tendency of individuals to live longer and longer,
has been increasingly attracting the attention of the actuarial literature. More
generally, mortality risk, that is the occurrence of unexpected changes in sur-
vivorship, is a well accepted phenomenon.
One way to incorporate improvements in survivorship, especially at old ages,

is to introduce the so called stochastic mortality. Formally, this boils down to
describing death arrival as a doubly stochastic or Cox process. Intuitively,
it consists in interpreting death arrival as the �rst jump time of a Poisson-
like process, whose intensity, contrary to the one of the standard Poisson, is a
stochastic process. A priori then two sources of uncertainty impinge on each
individual: a common one, represented by the intensity, and an idiosyncratic
one, represented by the actual jump time, for a given intensity. Mortality risk
is captured by the behavior of the common risk factor, the intensity. The term
�common�extends here to a whole generation within a gender.
The stochastic mortality approach has been proposed by Milevsky and Promis-

low (2001) and developed by Dahl (2004), Cairns et al. (2005), Bi¢ s (2005),
Schrager (2005), Luciano and Vigna (2005). The probabilistic setting however
can be traced back to Brémaud (1981), and has been quite extensively applied
in the �nancial literature on default arrival (see for instance the seminal works
of Artzner and Delbaen (1992), Du¢ e and Singleton (1999) and Lando (1998)).
Provided that univariate a¢ ne processes are used for the intensity, the approach
leads to analytical representations of survival probabilities.
Up to now, no attempt has been made to model stochastically, in the sense

just speci�ed, the survivorship of couples of individuals. This paper attempts
to �ll up this gap, making use of the copula approach. Therefore, we model and
calibrate separately the marginal survival functions and the copula, which, as
is well known, permits to obtain the joint survival function from the marginal
ones.
We work with analytical marginal survival functions as well as analytic cop-

ulas, so that we end up with a fully parametric speci�cation of the joint survival
function of the population, which can be extended to durations longer than the
observation period.
We apply our modelling and calibration procedure to a huge sample of joint

survival data, belonging to a Canadian insurer, which has been used in order to
discuss (non stochastic) joint mortality in Frees et al. (1996), Carriere (2000),
Shemyakin and Youn (2001) and Youn and Shemyakin (1999, 2001).
The outline of the paper is as follows: in Section 2 we recall the copula ap-

proach to joint survivorship and justify the copula class we are going to adopt,
the Archimedean one. In Section 3 we review the stochastic mortality approach
at the univariate level, and the particular marginal model we are going to adopt.
We explain both the model and its calibration issues with uncensored and cen-
sored data. In Section 4 we describe a copula calibration methodology, consis-
tent with the copula class suggested above, and originally proposed by Wang
and Wells (2000). Wang and Wells�methodology, which in turn extends to the
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case with censoring the approach of Genest and Rivest (1993), has the advan-
tage of allowing not only the calibration of the parameters for each Archimedean
copula, but also of suggesting which is "the best �t" Archimedean copula in the
calibrated group.
From Section 5 onwards we apply the theoretical framework and the calibra-

tion method to the data sample: we present the data set, we �nd the empirical
margins with the Kaplan-Meier methodology, we apply the Wang and Wells�
copula calibration procedure, and compare its results with the ones of the om-
nibus procedure. We then derive the marginal survival functions, adapting the
procedure in Luciano and Vigna (2005). In Section 6 the speci�c "best �t"
copula obtained, together with the analytical margins, permits us to present
an estimate of the joint survival function and to discuss the measures of time-
dependent association, following the results in Spreeuw (2006). Section 7 con-
cludes.

2 Modelling bivariate survival functions with cop-
ulas

Suppose that the heads (x) and (y) ; belonging respectively tom the gender
m (males) and f (females), have remaining lifetimes Tmx and T fy , respectively,
both with continuous distributions. We denote the marginal survival functions
by Smx and Sfy , respectively, so that, for all t � 0, Smx (t) = Pr [Tmx > t] and
Sfy (t) = Pr

�
T fy > t

�
. By Sklar�s theorem, there exists a unique copula, denoted

by C, such that for all (s; t) 2 R2 the joint survival function, denoted by S, can
be represented as:

S(s; t) = C(Smx (s); S
f
y (t)):

The copula approach has become a popular method of modelling the (non sto-
chastic) bivariate survival function of the two lives of one couple. Both Frees et
al. (1996) and Carriere (2000) present fully parametric models, using maximum
likelihood, where the marginal distribution functions (Frees et al.) or survival
functions (Carriere) are assumed to be of Gompertz type. Frees et al. (1996)
use Frank�s copula, with a single parameter of dependence, and couple the two
lives from the time of birth. Carriere (2000) on the other hand, discusses several
copulas with more than one parameter (Frank, Clayton, Normal, Linear Mixing,
Correlated Frailty), and couples the lives at the start of the observation period.
Using the same data set, in an attempt to address the issue of di¤erent types of
dependence, Youn and Shemyakin (1999, 2001) re�ne Frees et al.�s method by
classifying individuals according to the age di¤erence between the female and
the male member of each couple. Shemyakin and Youn (2001) adopt a Bayesian
methodology as an alternative. All three papers use the Gumbel-Hougaard
copula.
Fully parametric estimation methods (where all functions have been speci�ed

parametrically and all parameters - margins and copula - are estimated at the
same time) bear the drawback that di¤erent parametric speci�cations of the
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margins lead to di¤erent estimates of copula parameters, and may even lead
to di¤erent choices of the type of copula itself. Since di¤erent copulas entail
di¤erent characteristics regarding the type of dependence and aging properties,
as shown in Spreeuw (2006), the choice of the right copula is essential.
Ideally, the process of choosing a copula should be completely independent

of the speci�cation of the margins. Genest and Rivest (1993) have shown that
this is feasible for Archimedean copulas, as long as data are complete, i.e. un-
censored. Denuit et al. (2001) managed to get hold of complete data by visiting
cemeteries. Applying the method developed by Genest and Rivest (1993), they
established a weak correlation of lifetimes between males and females, and iden-
ti�ed several plausible candidates for the copula.
Genest and Rivest�s method cannot be used if data are censored. This is the

case for the data set from the large Canadian insurer as described in Section 5.
The period of observation is slightly longer than �ve years, and most lives were
still alive at the end of the period of observation.
Wang and Wells (2000) have extended Genest and Rivest�s method to bivari-

ate right-censored data. Their methodology has been applied to Loss-ALAE
data by Denuit et al. (2004). The procedure requires a nonparametric estimator
of the joint bivariate survival function. A popular candidate of such an estima-
tor is Dabrowska (1988), which needs estimates of the margins in accordance
with Kaplan-Meier.
Following Denuit et al. (2004), we are going to apply the Wang and Wells�

method for the data set. This is a methodology which allows at the same time
the calibration of the copula parameters - for any given copula family in the
Archimedean class �and the choice of the best �t copula among the calibrated
ones.
This paper di¤ers from the aforementioned papers on bivariate survival mod-

els (Frees et al., 1996, Carriere, 2000, Shemyakin and Youn, 2001, Youn and
Shemyakin, 1999, 2001, Denuit et al., 2001) not only because we include sto-
chastic mortality improvements at the marginal level, but also because, instead
of assuming a speci�c copula, we select a best �tting one by following the
Genest and Rivest/Wang and Wells procedure for censored data. Using Wang
and Wells means that we maintain the Archimedean assumption for the cop-
ula. Archimedean copulas have been widely used, due to their mathematical
tractability. The Archimedean class is rich, so allowing for Archimedean copulas
only does not seem to be very restrictive. We refer the reader to the book by
Nelsen (1999) for a review of Archimedean copulas�de�nition and properties,
and to Cherubini et al. (2004) for their applications.
In the Archimedean class in particular we will take into consideration the

copulas in Table 1.
We have selected these families following the results in Spreeuw (2006), who

studied the type of time-dependent association implied by many Archimedean
copulas.
Three measures of time-dependent association have been introduced in An-

derson et al. (1992). We will deal with all of them in Section 6, though in a
di¤erent order.
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No. Name Generator C (u; v) Kendall�s �
� (t)

1 Clayton t�� � 1
�
u�� + v�� � 1

�� 1
� �

�+2

2 Gumbel- (� ln t)� exp

�
�
�
(� lnu)� + (� ln v)�

� 1
�

�
1� 1

�

Hougaard

3 Frank � ln e��t�1
e���1 � 1

� ln

�
1 +

(e��u�1)(e��v�1)
e���1

�
1� 4

�

�R �
t=0

t
�(et�1)dt� 1

�
4 Nelsen exp

�
t��
�
� e

�
ln
�
exp

�
u��

�
+ exp

�
v��

�
� e
��� 1

� 1� 4
�

�
1
�+2

�
R 1
t=0

t�+1 exp
�
1� t��

��
5 Special 1

t�
� t� 2�

1
�

�
�W +

p
4 +W 2

�
; Complicated form

W = � (u) + � (u)

Table 1: Archimedean copula families

First of all, we have the rescaled conditional probability, denoted by  1 (s; t):

 1 (s; t) =
Pr
�
Tmx > s

��T fy > t
�

Pr [Tmx > s]
=

S(s; t)

Smx (s)S
f
y (t)

=
Pr
�
T fy > t jTmx > s

�
Pr
h
T fy > t

i ; (1)

for �xed t and s. This measure has an interpretation in terms of conditional
probabilities. If Tmx and T fy are independent, then  1 (s; t) = 1 for all s � 0 and
t � 0. If Tmx and T fy are positively associated, then  1 (s; t) > 1 for all s > 0
and t > 0, with  1 monotone nondecreasing in each argument.
Secondly Anderson et al. (1992) discuss the conditional expected residual

lifetimes of (x) and (y) which we will specify as  2x (s; t) and  2y (s; t), respec-
tively

 2x (s; t) =
E
�
Tmx � s

��Tmx > s; T fy > t
�

E [Tmx � s jTmx > s ]

 2y (s; t) =
E
�
T fy � t

��Tmx > s; T fy > t
�

E
h
T fy � t

���T fy > t
i : (2)

The measure  2x (s; t) ( 2y (s; t)) describes how the knowledge that T fy > t

(Tmx > s) a¤ects the expected lifetime of Tmx (T fy ). Independence of T
m
x and

T fy implies  2x (s; t) =  2y (s; t) = 1, while if Tmx and T fy are positively as-
sociated, then  2x (s; t) > 1 and  2y (s; t) > 1 for all s > 0 and t > 0, with
 2x (s; t) ( 2y (s; t)) monotone nondecreasing in t (s). We will concentrate on
the behaviour of the functions  2x (0; t) and  2y (s; 0).
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The third measure is the cross-ratio function CR (S (tt; t2)), de�ned in Clay-
ton (1978) and Oakes (1989) as

CR (S (s; t)) =
S (s; t) d

ds
d
dtS (s; t)

d
dsS (s; t)

d
dtS (s; t)

:

Spreeuw (2006) has shown that for Archimedean copulas and u = s = t, this
de�nition reduces to an expression in terms of the inverse of the generator as

CR (S (u; u)) =

0B@��1 (v) ���1�00 (v)��
��1

�0
(v)
�2

1CA
v=�(S(u;u))

: (3)

Oakes (1994) derived a similar expression for frailty models (being a subclass of
Archimedean copula models).
The cross-ratio function speci�es the relative increase of the force of mor-

tality of the survivor, immediately upon death of the partner. If CR (S (u; u))
increases (decreases) as a function of u, this means that members of a cou-
ple become more (less) dependent on each other as they age. Manatunga and
Oakes (1996) have demonstrated that a plot of CR (v) versus 1�v, for v 2 [0; 1]
can be used as a diagnostic technique for assessing goodness of �t. (Note that
S (0; 0) = 1 and limu!1 S (u; u) = 0.)
The �rst copula in Table 1, Clayton, will be studied because it is well known

and bears the special property of the association remaining constant over time.
Copulas 2 (Gumbel-Hougaard) and 3 (Frank) share the characteristics of being
well known as well. Moreover, unlike Clayton, the association is decreasing
over time. Copula families 4 and 5 are due to Nelsen (1999). Family 4 can be
identi�ed as �Family 4:2:20�in Chapter 4 of Nelsen (1999) and will henceforth
be referred to as the �Nelsen copula�. It is studied, since, unlike the �rst three
copulas, the association is increasing over time. And �nally copula 5, which is
also due to Chapter 4 of Nelsen (1999), will be labelled as the �Special copula�.
It di¤ers from the other four, in the sense that the dependence between the two
risks is not necessarily of a long-term type. Like the Nelsen copula, association
is increasing in time.

3 Marginal stochastic mortality

It has been widely accepted that mortality has improved over time, and dif-
ferent generations have di¤erent mortality patterns: according to the standard
terminology, we will call this phenomenon mortality risk. Evidence of this phe-
nomenon is provided by Cairns et al. (2005), who present also a very detailed
discussion of the di¤erent existing approaches for modelling it. Essentially, most
of these approaches rely on a continuous time stochastic process for the instan-
taneous mortality intensity, which can be interpreted as a stochastic force of
mortality. In order to de�ne it appropriately, in what follows we brie�y describe
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the doubly stochastic approach to mortality modelling. Then we summarize
some previous �ndings, which justify the modelling choice for the intensity made
in this paper.

3.1 Theoretical framework

3.1.1 Cox processes

Following Lando (1998, 2004), let us assume a complete probability space (
;F ;P);
a process Xt of Rd -valued state variables (t � T ) and the �ltration fGt : t � 0g
of sub-�-algebras of F generated by X; i.e. Gt = �fXs; 0 � s � tg, satisfying
the usual conditions.
Let � be a nonnegative measurable function s.t.

R t
0
�(Xs)ds < 1 almost

surely and de�ne the �rst jump time of a nonexplosive adapted counting process
Nt as follows:

� = inf

�
t :

Z t

0

�(Xs)ds � E1

�
(4)

where E1 is an exponential random variable with unit parameter. In addition,
let us consider the enlarged �ltration Ft, generated by both the state variable
and the jump processes:

Ft = Gt _Ht;

Ht = �fNs; 0 � s � tg

and assume that the H0 �ltration is trivial, in that no jump occurs at time 0:
Under this construction, the process Nt is said to admit the intensity �(Xs), if
the compensator of Nt admits the representation

R t
0
�(Xs)ds, i.e. if

Mt = Nt �
Z t

0

�(Xs)ds

is a local martingale. If the stronger condition E
�R t

0
�(Xs)ds

�
<1 is satis�ed,

Mt = Nt �
R t
0
�(Xs)ds is a martingale.

Intuitively, this implies that, given the history of the state variables up to time
t, the counting process is "locally" an inhomogeneous Poisson process, which
jumps according to the intensity �(Xt):

E(Nt+�t �NtjGt) = �(Xt)�t+ o(�t):

Formally, the construction (4) easily implies that the survival function of the
�rst jump time � , evaluated at time 0, and conditional on knowledge of the state
process up to time t, is

Pr(� > tjGt) = exp
�
�
Z t

0

�(Xs)ds

�
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where Pr(:) is the probability associated to the measure P. It can also be shown,
by simple conditioning, that the time 0 unconditional survival probability, which
we will denote as S(t), is

S(t) = Pr(� > t) = E
�
exp

�
�
Z t

0

�(Xs)ds

��
: (5)

The unconditional probability at any date t0 greater than 0 can be shown to be

Pr(� > t j Ft0) = If�>t0gE
�
exp

�
�
Z t

t0
�(Xs)ds

�
j Gt0

�
where If�>t0g is the indicator function of the event � > t0.
A nonexplosive counting process Nt constructed as above is said to be a Cox

or doubly stochastic process driven by fGt : t � 0g. The corresponding �rst jump
time is doubly stochastic with intensity �(Xs).

As a particular case, any Poisson process is a doubly stochastic process driven
by the �ltration Gt = (;;
) = G0 for any t � 0, in that the intensity is deter-
ministic.

These results can be naturally applied in the actuarial domain: if � is the
future lifetime of a head aged x, Tx, his/her survival function, Sx(t), is

Sx(t) = Pr(Tx > t) = E
�
exp

�
�
Z t

0

�(Xs)ds

��
(6)

3.1.2 A¢ ne processes

In general, the expectations (5) and (6) are not known in closed form: however,
a remarkable exception is the case in which the dynamics of X is given by the
SDE:

dX(t) = f(X(t))dt+ g(X(t))d ~W (t) + dJ(t);

where ~W is an n-dimensional Brownian motion, J is a pure jump process, and,
above, all the drift f(X(t)), the covariance matrix g(X(t))g(X(t))0 and the jump
measure associated with J have a¢ ne dependence on X(t). Such a process is
named an a¢ ne process, and a thorough treatment of these processes is in Du¢ e
et al. (2003).

The convenience of adopting a¢ ne processes in modelling the intensity lies in
the fact that, under technical conditions, it yields:

Sx(t) = E
h
e
R t
0
��(X(s))ds

i
= e�(t)+�(t)�(X(0)); (7)

where the coe¢ cients �(�) and �(�) satisfy generalized Riccati ODEs (see for
instance Du¢ e et al., 2000). The latter can be solved at least numerically
and in some cases analytically. Therefore, the problem of �nding the survival
function becomes tractable, whenever a¢ ne processes for X(s) are employed.

8



3.2 Selection of the intensity

In the existing actuarial literature, di¤erent classes of a¢ ne processes have been
chosen for the intensity of mortality. For example, Milevsky and Promislow
(2001) investigate a so-called mean reverting Brownian Gompertz speci�cation,
with intensity ht given by

ht = h0e
gt+�

R t
0
e�b(t�u)dW

h
u

t ;

with g; �; b constant and the Brownian motion W uni-dimensional.
Dahl (2004) selects an extended Cox-Ingersoll-Ross (CIR) process, i.e. a

time-inhomogeneous process �, reverting to a deterministic function of time

d�x+t = (�
�(t; x)� �(t; x)�x+t)dt+ ��(t; x)

p
�x+tdWt;

where x is the initial age.
Bi¢ s (2005) chooses two di¤erent speci�cations for the intensity process. In

the �rst one, the intensity �t is given by a deterministic function m(t) of time
plus a mean reverting jump di¤usion process Yt with dynamics given by

dYt = (y(t)� Yt)dt+ �dWt � dJt:

In the second one, which is a two factor model, the intensity �t is a CIR-
like process, mean reverting to another process �t. The dynamics of the two
processes are given by

d�t = 1(�t � �t)dt+ �1
p
�tdW

1
t

d�t = 2(m(t)� �t)dt+ �2
p
�t �m�(t)dW 2

t :

Schrager (2005) proposes an M -factor a¢ ne mortality model, whose general
form is given by

�x(t) = g0(x) +
MX
i=1

Yi(t)gi(x);

where the factors Yi are mean reverting.
Luciano and Vigna (2005) explore the following models: an Ornstein Uhlen-

beck, a mean reverting with jumps and a CIR process as concerns the mean-
reverting group, a Gaussian and a Feller type process, with and without jumps,
as concerns the non-mean reverting set.
Among the one-factor models, Bi¢ s (2005) �ts his mean reverting time inho-

mogeneous intensity to some Italian mortality tables, while Luciano and Vigna
(2005) calibrate their time-homogeneous, simpler versions to the Human Mor-
tality database for the UK population. In doing the calibration, they assume
negative jumps, so as to incorporate sudden improvements in non-diversi�able
mortality. As a whole, they show that, among time-homogeneous di¤usion and
jump di¤usion processes, the ones with constant drift "beat" the ones with mean
reversion, as descriptors of population mortality. Both the �t and the predictive
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power of the non mean reverting processes - when they are used for mortality
forecasting within a given cohort- are very satisfactory, in spite of the analytical
simplicity and limitations. Among them, no one seems to outperform the oth-
ers. Moreover, for di¤erent generations, di¤erent estimates of parameters are
obtained: this con�rms that generation e¤ects cannot be ignored.
The results obtained in Luciano and Vigna (2005) justify the choice, made

in the present paper, of an a¢ ne, time-homogeneous intensity process, without
mean reversion. In particular, we will use the Feller model, whose intensity, for
the generation born x years ago and for �xed generation, follows the equation

d�x(s) = ax�x(s)ds+ �x
p
�x(s)dW

x
s ;

where ax > 0 and �x � 0, since in this case the intensity is never negative. The
corresponding survival probability1 is given by (7), with �(X) = �x, i.e.

Sx(t) = E
h
e
R t
0
��x(s)ds

i
= e�x(t)+�x(t)�x(0); (8)

where, omitting the dependence on the cohort or generation x for simplicity(
�(t) = 0

�(t) = 1�ebt
c+debt8<: b = �

p
a2 + 2�2

c = b+a
2

d = b�a
2

The parameters a and � can be obtained either from mortality tables, or,
as we will do below, on sample, censored data. In both cases they can be
calibrated by minimizing the mean squared error between the theoretical and
actual probabilities: in the mortality table case the actual probabilities are the
table ones, while in the sample case they are the empirical ones, as obtained,
for instance, by the classical Kaplan-Meier procedure for censored data.

4 Copula estimate and best �t choice

In this section, we describe the procedure of estimating an Archimedean copula
under censoring. In some respects, the approach in this paper is common to
Denuit et al. (2004), who apply it to loss-ALAE data in non-life insurance.

1These probabilities are decreasing in age t if and only if

ebt(�2 + 2d2) > �2 � 2dc

A su¢ cient condition for this is that �2 � 2dc < 0.
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4.1 The distribution function of the Archimedean copula

Let Z = S
�
Tmx ; T

f
y

�
. De�ne K as the distribution function of Z. Note that

we have that Z = C (U; V ) where (U; V ) is a random couple with unit uniform
margins, and C the copula.
Genest and Rivest (1993) have shown that, for Archimedean copulas, with

generator �, this distribution function K is given by K (z) = z � � (z), where

� (�) =
� (�)

�
0
(�)

; 0 < � � 1: (9)

The function K is to be estimated from the data. We will make a distinction
between complete data, such as in Denuit et al. (2001), and censored data, such
as the application shown in this paper.

4.1.1 General principle without censoring

Genest and Rivest (1993) have shown that, for complete data of size n, K can
be estimated by bKn, de�ned as

bKn (z) =
1

n
# fi jzi � z g where zi =

1

n� 1#
��
x(j); y(j)

� ��x(j) < x(i); y(j) < y(i)
	
;

where the symbol# indicates the cardinality of a set and
��
x(i); y(i)

�
; i = 1; :::; n

	
are the observed data.

4.1.2 Wang-Wells empirical version of the generator in the presence
of censored data

Wang and Wells (2000) have proposed a modi�ed estimator of K for censored
data. Since K can be written as

K (v) = Pr
�
S
�
Tmx ; T

f
y

�
� v

�
= E

h
IfS(Tmx ;T fy )�vg

i
;

the estimator is given by

bKn (v) =

Z 1

0

Z 1

0

IfbS(s;t)�vgdbS (s; t) ; (10)

where bS stands for a nonparametric estimator of the joint survival function,
taking censoring into account. For bS we will use the estimator introduced in
Dabrowska (1988).

4.1.3 Dabrowska�s estimator

Denote by bSm and bSf the Kaplan-Meier estimates of the univariate survival
functions of Tmx and T fy , and, for i 2 f1; ::; ng, let �1i and �2i be the indicators
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of the event that observations x(i) and y(i), respectively, will be uncensored.
Furthermore, de�ne

bH (s; t) =
1

n
#
�
i
��x(i) > s; y(i) > t

	
;

bK1 (s; t) =
1

n
#
�
i
��x(i) > s; y(i) > t; �1i = 1; �2i = 1

	
;

bK2 (s; t) =
1

n
#
�
i
��x(i) > s; y(i) > t; �1i = 1

	
;

bK3 (s; t) =
1

n
#
�
i
��x(i) > s; y(i) > t; �2i = 1

	
;

and

b�11 (s; t) =

Z s

u=0

Z t

v=0

bK1 (du; dv)
. bH �u�; v�� ;

b�10 (s; t) = �
Z s

u=0

bK2 (du; t)
. bH �u�; t� ;

b�01 (s; t) = �
Z t

v=0

bK3 (s; dv)
. bH �s; v�� :

Dabrowska�s estimator is:

bS (s; t) = bSm (s) bSf (t) Y
0<u�s
0<v�t

(1� L (4u;4v)) ; (11)

with

L (4u;4v) =
b�10 (4u; v�) b�01 (u�;4v)� b�11 (4u;4v)�
1� b�10 (4u; v�)��1� b�01 (u�;4v)� ; (12)

with 4u = u � u�, and 4v = v � v�. Then b�11 (4u;4v) is de�ned as the
estimated hazard function of double failures (i.e. deaths) at point (u; v), whileb�10 (4u; v�) and b�01 (u�;4v) are the estimated hazard functions of failures of
(x) at u and (y) at v, respectively, given the exposed to risk de�ned at (u; v).
The principle of equation (12) can be derived from the numerator. We match
the expected number of joint failures in case of independence, with the actual
number of joint failures. A negative di¤erence implies positive association. We
de�ne

F (s; t) =
Y

0<u�s
0<v�t

(1� L (4u;4v)) ; (13)

as the multiplier by which the joint survival function di¤ers from the one under
independence (see equation (11)). It follows that positive association is implied
if F (s; t) � 1.
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4.2 Estimating Kendall�s tau under censoring

Let Kendall�s tau be denoted by � . Since for Archimedean copulas

� = 4

Z 1

0

� (�) d� + 1; (14)

we have that � can be expressed in terms of K in the following way:

� = 3� 4
Z 1

0

K (�) d�: (15)

The estimated � from (15) is suitable for censored data as well.

4.3 Estimation of generator

We can estimate � by means of K. Let b�n be the empirical estimate of �. Then,
for v 2 (0; 1) ; b�n (v) = v � bKn (v). For each generator listed in Table 1, we
estimate the parameter � through equations (9) and (14), with � derived from
(15). This leads to functions ��b� . We de�ne K�b� (v) = v � ��b� (v), and choose
the generator whose K�b� has a minimum distance to bKn. In this paper, the
distance is de�ned in a quadratic sense as a mean squared error, denoted by
MSE.

MSE
�
�b�� = Z 1

0

�
K�b� (v)� bKn (v)

�2
dv: (16)

4.4 Omnibus procedure

The procedure described above leads to the choice of the �most appropriate�
Archimedean copula, with parameter corresponding to Kendall�s tau. To check
the correctness of the procedure, for the same copulas the parameter is estimated
through the pseudo-maximum likelihood or omnibus procedure. This method
has been described in broad terms by Oakes (1994). Its statistical properties
are analyzed in Genest et al. (1995).
The procedure treats marginal distributions as nuisance parameters of in�-

nite dimension. The margins are estimated nonparametrically by rescaled ver-
sions of the Kaplan-Meier estimators, with the rescaling factor (multiplier) equal
to n /(n+ 1) . The loglikelihood function to be maximized, denoted by L (�),
has the following shape:

L (�) =
nX
i=1

24 �1i �2i ln [c� (ui; vi)] + (1� �1i) �2i ln
h
@C�(ui;vi)

@v

i
+�1i (1� �2i) ln

h
@C�(ui;vi)

@u

i
+ (1� �1i) (1� �2i) ln [C� (ui; vi)]

35 ;
where (ui; vi) =

�bSm (xi) ; bSf (yi)�, C� (ui; vi) is the copula under consideration,
and c� (ui; vi) its density (i.e. the derivative with respect to both arguments).
Note that this procedure could also be applied to non Archimedean copulas.
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5 Application to the Canadian data set

5.1 Description of the data set

We have used the same data set as Frees et al. (1996), Carriere (2000) and
Youn and Shemyakin (1999, 2001). The original data set concerns 14,947 con-
tracts in force with a large Canadian insurer. The period of observation runs
from December 29, 1988, until December 31, 1993. Like the aforementioned
papers, we have eliminated same-sex contracts (58 in total). Besides, like Youn
and Shemyakin (1999, 2001), for couples with more than one policy, we have
eliminated all but one of those (3,435 contracts). This has left us with a set of
11,454 married couples.
Since, as explained in Section 3, the methodology for the marginal survival

functions applies to single generations, we have focused on a limited range of
birth dates, both for males and females. In doing this, we have also taken into
consideration the fact that the average age di¤erence between married man and
women in the sample obtained after eliminating same sex and double contracts,
is three years. In focusing on a generation and allowing for the three-year age
di¤erence, we have considered only one illustrative example; however, the pro-
cedure can evidently be repeated for any other couple of generations. We have
selected the generation of males born between January 1st, 1907 and December
31, 1920 and those of females born between January 1st, 1910 and December 31,
1923. These two subsets, which amount to 5,025 and 5,312 individuals respec-
tively, have been used for the estimate of the marginal survival functions. Then,
in order to estimate joint survival probabilities, we have further concentrated on
the couples whose members belong to the generation 07-20 for males and 10-23
for females. This subset includes a total of 3,931 couples. Both individuals
and couples are observable for nineteen years, because they were born during a
fourteen year period and the observation period is �ve years.
On this data set, we have adopted the general procedure sketched in Section

3 for the margins and the one in Section 4 for the joint survival function.
We have �rst obtained the empirical margins, using the Kaplan-Meier method-

ology. These margins feed the Dabrowska estimate for the empirical joint sur-
vival function. Starting from it, the best �t analytical copula has been estimated
using the Wang and Wells (2000) method, as based on the approach by Gen-
est and Rivest. Like Denuit et al. (2004), we have performed a check of the
parameters and of the best �t choice using the omnibus procedure.
The marginal Kaplan-Meier data have been used also as inputs for the cali-

bration of the analytical marginal survival functions, according to the method-
ology in Luciano and Vigna (2005).
The �nal step of the calibration procedure has consisted in obtaining the

joint analytical survival function from the best �t copula and the calibrated
margins.
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5.2 Kaplan-Meier estimates of marginal survival functions

The Kaplan-Meier maximum likelihood estimates of the marginal survival prob-
abilities are collected in Table 2.
We notice that, di¤erently from both Carriere (2000) and Frees et al. (1996),

we can calculate the empirical survival probabilities tpx only until t = 19. This
is due to the limited range of birth dates of our generations, coupled with the
�ve year length of observation. Based on the explanation above, we take the
initial age x to be 68 for males, 65 for females.

5.3 The bivariate survival function (Dabrowska)

Given the empirical margins in Table 2, provided by the Kaplan-Meier method,
we reconstruct the joint empirical survival function using the Dabrowska esti-
mator. We have simpli�ed the estimator by truncating to integer durations.
This means that e.g. a duration of failure of k (integer) corresponds to death
between k and k + 1. As data of death between durations 5 and 6 were incom-
plete (due to the maximal period of observation of 5.0075 years), we did not
consider any deaths more than �ve years after the start of the observation.
In Table 3 we present the multipliers F (s; t), as de�ned in equation (13).

Due to the time frame of observation of �ve years, we cannot explicitly compute
the multipliers for durations greater than �ve. As usual with censoring, for
durations greater than the observation period, we take the multiplier computed
for the maximal duration.
We notice that all the multipliers are greater than one. This indicates posi-

tive association and con�rms our intuition about the dependency of the lifetimes
of couples. Later on, we will provide an exact measure (Kendall�s tau) of the
amount of association.
Another relevant feature of the data, which can be captured from the table,

is the fact that the multipliers are generally increasing per row and per column:
this means that the amount of association is increasing. Namely, it means
that, for given survival time of one individual in the couple, the conditional
survival probability of the other member is more and more di¤erent from the
unconditional one as time goes by. It also means that with a longer period of
observation, we would probably have faced a stronger association between the
two lives.

5.4 The copula choice (Wang & Wells)

The Dabrowska empirical estimate of the joint survival function in turn is used
as an input for K̂; the empirical version of the K function, according to the
discretized version of formula (10), dividing the unit interval into a hundred
subintervals. Figure 1 presents the empirical estimate for K; K̂.
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Figure 1

We observe that K̂(v) is zero for v < 0:23; because the smallest value of
S(s; t) is S(19; 19) = 0:23 (recalling that the presence of this minimum in turn
is due to censoring and to the restriction to one generation, which reduces the
observation window to 19 years).
The empirical K is used, according to formula (15), in order to calculate

an estimate of the Kendall�s tau. We get � = 0:71172, in line with the values
obtained, for the same Canadian set, but without focusing on a generation, by
other authors (Frees et al., 1996, Carriere, 2000, Youn and Shemyakin, 1999,
2001, Shemyakin and Youn, 2001).
The estimated � provides us with the parameter values needed for imple-

menting the theoretical copulas: as explained in Section 4.3, for each generator
we obtain its parameter �.
From each copula we obtain a di¤erent theoretical K function, and we are

ready to compare them in order to assess their goodness of �t and to select the
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best copula. The graphical comparison can be done using Figure 2, where we
present the theoretical K�s and the empirical one.

Figure 2

We also compute the distance of each theoretical function from the empirical
one, i.e. the mean square error MSE in (16), both starting from v = 0 and
starting from v = 0:23. By so doing, we obtain the errors in Table 4.
Both from the graph and the errors we conclude that the best �t copula is

the 4.2.20 Nelsen�s one.
The smallest percentage di¤erence between the errors is a two digit one,

namely 44%. This big di¤erence supports further the best �t of the Nelsen
copula.
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5.5 Omnibus procedure

As a further check of our selection, we implement the omnibus or pseudo-
maximum likelihood procedure described in Section 4.4. As inputs for it, we use
again the Kaplan-Meier marginal probabilities in Table 2. Table 5 presents the
estimated parameters for each copula, their standard errors and the maximized
likelihood function.

The maximum likelihood is maximized in correspondence to the Nelsen cop-
ula: this procedure then con�rms the results of the Wang and Wells one. How-
ever, contrary to the mean square error above, the di¤erence between maximized
likelihoods is very weak: it ranges from 0.03% to 3%.
Also, the omnibus approach con�rms the validity of the Kendall�s tau esti-

mates obtained with the Wang and Wells�approach: using the above standard
errors, for each copula parameter - and consequently for the Kendall�s tau -
we computed a 95% con�dence interval around the maximum likelihood one.
The Kendall�s tau of the Wang and Wells�method falls only in the con�dence
interval of the Nelsen copula.

5.6 The analytical marginal survival functions

The couples of the data set have dates of birth between 1884 and 1993: even
though in the papers which have dealt with the same data set the same law of
mortality is assumed to apply for any life of the same gender, irrespective of
the date of birth, we distinguish di¤erent generation survival probabilities and
di¤erent intensity processes.
Contrary to Luciano and Vigna (2005), however, we take as a generation not

a single age of birth, but thirteen consecutive of them, as speci�ed above: this
assumption is based on the one side on the possibilities of reliable calibration
(number of data) o¤ered by the present data set; on the other side, by the
fact that there is not a unique de�nition of generation, and, generally speaking,
persons with ages of birth close to each other are considered to belong to the
same generation.
We have chosen the generation 1907-20 for males, initial age 68, and 1910-

23 for females, initial age 65. We therefore present only two survival functions,
which will be denoted as Sm68(t); S

f
65(t) respectively. Their analytical expression

is given by (8), where the estimated parameters are, respectively for males and
females

a68 = 0:0810021; �68 = 0:00005; a65 = 0:124979; �65 = 0:00005

while the initial intensity values are

�68(0) = 0:0204276; �65(0) = 0:0046943

Regarding the values of �68(0) and �65(0), according to Luciano and Vigna
(2005) we should choose � ln(p68) and � ln(p65) respectively, with p68 being the
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survival probability of a Canadian insured male born in 1920 and aged 68 and
with p65 being the survival probability of a Canadian insured female born in
1923 and aged 65. However, this data is not available. Therefore, we have used
the Canadian data set outlined above, and estimated with the KM method
p68 males and p65 females with all data available from the data set, without
restrictions on the generation. This has been done in order to have an estimate
of those survival probabilities as accurate as possible (also considering the fact
that the observation period is only �ve years, and therefore the individuals
entering the method for the calculation of the survival probabilities were born
in a six years interval).
The two survival functions are presented in Figure 3.
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6 The analytical joint survival function, its as-
sociation and long term dependency

We couple the �tted marginal survival functions of Section 5.6with the best �t
copula choice of Section 5.4, according to the formula

S(x; y) = C(Sm68(x); S
f
65(y))

with
C�(u; v) =

�
ln
�
exp(u��

�
+ exp(v��)� e)

�� 1
�

By doing so, we obtain the joint survival function S(x; y) of Figure 4, whose
sections are presented in Figures 5 and 6 respectively
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S(x,y), y fixed

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40
x

y=1

y=5

y=10

y=15

y=20

y=25

y=30

y=35

S(x,0)=S(x)

Figure 5

21



S(x,y), x fixed
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Figure 6

Looking at Figure 5, we notice that the smaller y, the closer S(x; y) to the
marginal distribution S(x; 0) = S(x). On the other hand, if y is high, S(x; y) is
almost �at until a certain age bx after which it decreases. This is due to the fact
that the probability for the female of surviving y years, with high y, is very low
and this a¤ects to a great extent the joint probability of surviving x years for
the male and y years for the female (even when the probability S(x; 0) is very
high because x is small). After age bx the joint probability starts to decrease
because of the joint e¤ect of low probability of surviving y years for the female
and x years for the male.
For Figure 6 the same comments made for Figure 5 apply. Notice that, while

the age bx after which S(x; y), y �xed, starts to decrease is always smaller than
the �xed value of y (e.g. y = 35 =) bx = 31; y = 30 =) bx = 25; y = 25 =)bx = 18;), here the age by after which S(x; y), x �xed, starts to decrease is always
higher than the �xed value of x (e.g. x = 35 =) by = 36; x = 30 =) by =
34; x = 25 =) by = 30). This is probably due to the di¤erence in death rates for
a male and a female with the same age. Evidence of this can be also found in
the di¤erent level of the sections when we change sex: for instance, S(x; 35) lies
at a higher level than S(35; y), S(x; 30) lies at a higher level than S(30; y), etc.
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In Figure 7, we report the ratio between the joint survival function and the
probability which we would obtain under the assumption of independence (the
�classical�one): S(x;y)

S(x)S(y) .
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Figure 7

In doing this, please notice that we use the short notation Sm68(x) = S(x); Sf65(y) =
S(y). Figure 7 reports the time dependent measure of association  1 (x; y) as
de�ned in (1), i.e. the joint survival probability as proportional to the inde-
pendence case. The ratio is monotone in each argument and reaches very large
values for large x and y. Note that for any (x; y),  1 (x; y) takes values between
1 and 1

max(S(x);S(y)) . The lower bound is due to the positive association mea-
sured above, since 1 corresponds to the independence case. The upper bound
corresponds to the limit reached by the ratio when the joint survival function
reaches the Fréchet upper bound, namely S (x; y) = min (S (x) ; S (y)) :
The sections are in Figures 8 and 9.
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S(x,y)/(S(x)S(y)), y fixed
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S(x,y)/(S(x)S(y)), x fixed
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All the curves start at 1 for x = 0 or y = 0 and increase monotonically
until a certain value, de�ned as x� in Figure 8 and y� in Figure 9, from which
they remain constant. This suggests that the behaviour of the sections is quite
similar to the curves corresponding to the Fréchet upper bound. Comparing
the sections of Figure 8 with Figure 9 for the same �xed value, we observe that
x� < y�. This is probably due to the higher mortality experienced by males,
compared to females.

Table 6 illustrates the measures  2x (0; y) and  2y (x; 0) as de�ned in equa-
tion (2). Column 2 displays the relative increase of the conditional expected
remaining lifetime of (x), given that (y) survives to y, which, as explained in
Section 2 increases as a function of y. We have that E [Tmx ] = 16:51. Similarly,
column 4 shows the relative increase of the conditional expected remaining life-
time of (y), given that (x) survives to x, now increasing as a function of x. The
unconditional life expectancy E

�
T fy
�
is equal to 21:92. We observe that, for

x = y,  2x (0; y) <  2y (x; 0) for small values of x or y but this inequality sign
is reversed for large values of this argument.
As for the third measure of time-dependent association in Section 2, the

cross-ratio function for the Nelsen copula, as a function of S (u; u) is

CR (S (u; u)) = 1 + �
�
1 + [S (u; u)]

��
�
;
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which is increasing as a function of u, as also shown in Spreeuw (2006). Figure
10 gives a plot of CR (v) versus 1� v.
Note that CR (1) = 2:43472 and that CR (v) takes very large values for v

close to 0. Hence, for the Nelsen copula, members of a couple become more
dependent on each other as they age. This seems to be a reasonable assumption
for married couples.

7 Conclusions

This paper represents a �rst attempt to model the mortality risk of couples of
individuals, according to the stochastic intensity approach.
On the theoretical side, we extend to couples the Cox processes setup, i.e.

the idea that mortality is driven by a jump process whose intensity is itself
a stochastic process, proper of a particular generation within a gender. The
dependency between the survival times of members of a couple is captured by
a copula, which we assume to be of the Archimedean class, as in the previous
literature on bivariate mortality.
On the calibration side, we �t the joint survival function by calibrating

separately the (analytical) margins and the (analytical) copula. First, we select
the best �t copula according to the methodology of Genest and Rivest (1993), as
extended by Wang and Wells (2000) to censored data. We obtain the so-called
Nelsen copula and we con�rm its appropriateness with the so-called pseudo
maximum likelihood or omnibus procedure.
The best copula is far from representing independence: this con�rms both

intuition and the results of all the existing studies on the same data set. In ad-
dition, since the best �t copula turns is the Nelsen one, dependency is increasing
with age.
Then, we provide a calibration of the marginal survival functions of male and

female selecting time-homogeneous, non mean-reverting, a¢ ne processes for the
intensity and give them in analytical form. Di¤erently from Luciano and Vigna
(2005), we base the calibration on sample insurance data and not on mortality
tables. Coupling the best �t copula with the calibrated margins we obtain a
joint survival function which is fully analytical and therefore can be extended,
for the chosen generation, to durations longer than the observation period.
The main contribution of the paper is in the calibration of a joint survival

function which incorporates stochastic future mortality for both individuals in
a couple. The approach seems to be manageable and �exible, and lends itself
to extensive applications for pricing and reserving purposes.
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