Global Liquidity, Leverage, House Prices and Exchange Rates

Ambrogio Cesa-Bianchi1 A. Ferrero2 A. Rebucci3

1 Bank of England & Centre for Macroeconomics
2 Oxford University
3 Johns Hopkins U. Carey Business School

“EMG-ECB Workshop on Global Liquidity and its International Implications”

Cass Business School (April 2016)
The views expressed in this paper are solely those of the authors and should not be taken to represent those of the Bank of England.
Motivation

- Push shocks to capital inflows can lead to large increase in asset prices

- This can amplify the expansionary effects of capital inflows by inflating the value of collateral and expanding the borrowing capacity of the economy

- Policy response may differ depending on which asset price is responsible for the collateral expansion
 - **House prices**: leverage caps, loan-to-income, capital requirements, reserve requirements,...
 - **Exchange rate**: official reserve accumulation, sterilized intervention, capital controls,...
Contribution

- Investigate (and document) the country heterogeneity of consumption and house price responses to an international credit supply shock, ie a global liquidity shock

- Develop a model of housing and macroeconomic dynamics with both domestic and international financial frictions
 - Borrowing constraint on households (collateral valuation depends on both exchange rates and house prices)
 - Leverage constraint on a global bank

- Run a horse race between competing transmission mechanisms
Key results

▶ Result 1
 • During episodes of international credit boom, asset prices (real exchange rates, house prices, and equity prices) appreciate, the current account deteriorates, and consumption and GDP expand

▶ Result 2
 • Causal effects of international credit supply shock are consistent with the unconditional associations

▶ Result 3
 • Access to finance, cost of registering property, and household leverage are closely associated with consumption responses
 • Exchange rate regime, share of foreign currency liability, controls on capital flows are associated with house price responses

▶ Result 4
 • General equilibrium model in line with empirical results
Related Literature

- Consumption sensitivity to asset price changes/credit shock
 - Domestic: Calza, Monacelli, Stracca (2014); Lorenzoni et al (2016); Svensoon (2016); Primiceri and Justiniano and Tambalotti
 - International: Almeida, Campello, and Liu (2006); Favilukis et al. (2012, 2014); Mian, Su, and Verner (2016);

- Capital flows, house prices, and exchange rates
 - Aizenman and Jinjarak (2009); Gete (2009); Cesa-Bianchi, Cespedes, and Rebucci (2015)

- Model of international financial intermediation
Outline

1. Boom-busts cycles in international credit flows
2. The macroeconomic impact of an international credit supply shock
3. Inspecting the heterogeneity of the transmission mechanism
4. A model of domestic and international financial intermediation with housing
Boom and bust cycles in cross-border credit

- Cross-border credit data is from BIS Locational Banking Statistics
 - Foreign banks’ claims to country i’s non-bank sector
 \[KF_{it} = \sum_{j=1}^{N} KF_{ij,t} \]

- Combine with novel quarterly data set for house prices and macro-financial variables
 - 57 countries from 1970

- Identify boom-bust episodes in cross-border credit [Mendoza and Terrones, 2008]
 - 134 booms, 81 busts and 50 boom-busts episodes
 - Observe the behavior of the economy around the peak of those boom-bust cycles
Boom and bust cycles in cross-border credit: asset prices increase, current account deteriorates, economy expands
Outline

1. Boom-busts cycles in international credit flows

2. The macroeconomic impact of an international credit supply shock

3. Inspecting the heterogeneity of the transmission mechanism

4. A model of domestic and international financial intermediation with housing
Global liquidity and the international supply of credit: Definition & Data

- Global liquidity (GL) is a vector of factors affecting provision of cross-border credit to country i by global banks [Cerutti, Claessens, and Ravnostki, 2014]

- GL shock can be thought as a shifter of the international supply of credit ("push" shock)

- Focus on the US:
 - Monetary policy \rightarrow US Interest rates, US M2
 - Funding conditions of global banks \rightarrow US TED spread, US Leverage, US Yield curve slope
 - Measures of risk appetite and uncertainty \rightarrow VIX
Model: Panel VAR

- VAR model for country i

$$x_{it} = a_i + b_it + c_i t^2 + F_1 x_{i,t-1} + u_{it},$$

- Endogenous variables x_{it} include

$$x_{it} = \begin{bmatrix} KF_t \\ C_{it} \\ HP_{it} \\ RIR_{it} \\ RER_{it} \end{bmatrix}$$

where KF_t is a global aggregate (more on this later)

- Mean group estimator \Rightarrow Dynamic panel data models with heterogenous slope coefficients
 - Estimate country by country with OLS
 - Take average IRFs across countries
 - Deals with potential inconsistency issues [Pesaran and Smith, 1995]
Identification: Global liquidity shock

- **Challenge** Disentangling push versus pull factors. Identification is achieved in two steps

- **Aggregation**
 - Single SOE cannot affect the global supply of credit
 - Idiosyncratic “pull” shocks wash away for large N

- **External instruments** [Stock and Watson, 2012; Mertens and Ravn, 2013]
 - Use the drivers of GL as instruments for KF
 - Isolate the variation of the KF reduced-form residuals that are due only to supply “push” factors
 - As instruments are US variables, drop US from sample
First stage regressions

- Drop if VAR has unstable dynamics and/or less than 30 observations
- Leverage is selected as the single most relevant instrument in more than 90 percent of the cases

<table>
<thead>
<tr>
<th>Country</th>
<th>F-Stat</th>
<th>R2</th>
<th>Country</th>
<th>F-Stat</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>6.20</td>
<td>0.06</td>
<td>Indonesia</td>
<td>6.13</td>
<td>0.06</td>
</tr>
<tr>
<td>Australia</td>
<td>10.80</td>
<td>0.10</td>
<td>Ireland</td>
<td>9.11</td>
<td>0.08</td>
</tr>
<tr>
<td>Austria</td>
<td>6.16</td>
<td>0.05</td>
<td>Italy</td>
<td>9.31</td>
<td>0.08</td>
</tr>
<tr>
<td>Belgium</td>
<td>7.94</td>
<td>0.07</td>
<td>Japan</td>
<td>7.70</td>
<td>0.07</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>9.94</td>
<td>0.10</td>
<td>Malaysia</td>
<td>11.12</td>
<td>0.10</td>
</tr>
<tr>
<td>Canada</td>
<td>12.94</td>
<td>0.12</td>
<td>Netherlands</td>
<td>8.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Chile</td>
<td>5.19</td>
<td>0.06</td>
<td>New Zealand</td>
<td>7.46</td>
<td>0.07</td>
</tr>
<tr>
<td>Colombia</td>
<td>11.53</td>
<td>0.12</td>
<td>Norway</td>
<td>10.08</td>
<td>0.09</td>
</tr>
<tr>
<td>Croatia</td>
<td>10.27</td>
<td>0.12</td>
<td>Philippines</td>
<td>8.45</td>
<td>0.09</td>
</tr>
<tr>
<td>Denmark</td>
<td>9.72</td>
<td>0.09</td>
<td>Portugal</td>
<td>11.67</td>
<td>0.12</td>
</tr>
<tr>
<td>Estonia</td>
<td>5.24</td>
<td>0.06</td>
<td>Singapore</td>
<td>7.63</td>
<td>0.07</td>
</tr>
<tr>
<td>Finland</td>
<td>10.48</td>
<td>0.10</td>
<td>Sweden</td>
<td>10.45</td>
<td>0.09</td>
</tr>
<tr>
<td>France</td>
<td>6.82</td>
<td>0.06</td>
<td>Switzerland</td>
<td>10.03</td>
<td>0.09</td>
</tr>
<tr>
<td>Greece</td>
<td>10.20</td>
<td>0.09</td>
<td>Taiwan</td>
<td>5.85</td>
<td>0.07</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>11.75</td>
<td>0.12</td>
<td>Thailand</td>
<td>7.58</td>
<td>0.07</td>
</tr>
<tr>
<td>Hungary</td>
<td>5.22</td>
<td>0.07</td>
<td>United Kingdom</td>
<td>10.49</td>
<td>0.10</td>
</tr>
<tr>
<td>Iceland</td>
<td>8.32</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Dropped all countries where first-stage regressions has F-Stat < 5.
Consistent with associations in the event study, GL shock increases house prices, the exchange rate, consumption, and real interest rate over time.

The macroeconomic impact of an international credit supply shock.
Outline

1. Boom-busts cycles in international credit flows
2. The macroeconomic impact of an international credit supply shock
3. Inspecting the heterogeneity of the transmission mechanism
4. A model of domestic and international financial intermediation with housing
Heterogeneity of the transmission mechanism

- Error bands of the VAR reveal heterogeneity across countries. Does cross-sectional heterogeneity follow specific patterns?

- **Conjecture** Shock relaxes borrowing constraints *via* an increase in the value of collateral

- Consider the following borrowing constraint

\[d_t \leq \theta \frac{q_t h_t}{s_t} \]

- House price increase \((q_t \uparrow)\) expands borrowing capacity
- If borrowing is in foreign currency, exch. rate appreciation \((s_t \downarrow)\) also increases the value of collateral
- The larger the LTV ratio \((\theta \uparrow)\) the larger the effect of house prices / exch. rates movements on borrowing capacity
Country characteristics & Responses to GL shock

- Cross-sectional regressions
 \[Y_i = X_i \beta + \epsilon_i \]

- \(Y_i = N \times 1 \) vector including response of country \(i \) to GL shock
 - Consider peak impact of house price & consumption
 - Robust to impact and average over first 4 quarters

- \(X_i = N \times k \) matrix including \(k \) structural characteristics for each country \(i \)
 - **Housing finance system**: leverage, financial development, transaction costs, ...
 - **Monetary policy regime**: exch. rate flexibility, foreign currency exposure, capital controls, fin. repression, ...

- Data sources: Warnock and Warnock (2008); Cerutti, Dell’Arriccia, Dagher (2014); WB WDI
Consumption responses stronger the less developed financial system (HLP), the higher the leverage (LTV), the lower transaction costs (CRP), the less flexible the exchange rate regime (ERF)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLP</td>
<td>-0.37</td>
<td>-0.41</td>
<td>-2.91</td>
<td>-4.15</td>
<td>-2.58</td>
<td>-0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTVavg</td>
<td>0.11</td>
<td>0.28</td>
<td>0.73</td>
<td>2.19</td>
<td>1.73</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td>-0.29</td>
<td>-0.26</td>
<td>-1.63</td>
<td>-2.67</td>
<td>-1.53</td>
<td>-0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCL</td>
<td>0.65</td>
<td>4.69</td>
<td>0.52</td>
<td>2.50</td>
<td>0.60</td>
<td>0.088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERF</td>
<td></td>
<td></td>
<td>-0.33</td>
<td>-0.10</td>
<td>-0.20</td>
<td>-1.94</td>
<td>-0.61</td>
<td>-1.64</td>
<td></td>
</tr>
<tr>
<td>KAI</td>
<td>0.30</td>
<td>-0.082</td>
<td>0.30</td>
<td>-0.082</td>
<td>-0.093</td>
<td>1.56</td>
<td>-0.40</td>
<td>-0.64</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.048</td>
<td>-0.27</td>
<td>0.014</td>
<td>-0.031</td>
<td>0.11</td>
<td>0.024</td>
<td>-0.026</td>
<td>-0.0019</td>
<td>-0.050</td>
</tr>
<tr>
<td></td>
<td>[0.34]</td>
<td>[-2.45]</td>
<td>[0.081]</td>
<td>[-0.28]</td>
<td>[0.81]</td>
<td>[0.14]</td>
<td>[-0.15]</td>
<td>[-0.013]</td>
<td>[-0.47]</td>
</tr>
<tr>
<td>Observations</td>
<td>29</td>
<td>29</td>
<td>31</td>
<td>25</td>
<td>33</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.24</td>
<td>0.02</td>
<td>0.08</td>
<td>0.50</td>
<td>0.42</td>
<td>0.11</td>
<td>0.08</td>
<td>0.36</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Note. t-Stats in errors in square brackets. HLP is Housing Loan Penetration; LTVavg is the average LTV; CRP is Cost of Registering Property; FCL is foreign currency liability; ERF is exchange rate flexibility; KAI is capital controls on inflows.
House price responses stronger the higher the share of FC liability (FCL), the less flexible the exchange rate regime (ERF), and the less extensive capital controls on inflows (KAI)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLP</td>
<td>-0.25</td>
<td>-0.18</td>
<td>-0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-1.35]</td>
<td>[-1.82]</td>
<td>[-1.24]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTVavg</td>
<td>0.089</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.70]</td>
<td>[1.55]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td>-0.30</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-1.67]</td>
<td>[-1.21]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCL</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>[3.55]</td>
<td></td>
<td></td>
<td></td>
<td>[2.88]</td>
<td></td>
<td></td>
<td></td>
<td>[2.00]</td>
</tr>
<tr>
<td>ERF</td>
<td>-0.26</td>
<td>-0.25</td>
<td>-0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-1.50]</td>
<td>[-2.74]</td>
<td>[-1.52]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAI</td>
<td>0.10</td>
<td>-0.21</td>
<td>-0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.76]</td>
<td>[-1.85]</td>
<td>[-2.32]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.062</td>
<td>-0.25</td>
<td>-0.019</td>
<td>-0.19</td>
<td>0.093</td>
<td>-0.010</td>
<td>-0.15</td>
<td>-0.15</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>[0.31]</td>
<td>[-2.62]</td>
<td>[-0.11]</td>
<td>[-1.77]</td>
<td>[0.62]</td>
<td>[-0.059]</td>
<td>[-1.29]</td>
<td>[-1.83]</td>
<td>[-2.14]</td>
</tr>
<tr>
<td>Observations</td>
<td>29</td>
<td>29</td>
<td>31</td>
<td>25</td>
<td>33</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.06</td>
<td>0.02</td>
<td>0.09</td>
<td>0.19</td>
<td>0.29</td>
<td>0.07</td>
<td>0.02</td>
<td>0.57</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Note. t-Stats in errors in square brackets. HLP is Housing Loan Penetration; LTVavg is the average LTV; CRP is Cost of Registering Property; FCL is foreign currency liability; ERF is exchange rate flexibility; KAI is capital controls on inflows.
Outline

1. Boom-busts cycles in international credit flows
2. The macroeconomic impact of an international credit supply shock
3. Inspecting the heterogeneity of the transmission mechanism
4. A model of domestic and international financial intermediation with housing
A simple model

- Two countries (H and F), two goods, no aggregate uncertainty

- Home households
 - Impatient
 - Want to buy housing
 - Subject to collateral constraint: $d_t \leq \theta \frac{q_t h_t}{s_t}$

- Foreign households
 - More patient than Home households: $\beta^* > \beta$
 - Save via deposits and equity in financial intermediaries

- Global financial intermediaries
 - Channel funds internationally from lenders to borrowers
 - Subject to leverage constraint $\frac{d_t}{e_t} \leq \chi$
Each country endowed with one good, households consume both

\[c_t \equiv \frac{(c_{Ht})^\alpha (c_{Ft})^{1-\alpha}}{\alpha^\alpha (1-\alpha)^{1-\alpha}} \quad \text{with} \quad \alpha \in (n, 1] \]

Price indexes (LOOP holds)

\[P_t = (P_{Ht})^\alpha (P_{Ft})^{1-\alpha} \]

Relative prices and real exchange rate \(\propto \) terms of trade \((\tau_t \equiv P_{Ft}/P_{Ht}) \)

\[p_{Ht} \equiv P_{Ht}/P_t = \tau_t^{\alpha-1} \]
\[s_t \equiv P^*/P_t = \tau_t^{\alpha-\alpha^*} \]
Utility function defined over consumption goods and housing services:

$$\max_{\{c_t, h_t, d_t\}} \mathcal{U}_t = \sum_{t=0}^{\infty} \beta^t [u(c_t) + v(h_t)]$$

Subject to:

$$c_t + q_t h_t - s_t (d_t - R_{t-1} d_{t-1}) = p_{Hty_t} + q_t h_{t-1}$$

$$s_t d_t \leq \theta q_t h_t$$

Debt is denominated in foreign currency.

- Appreciation of the real exchange rate (s_t) can relax the borrowing constraint.
Households - Foreign country

- Utility function defined over consumption goods

\[
\max \{ c_t^*, d_t^* \} \quad U_t^* = \sum_{t=0}^{\infty} \beta^* t u(c_t^*)
\]

- Subject to

\[
c_t^* + d_t^* + e_t + \psi(e_t) = p_F t y_t^* + R_t^d d_{t-1}^* + R_t^e e_{t-1} + \pi_t,
\]

- More patient than Home households \(\beta^* > \beta \)

- Foreign households own financial intermediaries
 - Cost of adjusting equity
Global Financial Intermediaries

- Balance sheet at time t (after borrowers and lenders decisions)

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans nd_t</td>
<td>Deposits $(1 - n)d^*_t$</td>
</tr>
<tr>
<td>Equity</td>
<td>Equity $(1 - n)e_t$</td>
</tr>
</tbody>
</table>

- Maximize profits subject to leverage constraint (capital requirement)

$$ nd_t \leq \chi(1 - n)e_t $$

- We introduce a credit supply shock (a “leverage shock”)

$$ \chi_t = \chi(1 - \rho) + \rho\chi_{t-1} + \varepsilon^\chi $$
Simplified version of the model – Analytical results

- Simplified version of the model
 - Symmetric \(n = 0.5 \), one-good only \(s_t = r_t = 1 \) world economy
 - Risk-neutrality \(u'(c_t) = \bar{u} \)

- Derive credit demand and supply schedules and characterize the credit market equilibrium

- Supply

\[
R = \frac{1}{\beta^*} \left[1 + \Theta \left(\frac{d}{\chi} \right)^{\gamma^{-1}} \right]
\]

- Demand

\[
R = \begin{cases}
\frac{1}{\beta} - \frac{(1-\beta)}{\beta \theta} - \frac{mrs}{\beta d} & \text{if } d < \theta p \\
\frac{1}{\theta - (1-\beta)} - \frac{mrs}{\beta d} & \text{if } d = \theta p
\end{cases}
\]
Credit market equilibrium - Low vs. high international supply of credit

A model of domestic and international financial intermediation with housing
Leverage shock in a low credit economy

A model of domestic and international financial intermediation with housing
Leverage shock in a high credit economy

\[
\frac{1}{\beta^*} \frac{\theta_{mrs}}{1-\beta}
\]

Demand of funds, Supply of funds

R
\[\frac{1}{\beta} \]

\[R_0 \]

\[R_1 \]

\[1/\beta^* \]

\[\theta_{mrs}/(1-\beta) \]

\[d_0 \]

\[d_1 \]
Large leverage shock in a low credit economy

A model of domestic and international financial intermediation with housing
Full model – Parameter values

- Two-good world economy, countries can differ in size, risk aversion

- Parametrization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Weight of H good in H consumption</td>
<td>0.6</td>
</tr>
<tr>
<td>n</td>
<td>Size of H economy</td>
<td>0.01</td>
</tr>
<tr>
<td>α^*</td>
<td>Weight of H good in F consumption</td>
<td>$1 - \alpha$</td>
</tr>
<tr>
<td>ν</td>
<td>Relative risk aversion</td>
<td>1.5</td>
</tr>
<tr>
<td>ψh</td>
<td>Marginal utility of housing</td>
<td>0.0006</td>
</tr>
<tr>
<td>β</td>
<td>H discount factor</td>
<td>0.985</td>
</tr>
<tr>
<td>β^*</td>
<td>F discount factor</td>
<td>0.992</td>
</tr>
<tr>
<td>θ</td>
<td>LTV ratio</td>
<td>0.75</td>
</tr>
<tr>
<td>y</td>
<td>H endowment</td>
<td>1</td>
</tr>
<tr>
<td>y^*</td>
<td>F endowment</td>
<td>1</td>
</tr>
<tr>
<td>$\rho \chi$</td>
<td>Persistence of leverage shock</td>
<td>0.25</td>
</tr>
<tr>
<td>χ</td>
<td>Steady state leverage</td>
<td>5</td>
</tr>
<tr>
<td>γ</td>
<td>Equity adj. cost (1)</td>
<td>1.5</td>
</tr>
<tr>
<td>η</td>
<td>Equity adj. cost (2)</td>
<td>0.005</td>
</tr>
</tbody>
</table>

- Leverage shock

$$\chi_t = \chi^{(1-\rho \chi)} \chi_{t-1}^{\rho \chi} \exp (\varepsilon_{\chi,t}),$$
Impulse response to a leverage shock consistent with Panel VAR response

A model of domestic and international financial intermediation with housing
Conclusions

- Consumption and house prices respond to credit supply shocks in heterogeneous fashion across countries

- Two main channels of transmission
 - Monetary policy regime
 - Housing finance system

 Hard to disentangle empirically

- Set up DSGE model to interpret both time series and cross-section empirical evidence

- Next steps
 - Investigate cross-sectional factors within the model
 - Model estimation by matching VAR IRFs and horse race between alternative mechanism