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ABSTRACT

This paper investigates nonlinear pricing kernels in which the risk factor is en-
dogenously determined and preferences restrict the definition of the pricing ker-
nel. These kernels potentially generate the empirical performance of nonlinear and
multifactor models, while maintaining empirical power and avoiding ad hoc spec-
ifications of factors or functional form. Our test results indicate that preference-
restricted nonlinear pricing kernels are both admissible for the cross section of
returns and are able to significantly improve upon linear single- and multifactor
kernels. Further, the nonlinearities in the pricing kernel drive out the importance
of the factors in the linear multi-factor model.

A PRINCIPAL IMPLICATION OF THE Capital Asset Pricing Model ~CAPM! is that
the pricing kernel is linear in a single factor, the portfolio of aggregate wealth.
Numerous studies over the past two decades have documented violations of
this restriction.1 In response, researchers have examined the performance of
alternative models of asset prices. These models have generally fallen into
two classes: ~1! multifactor models such as Ross’ APT or Merton’s ICAPM, in
which factors in addition to the market return determine asset prices; or
~2! nonparametric models, such as Bansal et al. ~1993!, Bansal and
Viswanathan ~1993!, and Chapman ~1997!, in which the pricing kernel is not
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linear in the market return. Empirical applications of these models suggest
that they are much better at explaining cross-sectional variation in expected
returns than the CAPM.2

Although these approaches perform well empirically, a number of limita-
tions weaken their appeal. In particular, the models require ad hoc specifi-
cations of either the set of priced factors or the form of nonlinearity. Since
the sets of potential factors and nonlinear functions are large, the researcher
has considerable discretion over the form of the model to be investigated.
Additionally, the form of the pricing kernel resulting from the nonparamet-
ric approaches does not derive from first principles. That is, given a set of
assumptions on investors’ preferences or return distributions, the nonlinear
pricing kernels investigated in the nonparametric approaches do not follow
endogenously. These limitations of the nonparametric and multifactor ap-
proaches are problematic in empirical applications because ~1! tests based
on ad hoc assumptions may lack power since they ignore the theoretical
restrictions that might arise from a structural model and ~2! the possibility
exists for overfitting the data and factor dredging ~Lo and MacKinlay ~1990!,
Fama ~1991!!. In contrast, the set of factors in the CAPM ~the market port-
folio! and the form of the pricing kernel ~linear! obtain as endogenous out-
comes. Thus, the CAPM is free of the criticisms of arbitrary factor and
functional form specification.

This paper investigates a pricing kernel that retains many of the attrac-
tive features of the pricing kernels investigated in nonparametric analyses
while avoiding many of their limitations. The basis of our approach is to
approximate an unknown marginal utility function in a static setting by a
Taylor series expansion. The resulting pricing kernel is a polynomial func-
tion in aggregate wealth. The form of this Taylor series is restricted by im-
posing decreasing absolute prudence ~Kimball ~1993!! on investor’s preferences.
This restriction allows us to sign the first three polynomial terms in the
expansion. The resulting pricing kernel is nonlinear, and therefore consis-
tent with empirical evidence from nonparametric studies. Furthermore, it is
a function of a risk factor that obtains endogenously and is restricted by
preference assumptions, as in the CAPM. Consequently, the pricing kernel
has the potential to explain some of the observed nonlinearities in the data.
Concurrently, specification tests have improved power due to the preference
restrictions imposed on the functional form of the pricing kernel.

As discussed above, our pricing kernel is a function only of the return on
aggregate wealth. However, several recent papers have shown that the spec-
ification of aggregate wealth impacts the conclusions of empirical asset pric-
ing studies. Consequently, we specify the priced factor as a function of both
the return on equity and the return on human capital. We incorporate hu-
man capital, since recent evidence ~Campbell ~1996!, Jagannathan and Wang

2 Fama and French ~1993, 1995, 1996! propose and investigate a multifactor alternative to
the CAPM and find that it can capture more variation in expected returns than the CAPM.
Bansal and Viswanathan ~1993! and Bansal et al. ~1993! explore various nonlinear pricing
kernel specifications and find that these nonlinear specifications outperform linear specifications.

370 The Journal of Finance



~1996!! suggests that the incorporation of human capital into the pricing
kernel substantially improves the performance of the conditional CAPM. In
contrast to this work, our pricing kernel allows human capital to impact
asset prices nonlinearly through the polynomial pricing kernel. Moreover,
we conjecture that mismeasurement of the market portfolio may have a par-
ticularly severe effect on the analysis of a nonlinear pricing kernel.

Our results indicate several interesting findings. First, we find that both
a quadratic and a cubic pricing kernel are admissible for the cross section of
industry portfolios, whereas the linear single-factor ~CAPM! and linear multi-
factor ~Fama-French! pricing kernels are not. Although the superior perfor-
mance of nonlinear pricing kernels to linear pricing kernels has been
documented in the literature ~Bansal and Viswanathan ~1993!, Bansal et al.
~1993!, Chapman ~1997!!, to our knowledge the superiority of these kernels
to a f lexible multifactor model, such as the Fama–French model, has not. We
find this result particularly interesting because the nonlinear pricing kernel
that we investigate is subject to economic restrictions that do not affect the
multifactor pricing kernel. In particular, the priced risk factor is obtained
endogenously, and the signs of the coefficients of the pricing kernel are re-
stricted by preference theory. In contrast, the priced risk factors in the multi-
factor model are specified exogenously, and the sign of the relationship between
returns and these risk factors is unconstrained by economic theory. Further-
more, when the pricing kernel is specified as a cubic function of aggregate
wealth augmented by the Fama–French factors, we find that these factors
have no residual explanatory power for the cross section of returns. These
results are important because they show that a pricing kernel grounded in
preference theory can perform as well as, or better than, less restrictive
factor models. Importantly, we find that human capital is critical to the
improved performance of a nonlinear pricing kernel over linear single and
multifactor pricing kernels. Moreover, it is incorporation of a nonlinear hu-
man capital measure that renders the pricing kernel admissible.

Although the pricing kernel that we investigate is restricted by prefer-
ences relative to multifactor or nonparametric pricing kernels, the kernel
can be restricted further by preference theory. For example, specific prefer-
ences such as power utility are consistent with the decreasing absolute pru-
dence restriction. We find that the nonlinear pricing kernel outperforms a
pricing kernel implied by power utility. This evidence leads us to investigate
the degree to which we can restrict the pricing kernel to be consistent with
preferences and maintain improvement over the multifactor pricing kernels.
In particular, we note that, under the assumption of decreasing absolute
risk aversion, the pricing kernel itself should be decreasing. We impose this
constraint in estimation and find that the resulting pricing kernel is no
longer admissible for the cross section of returns. However, this pricing ker-
nel continues to outperform the linear single and multifactor pricing ker-
nels. This evidence suggests that nonlinearity can augment the performance
of the pricing kernel framework. However, in order to describe the data, the
pricing kernel must exhibit a fairly specific form of nonlinearity, which is
captured by the cubic pricing kernel. Unfortunately, the cubic pricing kernel
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cannot simultaneously deliver the nonlinearity necessary to price the assets
under consideration and monotonically decrease. We conclude that a func-
tional form that is able to maintain both of these properties is necessary to
be both economically reasonable and admissible.

The remainder of the paper is organized as follows. In Section I, we dis-
cuss and motivate restrictions on agents’ preferences that yield a specific
nonlinear pricing kernel. The testing framework is discussed in Section II.
Evidence on the performance of the model is provided in Section III. Sec-
tion IV concludes.

I. Pricing Kernels and Moment Preference

To develop a specific nonlinear pricing kernel, we start with the intertem-
poral consumption and portfolio choice problem for a long-lived investor. As
discussed in Hansen and Jagannathan ~1991!, the solution to an investor’s
portfolio choice problem can be expressed as the Euler equation

E @~1 1 Ri, t11!mt116Vt # 5 1, ~1!

where ~1 1 Ri, t11! is the total return on asset i; mt11 is the investor’s in-
tertemporal marginal rate of substitution, U '~Ct11!0U '~Ct !; and Vt is the
information set available to the investor at time t. Harrison and Kreps ~1979!
show that mt11 represents a pricing kernel that prices all risky payoffs un-
der the law of one price and is nonnegative under the condition of no arbi-
trage. The assumption of the existence of a representative agent allows the
pricing kernel to be expressed as a function of aggregate consumption. Al-
though this specification is appealing from the standpoint of economic theory,
considerable attention has been given to measurement and aggregation prob-
lems in available aggregate consumption proxies ~e.g., Breeden, Gibbons,
and Litzenberger ~1989!!. One method that is used to address this issue is to
assume a static setting, and allow equation ~1! to hold conditionally, as in
Brown and Gibbons ~1985!. In this case, consumption and wealth are equiv-
alent, and the intertemporal marginal rate of substitution can be expressed
as a function of aggregate wealth, U '~Wt11!0U '~Wt !.

A further issue in this analysis is the form of the representative agent’s
utility function, U~{!. A large body of literature investigates standard choices
for U~{! and finds that the data imply unrealistic assumptions about inves-
tors’ risk aversion or the riskless rate ~e.g., Mehra and Prescott ~1985!, Weil
~1989!!. Thus, a suitable representation for the representative agent’s utility
function is unknown. To mitigate this problem, we express the pricing ker-
nel generally as a nonlinear function of the return on aggregate wealth.
Specifically, rather than take a stand on the exact form of the pricing ker-
nel, we approximate it using a Taylor series expansion:

mt11 5 h0 1 h1

U ''

U ' RW, t11 1 h2

U '''

U ' RW, t11
2 1 . . . , ~2!
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where RW, t11 represents the return on end-of-period aggregate wealth. As
shown in equation ~2!, the marginal rate of substitution can be approxi-
mated as a polynomial in aggregate wealth in a static setting.

One difficulty with the polynomial expansion is the determination of the
order at which the expansion should be truncated. Bansal et al. ~1993! let
the data determine the point of truncation. The difficulty with this approach
is a loss of power; in allowing the data to guide the specification of the
pricing kernel, the researcher risks overfitting the data. Furthermore, the
economic interpretation of the resulting kernel is open to question. A more
powerful alternative is to allow preference theory to guide the truncation.
Thus, we rely on preference arguments to motivate the truncation of the
polynomial. The standard arguments of positive marginal utility and risk
aversion suggest that U ' . 0 and U '' , 0. These restrictions yield a linear
pricing kernel with a negative coefficient on the return on aggregate wealth,
nesting the static CAPM. We further assume decreasing absolute risk aver-
sion, which implies U ''' . 0, as shown in Arditti ~1967!. This condition, cou-
pled with truncating the series expansion after the quadratic term, yields a
pricing kernel quadratic in the return on aggregate wealth, consistent with
the three-moment CAPM.

We extend this progression of signing derivatives of utility functions by
using the restriction of decreasing absolute prudence ~Kimball ~1993!!. Kim-
ball develops this restriction in response to Pratt and Zeckhauser ~1987!,
who show that decreasing absolute risk aversion does not rule out certain
counterintuitive risk-taking behavior. For example, any risk-averse agent
should be unwilling to accept a bet with a negative expected payoff. Samuel-
son ~1963! proves that if this agent had already accepted a bet with a neg-
ative expected payoff, that she should be unwilling to take another independent
bet with a negative expected payoff. Pratt and Zeckhauser show that, if the
agent’s preferences are restricted only to exhibit decreasing absolute risk
aversion, the agent may be willing to take this negative mean sequential
gamble. Kimball shows that standard risk aversion rules out the aforemen-
tioned behavior. Sufficient conditions for standard risk aversion are decreas-
ing absolute risk aversion and decreasing absolute prudence,

2

d
U '''

U ''

dW
5

~U ''' !2 2 U ''''U ''

~U '' !2 , 0. ~3!

Thus, assuming increasing marginal utility, risk aversion, and decreasing
absolute risk aversion, equation ~3! implies

U '''' , 0. ~4!

This condition shows that, by imposing standard risk aversion on agents’
preferences, we are able to sign the coefficients of the first three polynomial
terms in a Taylor series expansion.
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Because preference theory does not guide us in determining the sign of
additional polynomial terms, we assume that higher order polynomial terms
are not important for pricing. More specifically, we implicitly assume that
the covariance between returns and polynomial terms in aggregate wealth of
order greater than three is zero.3 Without this assumption, higher order
terms, which we cannot definitively sign, enter the pricing kernel. Our view
is that the power delivered by the sign restrictions outweigh the cost of
omitting the higher order polynomial terms. Thus, with the assumption that
the pricing kernel can be characterized by a low-order polynomial in aggre-
gate wealth, imposing standard risk aversion on agents’ preferences and trun-
cating the expansion at the highest order term that can be signed together
result in a pricing kernel that is cubic in the return on aggregate wealth.4
The resulting pricing kernel is decreasing in the linear term of the pricing
kernel, increasing in the quadratic term, and decreasing in the cubic term.

The pricing kernel that results from our analysis has several attractive
features. First, the resulting pricing kernel does not take a strong stand
regarding functional form. Additionally, the pricing kernel is nonlinear. Con-
sequently, we conjecture that the polynomial pricing kernel will avoid prob-
lems associated with assuming a specific utility function and, instead, capture
nonlinear features of the data, as do nonparametric pricing kernels. How-
ever, in contrast to the nonparametric kernels, the polynomial model is re-
stricted by preference theory; preference assumptions drive the signs of the
pricing kernel coefficients. These restrictions deliver greater economic and
statistical power to tests of the model. In the subsequent sections, we con-
duct analyses of the performance of this kernel relative to alternative spec-
ifications of the pricing kernel.

As alluded to above, the polynomial expansion is also appealing in that it
can be linked to preference for moments of the distribution of the return on
wealth. Using the definition of covariance, equation ~1! can be rewritten as

E @~1 1 Ri, t11!# 5
1

E @mt11#
2 Cov@~1 1 Ri, t11!, mt11#

1

E @mt11#
. ~5!

Substituting equation ~2! into equation ~5! shows that expected returns are
linked to covariances with the different orders of the polynomial in the re-
turn on aggregate wealth. Thus, a linear pricing kernel relates expected
returns to covariance with the return on aggregate wealth, as in the CAPM.
A quadratic pricing kernel relates expected returns to covariance with the
return on aggregate wealth and the return on aggregate wealth squared.
Since the coskewness of a random variable x with another random variable y
can be represented as a function of Cov~x, y! and Cov~x, y2 !, the quadratic
pricing kernel is consistent with the three-moment CAPM. Similarly, a cubic

3 This assumption may be justified if the joint distribution of returns and wealth is charac-
terized by a four-moment density.

4 This pricing kernel is consistent with a four-moment CAPM, as derived in Fang and Lai
~1997!.
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pricing kernel is consistent with a model in the CAPM framework in which
agents have preference over the first four moments of returns.

Analagous arguments can be made for higher moments; the pricing kernel
in Bansal et al. ~1993! incorporates a linear, quadratic, and quintic term,
implying preference over variance, skewness, and the sixth moment. How-
ever, moments beyond the fourth are difficult to interpret intuitively and
are not explicitly restricted by standard preference theory. In contrast, pref-
erence for the fourth moment, kurtosis, has both a utility-based and an
intuitive rationale. Kurtosis can be described as the degree to which, for a
given variance, a distribution is weighted toward its tails ~Darlington ~1970!!.
That is, kurtosis measures the bimodality of the distribution, or the proba-
bility mass in the tails of the distribution. Thus, kurtosis is distinguished
from the variance, which measures the dispersion of observations from the
mean, in that it captures the probability of outcomes that are highly diver-
gent from the mean; that is, extreme outcomes. In a multivariate distribu-
tion, random variables may also exhibit cokurtosis. This measure captures
the two variables’ common sensitivity to extreme states.

Thus, a cubic pricing kernel can be justified under intuitive arguments,
which suggests that investors are averse to extreme outcomes in a distribu-
tion, as well as utility-based arguments such as standard risk aversion. Con-
sequently, we investigate a version of equation ~2! that truncates the expansion
at the return on aggregate wealth cubed

mt11 5 d0 1 d1 RW, t11 1 d2 RW, t11
2 1 d3 RW, t11

3 . ~6!

A pricing kernel specified in this way allows for an alternative functional
form and potentially greater generality than that implied by the use of a
specific utility function. However, since signs of the coefficients in the ex-
pansion are guided by theory, and we have limited the order of the expansion
rather than allowing the data to determine the order of the expansion, we
expect tests of the kernel’s specification to be more powerful than a pure
nonparametric approach.

II. Estimation Methods

As expressed in equation ~6!, the pricing kernel is a random variable with
static coefficients. However, a large body of evidence suggests that return mo-
ments and prices of risk are time varying, and a wide array of studies have
used this evidence as a basis for investigating static pricing models that hold
conditionally ~e.g., Harvey ~1989!, Ferson and Harvey ~1991!!. Although a static
model will not hold conditionally in general, it may under certain conditions.
For example, Campbell ~1996! provides evidence that assets’ intertemporal risks
are proportional to their market risk. In this case, the asset pricing model can
be expressed as a function only of market risk, allowing a static model to hold
conditionally. Consequently, we analyze the model in conditional form by test-
ing the implications of the Euler equation ~1!.
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One potential implication of equation ~1! holding conditionally is that the
coefficients of the pricing kernel, dn, are time varying. In a full-f ledged
pricing model, the conditional moments that drive these coefficients might
be directly modeled ~e.g., Harvey ~1989!!. Alternatively, in the more general
situation described by ~6!, a functional form for the coefficients may be spec-
ified. Dumas and Solnik ~1995! and Cochrane ~1996! treat these coefficients
as linear functions of time t information variables. The resulting pricing
kernel is specified as

mt11 5 d0
' Zt 1 d1

' Zt RW, t11 1 d2
' Zt RW, t11

2 1 d3
' Zt RW, t11

3 . ~7!

This approach is advantageous in being a parsimonious approximation, but
the functional form does not impose any restrictions on the signs of the
coefficients. Consequently, we investigate a pricing kernel of the form

mt11 5 ~d0
' Zt!

2 2 ~d1
' Zt!

2RW, t11 1 ~d2
' Zt!

2RW, t11
2 2 ~d3

' Zt!
2RW, t11

3 . ~8!

As discussed in Section I, imposing decreasing absolute prudence implies
that U '''' , 0, U ''' . 0, and U '' , 0. Because the coefficients ~dn, t !

2 are
forced to be positive-valued in equation ~8!, this specification forces the pref-
erence restrictions implied by decreasing absolute prudence.

One more feature of the pricing kernel framework is exploited in estima-
tion. Equation ~1! implies that the mean of the pricing kernel should be
equal to the inverse of the gross return on a riskless asset or, more generally,
a zero-beta asset. That is, Et @mt11# 5 10Et @R0, t11# . This condition can be
imposed by including a proxy for the riskless or zero-beta asset in the set of
payoffs. Dahlquist and Söderlind ~1999! and Farnsworth et al. ~1999! find
that imposing this restriction on the pricing kernel is important in the con-
text of performance evaluation. Dahlquist and Söderlind also show that fail-
ure to impose this restriction can result in estimation of a valid pricing
kernel that implies a mean-variance tangency portfolio that is not on the
efficient frontier. To impose the mean restriction on the pricing kernel, we
include a moment condition for the one-month T-bill in the estimation.

A. Estimating the Pricing Kernel

Using the Taylor series approximation with time-varying coefficients, equa-
tion ~8!, the Euler equation ~1! can be expressed as

E @~1 1 Rt11!~~d0
' Zt !

2 2 ~d1
' Zt !

2Rm, t11 1 ~d2
' Zt !

2Rm, t11
2 2 ~d3

' Zt !
2Rm, t11

3 !6Zt #

5 1N . ~9!

We collect the vector of errors

vt11 5 ~1 1 Rt11!~~Zt d0!2 2 ~Zt d1!2Rm, t11 1 ~Zt d2!2Rm, t11
2 2 ~Zt d3!2Rm, t11

3 !

2 1N . ~10!
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Equation ~9! implies

E @vt116Zt # 5 0, ~11!

which forms a set of moment conditions that can be utilized to test the asset
pricing model via Hansen’s ~1982! generalized method of moments ~GMM!.
Equation ~11! implies the unconditional restriction E @vt11 J Zt # 5 0. The
sample version of this condition is that

gT ~d! 5
1

T (
t51

T

vt11 J Zt
' 5 0N . ~12!

T represents the number of time series observations and N the number of
assets under consideration. Expression ~12! is a system of N 3 K equations.
The number of parameters in the model, p, is driven by the restrictions on
equation ~7!. In the cubic case, p 5 4K, whereas in the quadratic and linear
cases, p 5 3K and 2K, respectively.

Hansen ~1982! shows that a test of model specification can be obtained by
minimizing the quadratic form

J~d! 5 gT ~d!'WT ~d!gT ~d!, ~13!

where WT is the GMM weighting matrix. Alternative approaches to GMM
estimation are based on the specification of the weighting matrix. Hansen
shows that the optimal weighting matrix is the covariance matrix of the
moment conditions, WT

* 5 @gT ~d!gT
' ~d!#21 . Although the GMM estimates with

respect to this matrix are efficient, several studies ~e.g., Ferson and Foerster
~1994!! suggest that the method may have poor finite sample properties.
Furthermore, as pointed out in Chapman ~1997!, since the weighting matrix
is the inverse of the second moment matrix of the pricing errors, a small
J-statistic can be obtained through estimating a pricing kernel with highly
volatile pricing errors. Thus, using the standard GMM estimator in an Euler
equation test may result in acceptance of a pricing kernel due not to im-
proved pricing ability, but instead due to the addition of noise to the pricing
kernel.

Hansen and Jagannathan ~1997! pursue a different approach. Rather than
attempting to minimize the pricing errors weighted by their covariance ma-
trix, the authors investigate the size of the correction to a model’s pricing
kernel that is necessary for it to be consistent with a pricing kernel that
prices the assets. The solution to this problem uses the same criterion func-
tion as the standard GMM estimator, equation ~13!, but specifies the weight-
ing matrix as the second moment of instrument-scaled returns:

W HJ 5 E @~Rt11 J Zt !~Rt11 J Zt !
' # . ~14!
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We follow Jagannathan and Wang ~1996! and Chapman ~1997! in implement-
ing this approach. The distribution of J HJ, the resulting test statistic, is
derived in Jagannathan and Wang and is used as a test of model specification.

There are several advantages to using the Hansen–Jagannathan estima-
tor rather than the standard GMM estimator. First, the Hansen–Jagannathan
approach provides a statistic that can be used to compare nonnested models.
This statistic is termed the Hansen–Jagannathan distance measure and is
given by the square root of the criterion function equation ~13! using the
Hansen–Jagannathan weighting matrix, equation ~14!. This distance mea-
sure is equivalent to 66 Ip 66, where Ip is the correction to the proxy stochastic
discount factor necessary to make it consistent with the data. Since the dis-
tance measure is formed on a weighting matrix that is invariant across all
models tested, it can be used to directly compare the performance not only of
nested models, but nonnested models as well.

A second advantage to the Hansen–Jagannathan approach is that it largely
avoids the pitfall of favoring pricing models that produce volatile pricing
errors. The Hansen–Jagannathan criterion is a function of the inverse of the
second moment matrix of returns rather than the inverse of the second mo-
ment matrix of pricing errors. Consequently, the Hansen–Jagannathan dis-
tance will fall only if the least-square distance to an admissible pricing kernel
is reduced, and not if the proxy pricing kernel generates volatile pricing
errors. Thus, the distance rewards models exclusively for improving pricing
and not for adding noise.

One caveat is in order. The distribution of the Hansen–Jagannathan test
statistic is a function of the optimal GMM weighting matrix. Consequently,
when testing the significance of the Hansen–Jagannathan distance, one may
find a high p-value because the parameters imply a “small” optimal GMM
weighting matrix; that is, a weighting matrix characterized by highly vola-
tile pricing errors. One potential safeguard against failing to reject a model
due simply to noise in the pricing kernel is to analyze the significance of the
parameter estimates. Whereas the distribution of the distance measure is
rewarded for a small GMM weighting matrix, the distribution of the param-
eter estimates is penalized by a small GMM weighting matrix. That is, al-
though a model may be accepted due to volatile pricing errors, the volatility
will tend to reduce the significance of the parameter estimates. Conse-
quently, we perform Wald tests to assess the significance of adding each
marginal term in the pricing kernel. These tests provide some surety not
only that a pricing kernel is not rewarded simply for being noisy, but also
provides evidence as to the importance of adding polynomial terms, poten-
tially alleviating concerns about overfitting.

A final advantage to the Hansen–Jagannathan distance measure is that
the results may be more robust than in standard GMM estimates ~Cochrane
~2001!!. Since the weighting matrix is not a function of the parameters, the
results should be more stable. Despite this advantage, Ahn and Gadarowski
~1999! suggest that the size of the test statistic is poor in finite samples; the
distance measure rejects correctly specified models too often. These results
suggest the possibility that using the Hansen–Jagannathan estimator rather
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than the standard GMM estimator may trade size for power. To gauge the
possible impact of this trade-off, we also estimate the models using the it-
erated GMM estimator of Hansen, Heaton, and Yaron ~1996!. Ferson and
Foerster ~1994! show that the iterated GMM estimator has superior finite
sample properties relative to the standard GMM estimator.5

B. Measurement of the Market Portfolio

A principal difficulty in estimating asset pricing relationships based on
the portfolio of aggregate wealth is mismeasurement of the market portfolio,
as noted in Roll ~1977!. Stambaugh ~1982! addresses this issue by examining
many different market indices and finds that they produce similar infer-
ences about the CAPM, even when common stocks represent only 10 percent
of the index’s value. However, Stambaugh does not investigate the impact of
including a measure of human capital, as suggested in Mayers ~1972!. Re-
cent studies, notably Jagannathan and Wang ~1996! and Campbell ~1996!,
suggest that human capital is an important determinant of the cross section
of expected returns. Jagannathan and Wang note that dividend income rep-
resents only three percent of personal income in the United States over the
period 1959 to 1992, whereas salary and wages represent 63 percent of per-
sonal income. Further, Diaz-Gimenez et al. ~1992! show that approximately
two-thirds of nongovernment tangible assets are owned by the household
sector and only one-third of these assets is owned by the corporate sector. Of
the corporate-owned assets, only one-third are financed by equity. This evi-
dence suggests that equity may represent as little as one-ninth of aggregate
wealth, a small proportion of total wealth relative to human capital.

There are complications in attempting to incorporate human capital in the
wealth portfolio proxy. Mayers ~1972! explicitly treats human capital as dif-
ferent from financial capital because it is not traded. However, Jagannathan
and Wang ~1996! argue that human capital can be more straightforwardly
incorporated into aggregate wealth. The authors note that part of human
capital is in fact traded or hedged in the form of home mortgages, consumer
loans, life insurance, unemployment insurance, and medical insurance. Con-
sequently, the authors suggest that the following representation is an ap-
propriate first approximation to incorporating human capital into the portfolio
of aggregate wealth:

RW, t11 5 u0 1 u1 Rm, t11 1 u2 Rl, t11, ~15!

where RW, t11 represents the return on aggregate wealth and Rl, t11 repre-
sents the return on human capital.6 It is important, however, to note that
since only a portion of labor income is securitized that equation ~15! repre-
sents an abstraction from the more explicit approach of Mayers.

5 These results are untabulated, but are available from the author on request.
6 See Jagannathan and Wang ~1996! for a more complete discussion of the assumptions nec-

essary for equation ~15! to hold.
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As in Jagannathan and Wang, we define the return on human capital as
a two-month moving average of the growth rate in labor income:

Rl, t11 5
Lt 1 Lt21

Lt21 1 Lt22
, ~16!

where Lt denotes the difference between total personal income and dividend
income at time t. The return on human capital is a function of lagged labor
income since the data become available with a one-month delay. Jagan-
nathan and Wang use this two-month moving average in an attempt to min-
imize the impact of measurement errors.

To implement this method, we redefine the pricing kernel in equation ~8!
as follows:

mt11 5 Zt d0 1 (
n51

3

In @~Zt dn,vw!2Rvw, t11
n 1 ~Zt dn, lbr !2Rl, t11

n21 # , ~17!

where Rvw, t11 represents the return on the value-weighted equity portfolio,
Rl, t11 represents the growth rate in labor income, and

In 5 H 21 n 5 1,3

1 n 5 2
. ~18!

We assume that the cross-products in higher order terms of the return on
the wealth portfolio are zero. When cross-products are included in the esti-
mation, the qualitative conclusions of the paper do not change and the per-
formance of the nonlinear models improves.

C. Data and Estimation Details

Many sets of assets have been used in the empirical asset pricing litera-
ture for tests of candidate asset pricing models. In our main specification
tests, we utilize the returns on 20 industry-sorted portfolios, where the in-
dustry definitions follow the two-digit SIC codes used in Moskowitz and
Grinblatt ~1999! and are described in Table I. As shown by King ~1966!,
industry groupings proxy the investment opportunity set well; these group-
ings maximize intragroup and minimize intergroup correlations.

The choice of the instrument set Zt is motivated by two considerations.
First, the instruments should be a set of variables that are able to predict
asset returns. Second, the choice of instruments should be parsimonious due
to power considerations in GMM estimation ~Tauchen ~1986!!. Consequently,
we consider a set of instruments, Zt 5 $1, rmt , dyt , yst , tbt %, where 1 denotes a
vector of ones, rmt is the excess return on the CRSP value-weighted index at
time t, dyt is the dividend yield on the CRSP value-weighted index at time
t, yst is the yield on the three-month Treasury bill in excess of the yield on
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the one-month Treasury bill at time t, and tbt is the return on a Treasury bill
closest to one month to maturity at time t. These variables have been shown
to be predictors of future returns in various studies. The value-weighted
CRSP index is examined in Harvey ~1989! and Ferson and Harvey ~1991!.
Fama and French ~1988, 1989! investigate the predictive power of the divi-
dend yield. Campbell ~1987! shows that term premia in Treasury bill returns
can predict stock returns. Finally, Fama and Schwert ~1977!, Ferson ~1989!,
and Shanken ~1990! examine the T-bill return.

The data used to compute the industry portfolio returns, value-weighted
index return, dividend yield, yield spread, and risk-free return are obtained
from CRSP. The data used to compute the labor return series is obtained
from the NIPA data available on DataStream. Labor income at time t is

Table I

Summary Statistics: Industry Portfolios
Table I presents monthly means and standard deviations of the returns on 20 industry-sorted port-
folios as in Moskowitz and Grinblatt ~1999!. Portfolios are equally weighted and formed on the
basis of two-digit SIC codes. The data cover the period July 31, 1963, through December 31, 1995.

Panel A: Mean Returns

Industry
Mean

Return Industry
Mean

Return

Mining 0.0128 Electrical Equipment 0.0148
Food & Beverage 0.0137 Transport Equipment 0.0138
Textile & Apparel 0.0112 Manufacturing 0.0138
Paper Products 0.0132 Railroads 0.0140
Chemical 0.0139 Other Transportation 0.0132
Petroleum 0.0132 Utilities 0.0097
Construction 0.0125 Department Stores 0.0113
Primary Metals 0.0112 Other Retail 0.0133
Fabricated Metals 0.0144 Finance, Real Estate 0.0110
Machinery 0.0130 Other 0.0131

Panel B: Standard Deviations

Industry
Standard

Dev. Industry
Standard

Dev.

Mining 0.0674 Electrical Equipment 0.0740
Food & Beverage 0.0495 Transport Equipment 0.0665
Textile & Apparel 0.0693 Manufacturing 0.0681
Paper Products 0.0575 Railroads 0.0571
Chemical 0.0525 Other Transportation 0.0671
Petroleum 0.0560 Utilities 0.0368
Construction 0.0619 Department Stores 0.0674
Primary Metals 0.0593 Other Retail 0.0626
Fabricated Metals 0.0623 Finance, Real Estate 0.0575
Machinery 0.0647 Other 0.0656
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computed as the per capita difference between total personal income and
dividend income. The data cover the period July 31, 1963, through December
31, 1995, totalling 390 observations.

Sample statistics for the returns on the 20 industry portfolios and the
components of the market proxy are presented in Table I. The average re-
turns over the sample period for the payoffs range from 101 basis points per
month for the utilities industry to 151 basis points per month for the fabri-
cated metals industry. In Table II, we present a summary of the predictive

Table II

Summary Statistics: Instruments
Table II displays a summary of the predictive power of the instrumental variables used in the
paper, Zt 5 $rm, t , dyt , yst , tbt % , where rm, t represents the return on the value-weighted CRSP
index, dyt is the dividend yield on the value-weighted CRSP index, yst is the excess yield on the
Treasury bill closest to three months to maturity over the Treasury bill closest to one month to
maturity, and tbt is the return on the Treasury bill closest to one month to maturity. The data
cover the period July 30, 1963, through December 31, 1995. The predictive power of the instru-
ments is assessed by the linear projection

Ri, t11 5 d0 1 dZt 1 ut11.

The column labeled x4
2 presents Newey and West ~1987a! Wald tests of the hypothesis

H0 : d 5 0

with p-values in parentheses. The statistics are computed using the Newey and West ~1987b!
heteroskedasticity and autocorrelation-consistent covariance matrix.

Industry x4
2 Industry x4

2

Mining 13.132 Electrical Equipment 39.929
~0.011! ~0.000!

Food & Beverage 24.334 Transport Equipment 39.333
~0.000! ~0.000!

Textile & Apparel 32.750 Manufacturing 44.992
~0.000! ~0.000!

Paper Products 22.826 Railroads 11.156
~0.000! ~0.025!

Chemical 24.012 Other Transportation 19.671
~0.000! ~0.001!

Petroleum 1.510 Utilities 8.522
~0.825! ~0.074!

Construction 25.663 Department Stores 19.031
~0.000! ~0.001!

Primary Metals 22.071 Other Retail 32.012
~0.000! ~0.000!

Fabricated Metals 39.437 Finance, Real Estate 28.469
~0.000! ~0.000!

Machinery 33.585 Other 37.818
~0.000! ~0.000!
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power of the instrumental variables for the payoffs. We project the payoffs
onto the instruments:

Ri, t11 5 b'Zt 1 ut11.

The table contains statistics for a Wald test of the null hypothesis that the
instruments have no predictive power for the payoffs. Consistent with the
results of previous studies, the table shows that the information variables
serve as good instruments for the payoffs.

III. Results

A. Model Specification Tests

In this section, we discuss tests of the Euler equation ~1! when the pricing
kernel is expressed with quadratic time-varying coefficients, as in equation
~8!. We analyze the cubic pricing kernel and also the linear and quadratic
pricing kernels that are nested in the cubic case. Results are presented with
and without human capital as a component of the return on aggregate wealth.

Table III presents results of specification tests when the measure of ag-
gregate wealth does not include human capital. The table presents average
values of the coefficients dn, t , n 5 1,2,3 corresponding to the nth order of the
return on the market portfolio. The table also presents the Hansen–
Jagannathan distance measure and p-values for the Hansen–Jagannathan
test of model specification. The first row of each panel, labeled “Coeffi-
cients,” presents the value of the estimated coefficient evaluated at the mean
of the instruments. As shown in the table, with this specification, the linear,
quadratic, and cubic pricing kernels are all rejected at the five percent sig-
nificance level for this data set. The distance measures and p-values for the
tests of significance of the coefficients suggest marginal improvement from
moving from a linear specification to a nonlinear specification. The qua-
dratic pricing kernel reduces the distance measure from 0.735 to 0.709, a
drop of 3.5 percent relative to the linear pricing kernel. The test of the sig-
nificance of the d2 terms suggest that this improvement is marginally sig-
nificant ~ p-value 0.027!, indicating that incorporation of the quadratic term
in the pricing kernel improves the fit of the model. These results are con-
sistent with the findings of Harvey and Siddique ~2000!. However, the ad-
dition of a cubic term does not materially improve the performance of the
pricing kernel.

We next analyze the impact of incorporating a measure of human capital
in the return on aggregate wealth. These results are displayed in Table IV.
The outcome of the specification tests are markedly different from those in
Table III. All three of the pricing kernels improve substantially relative to
the case in which human capital is not included in the measure of aggregate
wealth. The distance measure implied by the linear pricing kernel falls to
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0.719, a decline of 2.2 percent relative to the linear kernel omitting human
capital. This result is consistent with the findings of Jagannathan and Wang
~1996!, who find that incorporating human capital improves the perfor-
mance of the conditional CAPM. However, the linear pricing kernel is re-
jected at the five percent significance level ~ p-value 0.019!.

Considerable further improvement is observed by moving from a linear to
a nonlinear specification. The results in Panel B of Table IV indicate that a
quadratic specification of the pricing kernel results in an additional de-
crease in the distance measure of 12.5 percent relative to the linear kernel
with human capital. This pricing kernel cannot be rejected at the 10 percent

Table III

Specification Tests: Polynomial Pricing Kernels with Human
Capital Excluded

Table III presents results of GMM tests of the Euler equation condition,

E @~1 1 Rt11!mt116Zt # 2 1N 5 0

using the polynomial pricing kernels, mt11 nested in equation ~7!. The coefficients are esti-
mated using the Hansen and Jagannathan ~1997! weighting matrix E @~Rt11 J Zt !~Rt11 J

Zt !
' # . The columns present the coefficients of the pricing kernel evaluated at the means of the

instruments. The coefficients are modeled as

dn 5 In~dn
' Zt !

2 In 5 H 21 n 5 2,4

1 n 5 3.

P-values for Wald tests of the joint significance of the coefficients are presented in parentheses.
The final column presents the Hansen–Jagannathan distance measure with p-values for the
test of model specification in parentheses. The set of returns used in estimation are those of 20
industry-sorted portfolios augmented by the return on a one-month Treasury bill, covering the
period July 31, 1963, through December 31, 1995, and the measure of aggregate wealth does
not include human capital.

d~ RZ!0t d~ RZ!1t d~ RZ!2t d~ RZ!3t Dist

Panel A: Linear

Coefficient 1.088 23.936 0.735
P-value ~0.000! ~0.000! ~0.000!

Panel B: Quadratic

Coefficient 0.950 24.702 77.633 0.709
P-value ~0.000! ~0.000! ~0.027! ~0.001!

Panel C: Cubic

Coefficient 0.941 24.545 77.655 24.647 0.703
P-value ~0.000! ~0.000! ~0.053! ~0.654! ~0.000!
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significance level ~ p-value 0.100!. Incorporating the quadratic return on wealth
term contributes significantly to the fit of the pricing kernel, as indicated by
the test of the significance of the d2 terms ~ p-values 0.002 and 0.000!. Thus,
incorporating a nonlinear function of the return on human capital appears
to have a dramatic impact on the fit of the pricing kernel.

The performance of the pricing kernel is further enhanced by incorporat-
ing the cubic return on wealth, as shown in Panel C. The distance measure
falls to 0.578, a decline of 8.1 percent relative to the quadratic pricing ker-
nel, and a decrease of 21.4 percent relative to the conditional CAPM esti-
mated in Panel A of Table III. Moreover, the specification test cannot reject
the cubic pricing kernel at the 10 percent significance level ~ p-value 0.229!,

Table IV

Specification Tests: Polynomial Pricing Kernels with Human
Capital Included

Table IV presents results of GMM tests of the Euler equation condition,

E @~1 1 Rt11!mt116Zt # 2 1N 5 0

using the polynomial pricing kernels, mt11 nested in equation ~7!. The coefficients are esti-
mated using the Hansen and Jagannathan ~1997! weighting matrix E @~Rt11 J Zt !~Rt11 J

Zt !
' # . The columns present the coefficients of the pricing kernel evaluated at the means of the

instruments. The coefficients are modeled as

dn 5 In~dn
' Zt !

2 In 5 H 21 n 5 2,4

1 n 5 3
.

P-values for Wald tests of the joint significance of the coefficients are presented in paren-
theses. The final column presents the Hansen–Jagannathan distance measure with p-values
for the test of model specification in parentheses. The set of returns used in estimation are
those of 20 industry-sorted portfolios covering the period July 31, 1963, through December 31,
1995, augmented by the return on a 30-day Treasury bill. The measure of aggregate wealth
includes human capital.

d~ QZ!0t d~ QZ!1vw d~ QZ!1l d~ QZ!2vw d~ QZ!2l d~ QZ!3vw d~ QZ!3l Dist

Panel A: Linear

Coefficient 1.197 23.674 21.020 0.719
P-value ~0.000! ~0.000! ~0.000! ~0.000!

Panel B: Quadratic

Coefficient 0.725 23.447 212.326 46.043 9,839.447 0.629
P-value ~0.000! ~0.000! ~0.000! ~0.008! ~0.000! ~0.100!

Panel C: Cubic

Coefficient 0.392 22.079 20.013 74.010 17,374.873 20.084 272,319.964 0.578
P-value ~0.000! ~0.003! ~0.001! ~0.002! ~0.000! ~0.945! ~0.000! ~0.229!
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and the d3l term contributes significantly to the improvement in the dis-
tance measure ~ p-value 0.000!.7 These results suggest that, by allowing for
preference restrictions implied by decreasing absolute risk aversion and de-
creasing absolute prudence, that the performance of a pricing kernel grounded
in preference theory can capture cross-sectional variation in returns. The
results of Tables III and IV suggest that incorporating only nonlinear func-
tions of the return on the value-weighted index or a linear function of the
return on labor is insufficient to generate an admissible pricing kernel. How-
ever, by utilizing both the return on labor and the nonlinearities implied by
the series expansion, we are able to generate an admissible pricing kernel.8

B. Multifactor Alternatives

As noted earlier in the paper, multifactor models of asset prices have been
more successful in pricing the cross section of equities than have single-
factor models. However, multifactor models provide the researcher with con-
siderable freedom since the models give little guidance for the choice of factors.
In contrast, the pricing kernel in this paper explicitly defines the relevant
factor for pricing, the portfolio of aggregate wealth. Further, preference theory
imposes restrictions on the signs of the coefficients on each term in the
pricing kernel. In this section, we gauge the ability of the polynomial pricing
kernel to price the cross section of industry portfolios relative to a popular
multifactor model, the Fama and French ~1993! three-factor model. This model
is not nested in the polynomial pricing kernel, but the performance of all of
the models can be compared using their Hansen–Jagannathan distance mea-
sures, as discussed previously.

Fama and French ~1992! provide evidence that firms’ market capitaliza-
tion and market-to-book ratios appear to outperform the CAPM beta in cap-
turing cross-sectional variation in returns. Fama and French ~1993!, noting
this evidence, propose the following model for returns

E @ri, t11# 5 bMRP E @rMRP, t11# 1 bSMB E @rSMB, t11# 1 bHML E @rHML, t11# . ~19!

In this model, rMRP, t11 represents the excess return on the market portfolio
over the risk free rate, rSMB, t11 represents the excess return on a portfolio
of small capitalization stocks over large capitalization stocks, and rHML, t11

7 The magnitude of the average coefficient is quite large ~27.232 3 104!. This magnitude is
driven by the size of the higher orders of the return on labor income. The mean of the monthly
return on labor income is 0.0057, whereas the mean of the monthly return on labor income
cubed is 4.233 3 1027. Thus, the coefficient on the cubic term is quite large to ref lect the
scaling of the return on labor income cubed.

8 In untabulated results, we repeat the estimation of the pricing kernels using the iterated
GMM estimator in Hansen et al. ~1996!. The results of this estimation mirror the Hansen–
Jagannathan distance estimates. Consequently, both sets of tests suggest that nonlinear pric-
ing kernels with reasonable economic restrictions perform well in pricing the cross section of
industry-sorted returns.
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represents the excess return on a portfolio of high market-to-book stocks
over low market-to-book stocks.9 The authors suggest that the returns to the
portfolios SMB and HML represent hedge portfolios in the sense of Merton
~1973!. In later work ~Fama and French ~1995, 1996!!, the authors suggest
that the size and book-to-market factors may capture some systematic dis-
tress factor. The model in expression ~19! can be expressed in stochastic
discount factor form. As in Jagannathan and Wang ~1996!, note that equa-
tion ~19! implies

mt11
FF 5 d0 1 dMRP rMRP, t11 1 dSMB rSMB, t11 1 dHML rHML, t11. ~20!

In this setting, the coefficients dn capture the prices of factor n risk. We
allow for time variation in these coefficients by assuming a linear specifi-
cation in the instruments.10

Results for the estimation of the Fama–French model are presented in
Panel A of Table V. The results suggest that the pricing kernel implied by
the model fares poorly in describing the cross section of industry returns.
The distance measure for the model of 0.714 ~ p-value 0.000! is comparable
to the distance measure for the linear pricing kernel incorporating human
capital. Further, the distance measure of the Fama–French model is sub-
stantially higher than that of either the quadratic or the cubic pricing kernel
with human capital. Thus, the results suggest that, although preference re-
strictions are imposed on the nonlinear pricing kernels and the kernels are
specified as functions of the return on aggregate wealth, the nonlinear ker-
nels outperform the Fama–French model in pricing the cross section of in-
dustry returns.

To further investigate the ability of the Fama–French factors to price the
cross section of equity returns compared to the polynomial pricing kernels,
we estimate the polynomial models augmented by the SMB and HML factors
of the Fama–French model. Results of these tests are also presented in Table V.
In the case of the quadratic pricing kernel, the distance measure falls from
0.629 to 0.588 with the Fama–French factors included. The p-value of the
specification test for the quadratic kernel augmented by the Fama–French
factors falls to 0.040, indicating that the loss of degrees of freedom resulting
from the incorporation of the Fama–French factors more than offsets any
improvement in the fit of the pricing kernel. However, the SMB factor con-
tinues to be marginally significant, with a p-value of 0.005. In contrast,
when the Fama–French factors are included in the cubic pricing kernel, the
model cannot be rejected ~ p-value 0.140!, and neither the SMB nor the HML
coefficients are significantly different than zero. These results suggest that,

9 We would like to thank Eugene Fama for providing these data.
10 We do not investigate a specification for the factor coefficients that is quadratic in the

instruments as in equation ~8! because doing so imposes restrictions on the signs of the coef-
ficients. The coefficients of the Fama–French model are not restricted in sign; consequently,
imposing sign restrictions would unfairly penalize the model.
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Table V

Specification Tests: Fama–French Pricing Kernel
Table V presents results of GMM estimation of the Euler equation restriction

E @~1 1 Rt11!mt116Zt # 2 1N 5 0

using the pricing kernel, mt11 implied by the Fama and French ~1993! three-factor model, as in equation ~20!. The coefficients are estimated
using the Hansen and Jagannathan ~1997! weighting matrix. P-values for Wald tests of the joint significance of the coefficients are presented
in parentheses. The final column presents the Hansen–Jagannathan distance measure, with p-values for the test of model specification in
parentheses. In Panel B, the Fama–French pricing kernel is augmented by a quadratic function of the return on wealth, and in Panel B, the
pricing kernel is augmented by both a quadratic and a cubic function of the return on wealth. The set of returns used in estimation are those
of 20 industry-sorted portfolios covering the period July 31, 1963, through December 31, 1995, augmented by the return on a one-month
Treasury bill.

d~ RZ!0t d~ RZ!mrp, t d~ RZ!smb, t d~ RZ!hml, t d~ RZ!1vw d~ RZ!1l d~ RZ!2vw d~ RZ!2l d~ RZ!3vw d~ RZ!3l Dist

Panel A: Fama–French Factors Only

Coefficient 1.147 25.299 25.929 21.977 0.632
P-value ~0.000! ~0.045! ~0.000! ~0.069! ~0.008!

Panel B: Quadratic Augmented by Fama–French Factors

Coefficient 1.252 1.044 20.970 23.298 25.665 57.803 205.206 0.588
P-value ~0.000! ~0.005! ~0.525! ~0.000! ~0.000! ~0.000! ~0.000! ~0.040!

Panel C: Cubic Augmented by Fama–French Factors

Coefficient 0.404 0.735 1.766 22.167 21.146 87.818 16,510.940 20.486 262,684.668 0.555
P-value ~0.000! ~0.621! ~0.941! ~0.005! ~0.000! ~0.020! ~0.000! ~0.999! ~0.000! ~0.140!
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in the cross section of industry-sorted portfolios, the cubic pricing kernel
captures much of the variation in returns that is explained by the Fama–
French factors. This result is particularly interesting since the signs of the
coefficients are restricted by preference theory, and the factor obtains from
first principles.

C. Comparison with Power Utility

In the previous sections, we investigate models that are restricted to be
consistent with established assumptions governing agents’ preferences. How-
ever, the polynomial pricing kernels that are investigated in this paper are
divorced from the more rigorous restrictions imposed by assuming a specific
utility function. Caballé and Pomansky ~1996! show that all HARA utility
functions display standard risk aversion, consistent with the cubic pricing
kernel. In this section, we assume that agents’ preferences are characterized
by power utility, and investigate the ability of the resulting pricing kernel to
explain cross-sectional variation in returns, as in Brown and Gibbons ~1985!.
In doing so, we examine the trade-offs between this parsimonious specifica-
tion of the pricing kernel and the more general specification implied by the
Taylor series expansion.

Brown and Gibbons ~1985! investigate a static setting in which a repre-
sentative agent exhibits power utility. In this case, the pricing kernel can be
expressed as

mt11 5 a0~1 1 RW, t11!2a1, ~21!

where a1 is the representative agent’s relative risk aversion. One issue in
the implementation of equation ~21! is the incorporation of human capital.
In estimation, the optimization of the Euler equation is ill behaved when we
allow RW, t11 to be an unrestricted linear function of the return on labor and
the return on the value-weighted index, as in equation ~15!. Consequently,
similar to Campbell ~1996!, we assume that the return on wealth can be
expressed as

RW, t11 5 a2 Rm, t11 1 ~1 2 a2!Rl, t11. ~22!

Although this formulation imposes additional restrictions on the relation-
ship between returns, the value-weighted portfolio, and the labor return, it
offers a straightforward way to incorporate human capital in the pricing
kernel expression ~21!.

Results of this estimation are presented in Table VI. As shown in the
table, the pricing kernel implied by power utility is rejected via the Hansen–
Jagannathan distance measure both with and without human capital. These
results are qualitatively similar to those of Hansen and Jagannathan ~1997!,
who use the distance measure to evaluate the power utility pricing kernel
defined over aggregate consumption. Both forms of the pricing kernel per-
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form worse than the linear pricing kernel. Further, the incorporation of hu-
man capital in the pricing kernel does not appear to materially improve the
performance of the power utility pricing kernel and seems to contribute noise
to the parameter estimates. The results suggest that although power utility
is consistent with the preference restrictions imposed on the cubic pricing
kernel, the parsimony provided by a specific utility function comes at a large
cost in terms of the fit of the model.11

Some intuition for the source of improvement in the performance of the
polynomial pricing kernel relative to the power utility specification is pro-
vided by decomposing the distance measure as discussed in Hansen and
Jagannathan ~1997!. Recall from Section II.A that the distance measure can
be expressed as 66 Ip 66, where Ip is the adjustment to the model pricing kernel
necessary to reduce the distance to an admissible pricing kernel to zero.
Using the definition of the norm of p, Hansen and Jagannathan note that

66 Ip 66 5 !E @ Ip# 2 1 Var@ Ip# . ~23!

11 The comparison between the power utility model and the polynomial models is not entirely
fair because the coefficients of the polynomial models are allowed to vary over time. In contrast,
the time preference and risk aversion parameters of the power utility model are fixed. The
focus of this paper is on conditional pricing models; however, in order to provide a fair com-
parison, we estimate the polynomial models with fixed coefficients as well. The resulting dis-
tance measure for the cubic pricing kernel is 0.634, compared to 0.740 for the power utility
kernel, a difference of approximately 14 percent.

Table VI

Specification Tests: Power Utility Pricing Kernel
Table VI presents results of GMM estimation of the Euler equation restriction

E @~1 1 Rt11!mt116Zt # 2 1N 5 0

using the pricing kernel, mt11 implied by power utility, as in equation ~21!. The coefficients are
estimated using the Hansen and Jagannathan ~1997! weighting matrix. P-values for Wald tests
of the significance of the coefficients are presented in parentheses. The final column presents
the Hansen–Jagannathan distance measure, with p-values for the test of model specification in
parentheses. The set of returns used in estimation are those of 20 industry-sorted portfolios
covering the period July 31, 1963, through December 31, 1995, augmented by the return on a
one-month Treasury bill.

Coefficient: a0 a1 a2 Dist

Panel A: Human Capital Excluded

1.014 3.963 0.740
P-value ~0.000! ~0.000! ~0.000!

Panel B: Human Capital Included

1.036 3.671 0.558 0.740
P-value ~0.000! ~0.743! ~0.733! ~0.000!
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Thus, the distance measure has two components; it is a function of the ex-
pected deviation from some admissible pricing kernel and the variance of
that deviation. In this sense, the Hansen–Jagannathan distance captures a
sense of both the average and the variability of a proxy pricing kernel’s
pricing errors.

Table VII presents estimates of E @ Ip# and Std @ Ip# for the linear, quadratic,
and cubic pricing kernels, with and without human capital. The table also
presents these estimates for the power utility pricing kernel. As in Hansen
and Jagannathan ~1997!, most of the distance measure results from Std @ Ip# .
That is, a proxy pricing kernel with a small distance measure tends to re-
duce the volatility of the adjustment necessary to make the proxy admissi-
ble. The power utility pricing kernel has the lowest average value for Ip,
suggesting that, on average, it is the pricing kernel that requires the least
adjustment to be admissible. The linear pricing kernels require the next
lowest mean adjustment and the quadratic and cubic pricing kernels with
human capital require mean adjustments that are considerably larger than
those of the remaining pricing kernels.

However, the variability of the adjustment required to make the linear or
power pricing kernel valid dwarfs the mean term, rendering the pricing ker-
nels inadmissible. As shown in the table, virtually all of the distance comes
from this variability. In contrast to the linear and power pricing kernels, the
quadratic and cubic pricing kernels with human capital require much smaller
standard deviation adjustments to render the kernels admissible. This is the
source of the improvement in the nonlinear pricing kernels compared to
standard parametric pricing kernels represented by the linear case and the

Table VII

Decomposition of Distance Measure
Table VII presents a decomposition of the Hansen–Jagannathan distance measure, 66 Ip 66 5
!E @ Ip# 2 1 Var @ Ip#. The variable p represents the adjustment to the model pricing kernel needed
to make it admissible. The column labeled “Mean ~ Ip!” represents the average of the estimated Ip,
the column labeled “Std. ~ Ip!” represents its standard deviation, and the column labeled “Dis-
tance” represents the Hansen–Jagannathan distance. The rows labeled “Linear: No HC,” “Qua-
dratic: No HC,” and “Cubic: No HC” represent the decomposition for the polynomial pricing kernels,
omitting human capital. The rows labeled “Linear,” “Quadratic,” and “Cubic” represent the de-
composition for the polynomial pricing kernels, including human capital. In both sets of decom-
positions, the coefficients of the pricing kernel are modeled as quadratic in the instruments and
sign restrictions are imposed. The final row, labeled “Power,” represents the results for the power
utility pricing kernel without human capital.

Model Mean ~ Ip! Std. ~ Ip! Distance

Linear: No HC 0.0003 0.7346 0.7346
Quadratic: No HC 0.0004 0.7093 0.7093
Cubic: No HC 0.0005 0.7035 0.7035
Linear 0.0003 0.7191 0.7191
Quadratic 0.0021 0.6292 0.6292
Cubic 0.0017 0.5779 0.5779
Power 0.0002 0.7836 0.7836
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power utility case. All of the pricing kernels fare relatively well in capturing
the mean of the pricing kernel, but, although the mean difference is close to
zero, the linear and power kernels deviate highly from the set of admissible
pricing kernels. In contrast, the quadratic and cubic pricing kernels are close
not only on average to the set of admissible kernels, but the variability of
their deviations is much lower.

D. Properties of the Estimated Pricing Kernels

Thus far, we have imposed conditions on the coefficients of the pricing
kernel that guarantee that the functions behave locally in a manner consis-
tent with preference theory. We may also impose stronger conditions on pref-
erences that restrict the global behavior of the pricing kernel. In a setting
with standard preferences and static prices of risk, the pricing kernel can be
interpreted as a scaled marginal utility. Consequently, under these assump-
tions, the pricing kernel should be positive in order to be consistent with
positive marginal utility ~and the no arbitrage condition!, and decreasing in
order to be consistent with decreasing absolute risk aversion. Neither of
these conditions have been imposed on the pricing kernels that we have
estimated thus far.12

Figure 1 depicts plots of the polynomial pricing kernels that we estimate
in Section III.A. The plot depicts the functional form of the pricing kernels
when the coefficients of the pricing kernel are evaluated at the means of the
instrumental variables. Figure 1a depicts the linear pricing kernel; the plot
shows that this kernel is decreasing in both the return on the index and the
return on labor, which is guaranteed by the restrictions on the signs of its
coefficients. In contrast, the quadratic and cubic pricing kernels are not
globally decreasing. Figures 1b and 1c show that, when the coefficients of
the pricing kernels are fixed at the mean of the instruments, these pricing
kernels may be increasing in both the return on labor and return on wealth.
This plot suggests that the pricing kernels that we have estimated are not
likely to be globally consistent with standard preferences.

How important are the restrictions imposed by standard preferences in
terms of model fit? We address this question by imposing functional forms
on the coefficients of the pricing kernel that guarantee nonnegativity and a
nonpositive first derivative of the estimated pricing kernel. To ensure that
the first condition holds, we estimate the models with the following restriction:

mt11 $ 0.

As noted in Hansen and Jagannathan ~1991!, this condition can easily be
imposed on the pricing kernel in estimation. We follow Chen and Knez ~1996!
in our implementation of this restriction in GMM estimation. The second

12 We would like to thank the referee for suggesting that we investigate this issue.
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Figure 1. Estimated pricing kernels. Figure 1 depicts point estimates of the pricing kernels
estimated without global restrictions. The point estimates are calculated at the mean of the
instrumental variables and the support for the graphs is the observed range of the return on
labor and the value-weighted index. The coefficients of the pricing kernels are estimated via
GMM utilizing the Euler equation condition,

E @~1 1 Rt11!mt116Zt # 2 1N 5 0,

where mt11 represents a polynomial pricing kernel. The coefficients are estimated using the
Hansen and Jagannathan ~1997! weighting matrix E @~Rt11 J Zt !~Rt11 J Zt !

' # . The coeffi-
cients are modeled as

dn 5 In~dn
' Zt !

2 In 5 H 21 n 5 2,4

1 n 5 3.

The set of returns used in estimation are those of 20 industry-sorted portfolios covering the
period July 31, 1963, through December 31, 1995, augmented by the return on a 30-day Trea-
sury bill. The measure of aggregate wealth includes human capital.
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condition, mt11
' # 0, is more difficult to implement. We enforce it by impos-

ing the following functional form on the pricing kernel:

d3t 5 minFd3t ,2
d1t 1 2d2t Rw, t11

3Rw, t11
2 G. ~24!

If this constraint binds, then, to ensure that the derivative is negative,

d1t 5 min@d1t ,2d2t Rw, t11# . ~25!

In the case of the quadratic pricing kernel, we impose the constraint

d1t 5 min@d1t ,22d2t Rw, t11# . ~26!

The combination of these constraints ensures the negativity of the first de-
rivative of the pricing kernel.

Results of this estimation are presented in Table VIII and suggest two
conclusions. First, imposing restrictions that are consistent with standard
preferences has a large cost in terms of fit. The Hansen–Jagannathan dis-
tance for the quadratic kernel rises to 0.668 and that of the cubic kernel to
0.645, and both models are rejected by the specification test.13 However, the
second conclusion implied by the table is that these nonlinear pricing ker-
nels continue to outperform the linear single-factor pricing kernel and the
Fama–French linear multifactor model. The restricted quadratic kernel re-
duces the distance measure by 7 percent relative to the linear model and by
6 percent relative to the Fama–French model. The restricted cubic kernel
reduces the Hansen–Jagannathan distance by an additional 3.5 percent. Fur-
thermore, the nonlinear terms continue to contribute significantly to the
improvements in model fit.

To better gauge the impact of imposing these restrictions on the poly-
nomial pricing kernels, we again plot the functional form of the pricing ker-
nels in Figure 2. As in Figure 1, the coefficients are fixed at the means of the
instrumental variables. The pricing kernels plotted in Figure 2 are mark-
edly different from those plotted in Figure 1. In particular, both pricing
kernels are very nearly linear over the range of the labor and value-
weighted index return series. The quadratic pricing kernel exhibits mild
curvature in the value-weighted index, but is linear and very nearly f lat in
the labor return. The cubic pricing kernel displays much more marked de-
partures from nonlinearity when the labor return is extremely low but, like

13 This result occurs primarily due to the imposition of the second condition, nonpositivity of
the derivative of the pricing kernel. When the pricing kernel is restricted only to be positive,
but not necessarily decreasing, the performance of the models is similar to that exhibited in
Section III.A.
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the quadratic pricing kernel, is close to linear over most of the labor return
support. These plots suggest that by imposing conditions on the derivative of
the pricing kernel, we suppress much of the nonlinearity that appears to be
important in fitting the cross section of returns.

These results suggest that we are left with a trade-off. The standard eco-
nomic paradigm suggests that the pricing kernel should be decreasing in its
argument. Our results suggest that a nonlinear pricing kernel can be con-
sistent with this restriction and outperform linear single- and multiple-

Table VIII

Specification Tests: Polynomial Pricing Kernels with Global
Restrictions and Human Capital Included

Table VIII presents results of GMM tests of the Euler equation condition,

E @~1 1 Rt11!mt116Zt # 2 1N 5 0

using the polynomial pricing kernels, mt11 nested in equation ~7!. The coefficients are esti-
mated using the Hansen and Jagannathan ~1997! weighting matrix E @~Rt11 J Zt !~Rt11 J

Zt !
' # . The columns present the coefficients of the pricing kernel evaluated at the means of the

instruments. The coefficients are modeled as

dn 5 In~dn
' Zt !

2 In 5 H 21 n 5 2,4

1 n 5 3.

In addition to constraining the signs of the coefficients, the following constraints are placed on
the pricing kernel:

mt11 $ 0 mt11
' # 0.

P-values for Wald tests of the joint significance of the coefficients are presented in parentheses.
The final column presents the Hansen–Jagannathan distance measure with p-values for the
test of model specification in parentheses. The set of returns used in estimation are those of 20
industry-sorted portfolios covering the period July 31, 1963, through December 31, 1995, aug-
mented by the return on a 30-day Treasury bill. The measure of aggregate wealth includes
human capital.

d~ QZ!0t d~ QZ!1vw d~ QZ!1l d~ QZ!2vw d~ QZ!2l d~ QZ!3vw d~ QZ!3l Dist

Panel A: Linear

Coefficient 1.343 22.688 20.001 0.698
P-value ~0.000! ~0.000! ~0.000! ~0.000!

Panel B: Quadratic

Coefficient 1.246 22.411 20.624 14.157 454.223 0.668
P-value ~0.000! ~0.000! ~0.000! ~0.016! ~0.000! ~0.000!

Panel C: Cubic

Coefficient 1.103 23.024 24.723 8.785 28,600.468 231.276 21.082* 0.645
P-value ~0.000! ~0.000! ~0.000! ~0.004! ~0.000! ~0.044! ~0.000! ~0.000!

*~3 106 !.
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factor pricing kernels. However, imposing this restriction significantly reduces
the nonlinearity in the pricing kernel, and consequently significantly im-
pacts the kernel’s ability to fit the data. Failing to impose the restriction on
the derivative of the pricing kernel results in a substantial improvement in
fit, as shown in Section III.A, but produces a pricing kernel that is at odds
with standard economic models.

Figure 2. Estimated pricing kernels with global restrictions. Figure 2 depicts point es-
timates of the pricing kernels estimated with global restrictions. The point estimates are cal-
culated at the mean of the instrumental variables and the support for the graphs is the observed
range of the return on labor and the value-weighted index. The coefficients of the pricing
kernels are estimated via GMM utilizing the Euler equation condition,

E @~1 1 Rt11!mt116Zt # 2 1N 5 0

where mt11 represents a polynomial pricing kernel. The coefficients are estimated using the
Hansen and Jagannathan ~1997! weighting matrix E @~Rt11 J Zt !~Rt11 J Zt !

' # . The coeffi-
cients are modeled as

dn 5 In~dn
' Zt !

2 In 5 H 21 n 5 2,4

1 n 5 3.

In addition to constraining the signs of the coefficients, the following constraints are placed on
the pricing kernel:

mt11 $ 0 mt11
' # 0.

The set of returns used in estimation are those of 20 industry-sorted portfolios covering the
period July 31, 1963, through December 31, 1995, augmented by the return on a 30-day Trea-
sury bill. The measure of aggregate wealth includes human capital.
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E. Discussion and Interpretation of the Results

Several noteworthy results emerge from the tests conducted in this paper.
First, the pricing kernels implied by both a linear single- and a linear multi-
factor model appear unable to explain the cross-sectional variation in port-
folio returns. However, if we allow for nonlinearity in the pricing kernel,
either quadratic or cubic in aggregate wealth, and impose restrictions on
agents’ preferences, we are able to describe cross-sectional variation in re-
turns. One noteworthy feature of the nonlinear pricing kernels is their in-
corporation of a measure of the return on human capital. The importance of
human capital in explaining the cross section of returns has been docu-
mented in Campbell ~1996! and Jagannathan and Wang ~1996!. However, in
both of these studies, the return on human capital impacts the cross section
of returns linearly. The evidence in this paper suggests that this linear im-
pact is not sufficient to explain cross-sectional variation in returns. Rather,
it is a nonlinear function of the return on human capital that improves the
performance of the model.

To gather some further insight into the sources of improvement in the
kernels, we examine the relation of the estimated pricing kernels to the
volatility bounds of Hansen and Jagannathan ~1996!. The bounds represent
the minimum volatility that a pricing kernel must exhibit, given its mean,
to be admissible. In this respect, the bounds depict the set of admissible
pricing kernels in mean–standard deviation space. Since the pricing kernel
approach relates the first moment of returns to the second moment of the
discount factor, this provides further insight into the specification of the
model. The analysis differs from the specification test of the Hansen–
Jagannathan distance measure, which asks whether there is some specific
admissible pricing kernel that is statistically indistinguishable from that of
the model.

The Hansen–Jagannathan bounds for the industry portfolios augmented
by the one-month T-bill return are presented in Figures 3 and 4. As sug-
gested by the decomposition in Table VII, the pricing kernels perform fairly
well in terms of mean deviation from the set of admissible pricing kernels.
Further, the graph in Figure 3 suggests that there is not much distinction
between the cubic and quadratic pricing kernels when human capital is omit-
ted. In contrast, the quadratic and cubic pricing kernels with human capital,
depicted in Figure 4, match the mean of the pricing kernel fairly well, but
also come much closer to matching the volatility of the set of pricing kernels.
The cubic pricing kernel is actually able to generate sufficient volatility to
be inside the Hansen–Jagannathan bounds, but its mean is slightly too high
for the pricing kernel to actually lie within the bounds. Again, this result is
consistent with the decomposition results, which suggest that the quadratic
and cubic pricing kernels require larger mean adjustments than the remain-
ing pricing kernels in order to render them admissible.

The Hansen–Jagannathan plots, together with the decomposition of the
distance measure, indicate that the incorporation of human capital substan-
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tially improves the nonlinear pricing kernels’ ability to match the volatility
of the set of pricing kernels that are admissible for the industry portfolios.
That is, incorporation of human capital substantially lowers the standard
deviation of the adjustment necessary to make the nonlinear pricing kernels
admissible. This result is initially surprising, since the labor return series is
relatively smooth; the monthly standard deviation of the equity index is
4.3 percent compared to 0.4 percent for the return on labor series. However,
the labor return is much more leptokurtic than the index return; the excess
kurtosis of the labor return is 5.87 compared to 2.70 for the index return.
These moments suggest that accounting for human capital through the labor
return does not contribute substantially to the improvement of linear mea-
sures of risk ~i.e., variance!.14 Rather, the high kurtosis of the labor return

14 This conclusion is also reached in Fama and Schwert ~1977!, who find that betas implied
by a market index are not materially different from those implied by correcting for nontraded
human capital as in Mayers ~1972!.

Figure 3. Hansen–Jagannathan bounds, pricing kernels omitting human capital. Fig-
ure 3 depicts the Hansen–Jagannathan ~1991! bounds on the mean and standard deviation of
admissible pricing kernels for the industry-sorted portfolio returns augmented by the one-
month T-bill return. Mean–standard deviation pairs for the polynomial pricing kernels as well
as the pricing kernels of the Fama–French model are shown as small triangles. The human
capital measure is omitted in the estimation of the pricing kernels, and the coefficients of the
pricing kernel are modeled as quadratic in the instruments.
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series compared to the index return series suggests that the labor return
better captures nonlinear risk.

Another intriguing result is presented in Section III.D. The results of this
section indicate that imposing global restrictions on the nonlinear pricing
kernels does not invalidate their improvement upon the linear pricing ker-
nels. This result is encouraging because it suggests that we can go a long
way in describing asset prices using fundamental preference restrictions.
However, the resulting pricing kernels are no longer admissible. Thus, the
results suggest that the data require a highly nonlinear pricing kernel, and
logic indicates that this kernel should be decreasing. Unfortunately, the poly-
nomial framework does not allow both of these features to be simultaneously
present in the pricing kernel. When the kernel is not restricted to be de-
creasing, the estimates sacrifice this restriction in favor of high nonlinear-
ity. When the restriction of a decreasing pricing kernel is imposed, the
polynomial is not able to generate sufficient nonlinearity to be consistent
with the data. Thus, the results suggest the need for a functional form of the

Figure 4. Hansen–Jagannathan bounds, pricing kernels with human capital. Figure 4
depicts the Hansen–Jagannathan ~1991! bounds on the mean and standard deviation of admis-
sible pricing kernels for the industry-sorted portfolio returns augmented by the one-month
T-bill return. Mean–standard deviation pairs for the polynomial pricing kernels as well as the
pricing kernels of the Fama–French model are shown as small triangles. The human capital
measure is included in the estimation of the pricing kernels, and the coefficients of the pricing
kernel are modeled as quadratic in the instruments.
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pricing kernel that is decreasing and simultaneously exhibits a significant
degree of nonlinearity.

One further point deserves attention. In general, it is difficult to deter-
mine whether apparent nonlinearities in the data arise due to missing risk
factors or a nonlinear relationship between returns and proposed risk fac-
tors. For example, an omitted stochastic volatility factor might give rise to
an apparent nonlinear relationship between a posited risk factor such as the
market portfolio and returns. However, this paper is explicit both about the
priced risk factor, the market portfolio, and the form of nonlinearity that
arises through agents’ preference restrictions. Consequently, the failure to
reject the model specification despite the discipline imposed by a model’s
specific factor and functional form suggest that the nonlinear relationship
between returns and the market portfolio is robust. Furthermore, not only
does the model survive the specification tests, it does so in a setting in which
a highly successful linear multifactor model cannot.

IV. Conclusion

This paper investigates nonlinear pricing kernels that represent a link
between nonparametric and parametric approaches to describing cross-
sectional variation in equity returns. The common element in this paper’s
pricing kernels and those of nonparametric models is nonlinearity in priced
risk factors. In contrast to these nonparametric approaches, and in common
with parametric approaches, the pricing kernels are defined over an endog-
enous risk factor, and preference restrictions govern the sign of the relation-
ship between returns and the terms in the pricing kernel. The risk factor is
the return on aggregate wealth, and the nonlinearity arises from an expan-
sion of a representative investor’s Euler equations for portfolio and consump-
tion choice. Adding the additional assumption that the agent’s preferences
exhibit decreasing absolute prudence allows us to restrict the sign of the
first three terms of this expansion. We show that this framework is consis-
tent with a setting in which agents are averse to kurtosis, and consequently
asset returns are affected by covariance, coskewness, and cokurtosis with
the return on aggregate wealth.

Tests of the model show that incorporating nonlinearity substantially im-
proves upon the pricing kernel’s ability to describe the cross section of re-
turns. In particular, when human capital is incorporated into the measure of
aggregate wealth, a quadratic and cubic pricing kernel are able to fit the
cross section of industry-sorted portfolio returns, whereas a linear pricing
kernel and a pricing kernel implied by power utility cannot. Moreover, the
marginal contribution of each nonlinear term is statistically important for
improving the fit of the pricing kernel. Further, we find that the nonlinear
pricing kernels are able to price the cross section of returns substantially
better than the Fama and French ~1993! three-factor model; the quadratic
and cubic models are not rejected whereas the Fama–French model is, and
the polynomial pricing kernels produce smaller pricing errors. Additionally,
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we find that incorporating the cubic term in the pricing kernel drives out
the significance of both the size and book-to-market factor in the Fama–
French model. Furthermore, the nonlinear pricing kernel implied by power
utility is not admissible for the cross section of industry portfolios, despite
the fact that power utility is consistent with decreasing absolute prudence.
This result suggests that a specific form of nonlinearity, rather than generic
nonlinearity, is important for pricing.

A particularly important source of improvement in the pricing kernel is
its incorporation of human capital. However, the results suggest that a lin-
ear measure of human capital is insufficient to render the pricing kernel
admissible. Instead, it is nonlinear measures of human capital that improve
the performance of the pricing kernel. The results show that, when human
capital is incorporated into aggregate wealth, a pricing kernel restricted by
preferences and first principles can fit the cross section of returns well, in a
setting in which a successful multifactor model cannot. Further, the nonlin-
ear pricing kernel continues to outperform linear single- and multifactor
pricing kernels when additional global restrictions are imposed on its func-
tional form. In particular, restricting the pricing kernel to be decreasing
over its support generates a pricing kernel that, while inadmissible, domi-
nates the linear pricing kernels in describing the cross section of returns.

This last result provokes an interesting question. Why does the admissible
pricing kernel have the wrong shape? That is, what features of the data or
the functional form of the polynomial pricing kernel render the kernel in-
admissible when monotonicity is imposed? The results suggest the possibil-
ity that fitting the data necessitates a highly nonlinear pricing kernel.
However, a polynomial cannot simultaneously provide this high degree of
nonlinearity and a globally decreasing functional form. What functional re-
lationship between aggregate wealth and returns can provide both of these
conditions? What features of the data necessitate the high degree of nonlin-
earity? These questions remain important issues to be addressed in future
research.
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