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Abstract We present a novel framework illustrating the links between order aggressiveness 
and flash crashes. Our framework involves a trading sequence beginning with significant 
increases in aggressive sell orders relative to aggressive buy orders until instruments’ prices 
fall to their lowest levels. Thereafter, a rise in aggressive buy orders propels prices back to 
their pre-crash levels. Using a sample of S&P 500 stocks trading during the May 6 2010 
flash crash, we show that our framework is correctly specified and provide a basis for 
linking flash crashes to aggressive strategies, which are found to be more profitable during 
flash crashes. 
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1. Introduction 

Flash crashes are characterised by high price volatility, a significant negative return in 

instruments’ prices and are defined by a sharp price reversal (see Aldridge 2010, Easley et al. 

2011). The most notable flash crash in recent history occurred on May 6, 2010 (see Kirilenko 

et al. 2017). On this day, market indices such as the S&P 500, the Dow Jones Industrial 

Average, the Russell 2000, and the Nasdaq 100, fell significantly before rebounding within an 

extremely short period of time.  

In the aftermath of the May 6 flash crash there has been a widespread concern that 

trading strategies commonly deployed by the fastest traders in financial markets – the so-called 

high frequency traders (HFTs) – induce or worsen price crashes.2 Kirilenko et al. (2017) argue 

that, although there may be no evidence of HFTs causing the May 6 flash crash, they 

nevertheless exacerbated it by demanding immediacy. The immediacy demanded at a 

heightened pace in a liquidity-constrained environment appeared to have led to an unbearably 

high level of order flow toxicity, thereby worsening the price crash.3 The aggressiveness of 

HFTs in demanding liquidity could therefore be argued to be a major contributing factor to the 

extent of the price crash recorded on May 6, 2010. However, to date, there has been no study 

directly linking order aggressiveness4 to flash crashes, with no constraints placed on market 

agents. This paper addresses this gap in the literature.  

This paper differs from existing studies (see as examples, Easley et al., 2011; Jacob 

Leal et al., 2016; Kirilenko et al., 2017) in that the links we draw between order aggressiveness 

                                                        
2 About five months after the flash crash, on September 30 2010, the Commodity Futures Trading Commission 
(CFTC) and the Securities and Exchange Commission (SEC) released a study identifying an automated program 
executing the sale of 75,000 E-mini S&P 500 futures contracts as the main trigger for the flash crash (see SEC 
2010). 
3 Easley et al. (2011) highlight the key role played by order flow toxicity in the occurrence of the flash crash; they 
also propose a measure of order flow toxicity, which they call the Volume-Synchronized Probability of Informed 
Trading (VPIN). 
4 We define aggressive orders in line with the classification approach of  Biais et al. (1995); specifically, aggressive 
orders are defined with respect to their sizes and tendency to cross the spread.  
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and flash crashes make no assumptions regarding liquidity constraints in the market.5 

Specifically, in order to investigate the empirical links between order aggressiveness and flash 

crashes, we first extend the approach of Menkveld (2013), developed to decompose the trading 

profit in a normal market environment into its spread and positioning components. Menkveld 

(2013) illustrates the decomposition of traders’ profits by presenting two extreme cases – 

aggressive and passive market making trading strategies. The framework shows that traders 

adopting aggressive trading strategies incur losses during normal trading days and, therefore, 

the majority of traders – about 80% – tend to deploy passive market making trading strategies. 

The losses reported for aggressive traders on normal trading days is due to incoming market 

orders adversely selecting aggressive orders in the market (see also Glosten and Milgrom 

1985). We extend Menkveld’s (2013) two-stage approach in order to show how aggressive 

trading strategies affect the price discovery process in financial markets.  

Our framework involves a trading sequence beginning with significant increases in 

aggressive sell orders relative to aggressive buy orders until instruments’ prices fall to their 

lowest levels. Thereafter, a rise in aggressive buy orders propels prices back to their pre-crash 

levels. Using the predictions of the framework, we highlight the role of order aggressiveness 

in extreme price movements, such as flash crashes, and argue that order aggressiveness can 

lead to flash crashes.6 This also implies that flash crashes can be predicted by analysing the 

evolution of order aggressiveness in financial markets. In this case, our framework shows that 

even in a liquid trading environment where there are no significant liquidity constraints, order 

                                                        
5 Jacob Leal et al. (2016) also develop an agent-based model of a limit-order book to show the impact of HFT on 
financial markets; their HFTs are assumed to deploy only predatory high frequency trading strategies (aggressive 
trading strategies). They conclude that aggressive HFTs are culpable in flash crashes. Consistent with Jacob Leal 
et al. (2016), Mcinish et al. (2014) show that the aggressive behaviour of Intermarket Sweep Orders contributed 
to the May 6, 2010 flash crash. 
6 This argument is also motivated by the results of Griffiths et al. (2000) and Wuyts (2011), who show that 
aggressive orders have price impacts larger than those of other trades. 
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aggressiveness can create an environment of severe illiquidity such that prices become 

extremely volatile, as evident during the May 6, 2010 event.  

Furthermore, the framework shows that profits in aggressive trading strategies are 

positive and large during extreme price movements such as flash crashes, and therefore the 

fraction and the number of aggressive orders should be higher during these periods when 

compared with normal trading periods. We decompose the profits of aggressive traders into 

their spread and positioning components and similar to Menkveld (2013), we show that traders 

are confronted with a position profit and, inevitably, a spread loss when they trade aggressively. 

However, unlike during normal trading periods, when markets are volatile, the position profit 

eclipses the spread loss, thus making aggressive trading ultimately profitable during periods of 

high price volatility. Since our framework, involving a three-stage aggressive trading strategy, 

which results in a price collapse and a subsequent sharp price reversal, mimics the form of a 

flash crash, we argue that aggressive trading strategies can cause flash crashes. This implies 

that we can obtain advance information about the likely onset of flash crashes by computing 

the relative weights of aggressive trading/orders. We test the foregoing arguments and 

framework predictions using ultra-high frequency trading data for the components of the S&P 

500 stock index affected by the May 6 flash crash. The empirical results obtained are 

completely in line with the predictions of our framework.  

Firstly, we find that a significant imbalance in order aggressiveness favouring sell 

orders ensues in the run-up to and during the flash crash. We document a significant increase 

in the number of aggressive sell orders relative to aggressive buy orders in the run-up to and 

during the flash crash until instruments’ prices plummeted to their troughs. The increase in 

aggressive sell orders with no corresponding rise in aggressive buy orders precipitated the crash 

in instruments’ prices. This finding is very important, since the total number of aggressive 

orders could be high; however, a significant price crash will only occur if aggressive sell orders 



5 
 

significantly outstrip aggressive buy orders. This result is consistent with the official reporting 

following the flash crash. 

Secondly, we link the evolution of order aggressiveness to the flash crash within an 

econometric framework, showing that increased order aggressiveness is related to the May 6 

2010 flash crash; hence, order aggressiveness could provide a signal about the onset of the 

future flash crashes.  

Thirdly, we show that aggressive trading is significantly more profitable during periods 

of high price volatility such as flash crashes, than during normal trading periods. We find that 

an informed trader could earn up a cumulative return in excess of 1,482 basis points (bps) based 

on our analysis of a sample of flash crash-affected stocks, this is significantly higher than 

possible during the non-flash crash periods. Consistent with this finding, the fraction of 

aggressive buy and sell orders during the May 6, 2010 flash crash is higher than the fraction of 

these kinds of orders during other periods under investigation. The actual number of aggressive 

sell and buy limit orders during the flash crash is also remarkably higher than during the 

surrounding periods (before and after the flash crash). Our results are robust to alternative 

estimation approaches and model specifications, including estimation frequencies. Overall, the 

empirical results show that our framework is correctly specified and the arguments we present 

valid in the case of the flash crash we examine. 

The remainder of this paper is structured as follows. Sections 2 and 3 present our 

framework/approach and data, respectively. Section 4 presents and discusses the empirical 

analysis and results, while Section 5 concludes. 

 

2. The approach 
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2.1 Motivation 

Griffiths et al. (2000) and Wuyts (2011) find that aggressive orders generate larger price 

impacts. Given this finding, there is a case to be made for aggressive orders being culpable in 

inducing extreme price movements, such as flash crashes. However, this argument raises an 

interesting question about why aggressive orders do not always cause flash crashes, given that 

they are likely to be submitted repeatedly on any given day in financial markets. In order to 

examine this question and demonstrate the potential relationship between order aggressiveness 

and flash crashes, we extend the approach of Menkveld (2013). Following Sofianos (1995), 

Menkveld (2013) decomposes the profit of traders into two components: the spread component 

and the positioning component. Menkveld's (2013) framework focuses on two extreme cases 

involving aggressive trading on the one hand and passive market making on the other, by using 

a two-stage approach: 

Aggressive trading strategy 

          

Passive market making strategy                               

                          

where  is the ask price at time t0,  is the bid price at time t0,  is the mid-price at time 

t0, , and are the ask price, the bid-price and the mid-price at time t1 under 
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aggressive trading strategy, respectively, and , and  are the ask price, the bid-

price and the mid-price at time t1 under passive (market-making) trading strategy, respectively. 

In the first extreme case, i.e. aggressive trading strategy, a trader consumes liquidity in 

order to pursue a fundamental value change, and then quickly follows this with a sell order. By 

submitting a buy limit order at the ask price and a sell limit order at the bid price, the trader 

will make a spread loss at t0 and t1, but will make a position profit at the end of the trading 

session. The trader will adopt this trading strategy if she expects a large position profit at the 

end of the trading session – this is necessary to compensate for the spread losses incurred from 

the first and second trading stages. However, adverse selection is a potential risk here, as the 

position profit could be negative if the trader’s orders are adversely selected by an informed 

market order (see Glosten and Milgrom 1985). Consistent with this argument, Menkveld 

(2013) finds that position profit is negative in the Dutch stock market during normal trading 

periods – periods of no or very low price volatility. In the second extreme case, i.e. the passive 

market making strategy, a trader acting as a market maker makes a profit from the spread in 

the first and second trading session, and a loss from her position at the end of trading.  

In this paper, we alter the strategies above and further extend the framework to 

decompose the profit of traders. Specifically, we employ a three-stage approach and alter the 

order of submitted orders to show the relationship between order aggressiveness and flash 

crashes; what this means is that while Menkveld's (2013) framework begins with a buy order, 

our approach begins with a sell limit order. Furthermore, we add the relative weights concept 

to this approach in to obtain the predictability of flash crashes. 

 

2.2 Our three-stage approach 

Trading at t0   

amm
tP .
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Traders submit sell limit orders at t0 by following one of two trading strategies (passive 

and aggressive), while the subsisting bid and ask prices, with mid-price , are set before 

traders come to the market: 

      

                                                                                                   (1)                                                

 

We assume that a trader will submit a sell limit order at the prevailing best bid price if she 

wants to adopt an aggressive trading strategy, or a trader will submit a sell limit order at ask 

price is she wants to adopt a passive market making strategy. We focus on one of these extreme 

cases, an aggressive trading strategy, as we aim to illustrate the relationship between order 

aggressiveness and flash crashes. By submitting a sell limit order at the bid price, a trader will 

make a loss at t0. The trading sequence is illustrated below: 

                                  

The loss of our hypothetical aggressive trader is therefore given as: 

                                                                                (2)       

Trading at t1   

Inevitably, different types of trading strategies in t0 will have different impacts on ask 

and bid prices. This implies that bid and ask prices at t1 will be different under either of the two 

extreme (passive and aggressive) strategies/cases. By submitting an aggressive sell limit order 

at t0, the trader consumes liquidity, which in turn induces a price change. An aggressive trading 

strategy will therefore have a downward pulling effect on bid and ask prices, leading to bid and 
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ask prices going down at t1. However, if an aggressive order is adversely selected by an 

incoming informed market order, the price will go up at t1 and the aggressive trader will incur 

a significant position loss. We therefore concentrate on the case where an aggressive order is 

not adversely selected. This is important for our framework to mimic the price evolution during 

a flash crash, i.e. price falls significantly from t0 to t1.  

During the second trading stage, the aggressive trader submits an aggressive buy limit 

order at the ask price:  

             

The submission of a buy order at the ask price will again lead to the trader incurring losses at 

t1. The payout at this stage will be: 

                                                                             (3) 

Trading at t2   

As earlier stated, the deployed trading strategies will have varying impacts on ask and 

bid prices. An aggressive trading strategy at t1 will generate an increasing pressure on bid and 

ask prices, thus bid and ask prices will appreciate subsequently at t2 and reach initial position 

(t0). If an aggressive order is adversely selected by an incoming informed market order, the 

price will go down at t2 and our hypothetical trader will again incur significant position loss. 

Therefore, we again assume that an aggressive order is not adversely selected, to mimic the 

price evolution during a flash crash, i.e. price rebounds from t1 to t2 and attains the pre-flash 

crash level.  
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We further assume that the asset price at time t2 will be equal to the asset price at time 

t0. This is necessary for the sequence of events/price evolution to be consistent with a flash 

crash; i.e. a sudden/sharp fall in the price of an asset and a full rebound in price shortly 

afterwards: 

 

By submitting a sell limit order at t2’s bid price, the aggressive trader makes a profit from her 

position and incurs losses from the bid-ask spread. Thus, her position profit and spread loss are 

as follows: 

                Position Profit                                           (4) 

                Spread Loss                                              (5) 

                 Total Profit                                                (6) 

 

To sum up these trading strategies thus far, we can examine the profitability of an 

aggressive trading strategy. By combining the above equations, we generate the following 

equations for an aggressive trading strategy, assuming that the bid and ask prices at time t2 

equal the bid and ask prices at time t0 : 

                                   (7) 
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Typically, a trader should pay the clearing fee and the aggressive exchange fee (usually 

imposed by exchanges on traders consuming liquidity) when she adopts an aggressive trading 

strategy. For simplicity, we assume that these fees are zero. As seen from Equation 7, the 

position profit of an aggressive trading strategy is high if there is a sharp reduction in the asset 

price at t1 . The interesting point is that this type of sharp reduction is consistent with the 

extreme price movements documented in the case of flash crashes. Therefore, we argue that 

although Menkveld (2013) shows that position profit is negative during normal trading days, it 

might be large and positive during extreme price movements. This implies that this kind of 

extreme price movement could be profitable for some traders. This argument is consistent with 

Brogaard et al. (2014), who show that although HFTs do not cause extreme price movements 

such as flash crashes, these types of price movements is more profitable for HFTs. The 

argument raises an interesting question about why traders fail to always adopt an aggressive 

trading strategy and therefore obtain large and positive profitable positions or, more 

specifically, are there some other conditions that ensure that traders become aggressive? We 

argue that there should be other conditions, which are not necessarily directly linked with the 

traders themselves, which may lead to traders choosing an aggressive trading strategy. The 

important point to note is that the price decrease in t1 should be very sharp in order to 

compensate for the losses from the spread. As already stated, that there will be a position loss 

if the order submitted by an aggressive trader is adversely selected by an incoming informed 

market order (see also Glosten and Milgrom 1985). Therefore, traders must be sure that they 

do not face adverse selection risk when attempting an aggressive trading strategy. Indeed, this 

argument explains Brogaard et al.'s (2014) view regarding the profitability of extreme price 

movements for HFTs. The ability of HFTs to make hay of volatile trading conditions as 

described above is not far-fetched.  Hirschey (2017) argues that HFTs can anticipate buying 

and selling pressure, which could help them avoid being adversely selected when deploying 

)( 1
a
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aggressive trading strategies. Indeed, Hirschey (2017) finds that HFTs’ aggressive sales and 

purchases consistently lead those of other investors. This implies that the framework we 

illustrate above is more likely to be successfully deployed when it is implemented at a high 

frequency. 

 

2.3 Order aggressiveness and flash crashes 

Thus far, we have demonstrated the price evolution under an aggressive trading 

strategy. It is important to note that the framework discussed above simply illustrates the 

pricing process under the assumption of zero adverse selection risk. It implies that the price 

discovery process is not affected by the behaviour of other traders in this approach. The 

sequence of aggressive trading strategy we describe is therefore mainly useful for 

understanding the contribution of order aggressiveness to flash crashes. Although, the sequence 

of orders is not based on the May 6 2010 flash crash, the aggressive trading strategy shares two 

notable characteristics with the May 6, 2010 flash crash. Firstly, the price movement under this 

strategy exactly mimics the price movements in the US financial markets during the flash crash, 

i.e. asset prices collapse and rebound very rapidly within a very short period of time.  Secondly, 

the SEC (2010) finds that a large amount of seller-initiated E-mini contracts executed by 

algorithmic traders triggered the flash crash. Our approach also begins with a sell limit order. 

Inspired by these two commonalities, we argue that an aggressive trading strategy can cause 

flash crashes under certain conditions, mainly when aggressive traders do not face adverse 

selection risk. In order to further test our argument, we use real data and examine the 

aggressiveness of order flows during, and prior to, the May 6, 2010 flash crash. If, indeed, the 

predictions of our framework are consistent with the flash crash, then, firstly, there should be 

an excessive sell order aggressiveness in financial markets, which will create a downward 

pulling effect on prices. Thereafter, the excessive aggressiveness should shift to the buy side 
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and as a result, prices will rise. This sequence of events implies that order aggressiveness 

should provide a signal about the onset of the future flash crashes. Secondly, the fraction and 

number of aggressive buy and sell orders during the May 6, 2010 flash crash should be higher 

than the fraction of aggressive buy and sell orders during the surrounding periods. This is 

simply because, as we have shown, aggressive orders are more profitable during these periods. 

It is very important to note that we do not argue that the three-stage aggressive trading strategy 

we illustrate in this paper is the reason of the May 6 flash crash. Rather, we argue that order 

aggressiveness prior and during the May 6, 2010 flash crash contributed to the crash (see SEC 

2010).  

  

2.4 Relative weight of an aggressive trading strategy 

In each period, traders have different alternative trading strategies, and they can switch 

according to the profitability of each strategy. Inspired by Brock and Hommes (1998), we use 

the strategies’ attractiveness function and assume that the choice among the alternative 

strategies available to traders depends on this function: 

                                                                                      (8) 

where  represents the ‘memory parameter’, and shows the type of strategy, i.e. extreme 

passive market making, extreme aggressive trading strategy, and others. For the extreme case

, traders/HFTs have no memory. It is important to note that the attractiveness function of 

being inactive equals zero. Following one of the well-known discrete choice models, logit 

model, as developed by Manski and McFadden (1981), the relative weights of an extreme 

aggressive trading strategy can be determined as: 

                                                                                                 (9) 
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(see Appendix B for proof) where is an intensity of switching parameter. The higher the 

value of , the higher the fraction of traders who prefer the strategy with the highest fitness 

function. Brock and Hommes (1998) interpret as a (bounded) rationality parameter. 

Westerhoff (2008) and Pellizzari and Westerhoff (2009) also use the same concept to compute 

the relative weights of trading strategies. Our proposal is to interpret this parameter as an 

inverse measure of adverse selection risk. It implies that if adverse selection risk is low, then 

this parameter will be high and traders will have more propensity to adopt an aggressive trading 

strategy.  

As previously stated, extreme aggressive trading strategies can induce flash crashes 

under certain conditions, i.e. when there is no adverse selection risk. The implication here is 

that we can obtain advance information about flash crashes by computing the relative weight 

of an extreme aggressive trading strategy. Thus, we hypothesize that the probability of flash 

crashes in the next period will increase if the relative weight of an aggressive trading strategy 

in the next period ( ) increases. It implies that this approach can be used to directly predict 

flash crashes. 

  

3. Data  

3.1 Sample selection 

In order to empirically test our hypotheses, as developed above, we focus on the biggest 

and most reported flash crash in the recent financial markets history, the May 6, 2010 flash 

crash experienced in the U.S. markets. The flash crash was one of the most turbulent periods 

in U.S. financial markets history and has been considered to be the most harmful flash crash to 

date, during which the biggest intraday point decline in the history of the Dow Jones Industrial 
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Average was recorded. Not only major indices, but also options, exchange-traded funds, and 

individual stocks, suffered from the May 6, 2010 flash crash.7  

The data employed consists of ultra-high frequency tick-by-tick data for a selection of 

53 S&P 500 stocks sourced from the Thomson Reuters Tick History (TRTH) database. 

Appendix C contains a detailed list of all stocks that are analysed. We obtain data for all 

messages recorded for  May 6 2010, but focus mainly on the period between 1:30 PM and 4 

PM, since the flash crash started around 2:32 PM and lasted for about 36 minutes (see SEC 

2010). In the data, each traded price and volume is recorded with a time stamp to the nearest 

1/1000th of a second (millisecond). The following variables are included in the dataset: Reuters 

Identification Code (RIC), date, timestamp, price, volume, bid price, ask price, bid volume, 

and ask volume. 

Although the S&P 500 index consists of 500 large companies listed on the NYSE and 

NASDAQ, we select only the 53 stocks deemed to have been severely affected by the flash 

crash. Furthermore, we select S&P 500 stocks for analysis purposes because SEC (2010) also 

examines the impact of the flash crash on individual stocks by using selected data from this 

index. SEC (2010) shows that a large trader executing a sell program for 75,000 E-mini S&P 

500 index futures contracts triggered the flash crash of May 6 2010. As the performance of this 

index future is directly linked with the S&P 500 stocks, it is reasonable to select the components 

of S&P 500 for our analysis. 

Once the raw data is obtained, we determine the prevailing best bid and best ask quotes 

for each transaction by using the order flow as downloaded. We then follow Chordia et al. 

(2001) and Ibikunle (2015) in applying a standard set of exclusion criteria to the data, thus 

deleting all inexplicable observations which might arise due to errors in data entry. 

                                                        
7 According to SEC (2010), the May 6, 2010 flash crash lasted for approximately 36 minutes and could be viewed 
as consisting of two halves: (1) prices collapse and reach their lowest levels from 2:32 PM to 2:45 PM, (2) prices 
rebound and reach their pre-crash levels from 2:46 PM to 3:08 PM. 
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3.2. Sample Description 

In order to better observe the dynamics of stocks during the flash crash, we classify the 

sample into three periods: before the flash crash (from 1:30 PM to 2:32 PM), the flash crash 

period (from 2:32:01 PM to 3:08 PM), and after the flash crash (from 3.08:01 PM to 4:00 PM).  

INSERT TABLES 1 AND 2 ABOUT HERE 

Panel A of Table 1 presents the summary statistics of trading activities of the selected 

stocks. We observe a marked increase in average per minute transactions and trading volume 

during the flash crash, followed by a fall after the flash crash. This volatility is consistent with 

the modelled effects of the flash crash as presented in our framework. Prior to the flash crash, 

the average per minute trading volume is about 1 million. This increases by 161% during the 

flash crash and afterward falls by approximately 14%. Furthermore, the average per minute 

number of transactions and dollar trading volume during the flash crash are about three times 

higher than before the flash crash. After attaining the highest levels, average transaction and 

dollar trading volumes per minute fall by about 13%. We compute statistical tests to show the 

differences in trading volume and dollar trading volume between the period of the flash crash 

and surrounding periods. In Table 1’s Panel B, we present the p-values of different statistical 

approaches, testing for the null that there is no difference between the trading activity during 

the flash crash and non-flash crash periods. For robustness, we construct two-sample t-tests 

and pairwise Wilcoxon-Mann-Whitney U tests. Both methods show that the difference between 

these two periods is statistically significant. Given that, in the market microstructure literature, 

changes in trade sizes are thought to reflect the changing composition of the traders/participants 

in a market, one may assume that the fraction of traders that submit aggressive orders increases 

during flash crash.  
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Table 2 presents the order submission summary statistics for our sample of stocks. 

Although average per minute trading volume increases sharply during the flash crash, the 

average volume of shares submitted in bid and ask orders over the same frequency decline 

during the flash crash. Firstly, this is consistent with what we would expect in t1, following 

liquidity consumption in t0. Secondly, when the ratio of shares in orders to trading volumes is 

calculated, we find that the ratio is 5.3 before the flash crash, indicating that approximately one 

in five submitted shares in the orders submitted is executed prior to the flash crash. The ratio 

quickly falls to 1.8 during the flash crash and increases 2.1 afterwards. Thus, the rate of order 

execution quickens during the flash crash as the search for liquidity intensifies. The estimate 

of 1.8 share in order to trade ratio shows that more than half of shares in orders submitted 

during the flash crash are executed. This result further supports our argument that traders 

become more aggressive during the flash crash or, at the very least, the proportion of aggressive 

traders in the market increases during the flash crash. 

 

4. Empirical analyses, results and discussions 

Our aim in this section is to formally test hypotheses arising from our three central 

framework arguments. The first argument suggests that excessive aggressiveness in trading is 

culpable in the inducement of flash crashes; this implies a significantly increased volume of 

aggressive sell and buy orders in the period leading up to and during the flash crash. More 

specifically, our framework predicts that, firstly, there should be an excessive sell 

aggressiveness in the first half of the flash crash and this aggressiveness will create a downward 

pressure on prices. Then, the buy side should subsequently become more aggressive, which 

will inevitably create an upward pressure on prices. Secondly, our framework predicts that 

order aggressiveness should provide a signal about the likely onset of the flash crashes; hence, 

the second hypothesis we examine is that aggressive orders are statistically significant 
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predictors of flash crashes. Thirdly, the framework suggests that aggressive orders might be 

more profitable during extreme price movements such as flash crashes. The implication here 

is that the fraction and number of aggressive orders in the lead up to and during flash crashes 

should be higher than the fraction and number of aggressive orders during other trading periods 

surrounding flash crashes. 

 

4.1. The evolution of order aggressiveness 

In order to proceed with the test of the arguments/hypotheses above, we need to identify 

an appropriate indicator or proxy for aggressive orders. This is required to be able to compute 

interval-based fractions and volume of aggressive orders in the market. For consistency with 

the existing literature, we employ an established approach as developed by Biais et al. (1995) 

to categorise limit orders according to their aggressiveness for our empirical analysis. The 

acceptance of this classification scheme in the market microstructure literature is underscored 

by its relatively wide use (see as examples Degryse et al. 2005, Griffiths et al. 2000, Hagströmer 

et al. 2014).  The Biais et al. (1995) order classification algorithm involves dividing buy and 

sell orders into six groups by their level of aggressiveness; Category 1 orders are the most 

aggressive orders, while Category 6 orders are the least aggressive. A Category 1 buy order 

has a bid price higher than the best ask price and a quantity larger than the quantity available 

at the best ask price at its time of submission. These kinds of buy orders would normally walk 

across the order book. A Category 2 buy order has a bid price equal to the best ask price but 

has a target quantity exceeding the prevailing depth at the best ask price. Category 3 buy orders 

also have bid prices equal to the best ask prices, however their target quantities do not exceed 

the prevailing depth at the best ask price. The bid price of Category 4 buy orders is higher than 

the best bid price but less than the best ask price. The quantity of this order is not necessary for 

categorisation purposes. Categories 5 and 6 buy orders are the least aggressive. Like the 
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Category 4 buy order, there are no quantity requirements for categorising Category 5 buy 

orders, however the bid prices of these orders are equal to the best bid prices. All buy orders 

not otherwise categorised above are classified as Category 6 orders; specifically, the prices of 

these orders are less than the best bid prices. Based on their classification, Category 4, 5 and 6 

orders are not usually immediately executed, and are therefore considered passive.  

The categorisation for the sell orders mirror those of the buy orders. The ask prices of 

the Category 1 sell orders are less than the best prevailing bid price and their sizes exceed the 

depths at the current best bid prices. The ask prices of the Category 2 and 3 sell orders equal to 

the best bid price. Furthermore, the target quantities of Category 2 orders are higher than the 

quantities available at the best bid prices, whereas the quantity of Category 3 sell orders are 

not. Consistent with the categorisation of buy orders, the prices of Category 4 sell orders lie 

within the best bid-ask spread, i.e. less than prevailing best ask prices. The prices of Category 

5 sell orders equal the best ask price, while the remaining orders are classified as Category 6 

sell orders. The prices of this latter group of sell orders are higher than the prevailing best ask 

prices. 

Degryse et al. (2005) show that the most aggressive order types (Categories 1 and 2) 

execute immediately and cause a price movement. Although Category 3 orders are less 

aggressive than the first two classes of orders, they still usually result in prompt transactions, 

therefore these three types of orders (Categories 1, 2 and 3) can be considered as aggressive 

orders (see Degryse et al. 2005, Foucault 1999). Thus, we focus on the first three types of 

orders. Specifically, we compute the sum of fractions of the aggressive order categories for the 

May 6, 2010 flash crash, as well as for the normal periods surrounding the flash crash. We then 

compare the volumes within a statistical framework to determine whether the fraction of 

aggressive orders during the flash crash is higher than the fraction of the same types of orders 

during normal periods. 
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Figure 1 presents the evolution of order aggressiveness during the day of the flash crash. 

We use 1-minute time intervals to construct both panels of the panels in the figure. In Panel A, 

we employ the standard errors of the cross-sectional means to construct 99% confidence bands 

for the order aggressiveness estimates in Panel A, to show the upper and lower bounds of the 

fraction of aggressive orders during the flash crash. 

INSERT FIGURE 1 ABOUT HERE  

As evident in Panel A, the fraction of aggressive orders almost tripled during the flash 

crash from about 8% at 1:30 PM to 21.36% at 2:43 PM. The proportion of aggressive orders 

during the flash crash is, on average, higher than the surrounding time intervals. This finding 

suggests that aggressive trading activity is more prominent during the flash crash than in the 

surrounding periods. This result is consistent with the view that since aggressive orders might 

be more profitable during periods of extreme price movements, traders tend to show more 

aggressive behaviour during such periods. Furthermore, in Figure 1, we observe that the first 

of the two peaks of aggressive trading occurs just prior to the onset of the flash crash at about 

2:23 PM, when the fraction of aggressive orders attains about 20.71% of the total order volume. 

This appears to underscore our intuition regarding the predictive power of aggressive orders 

with respect to flash crashes. We discuss the results of our formal test of this assertion in the 

next section.  

Panel B makes the important distinction between buy and sell aggressive orders. 

Consistent with our framework’s predictions, the sell side is more aggressive from 2:17 PM to 

2:45 PM and then the buy side becomes more aggressive until 2:58 PM. This is not unexpected 

since SEC (2010) show that prices reached their lowest levels at 2:45 PM and the start to 

increase thereafter. This shows that the predictions of our framework are consistent with the 

empirical evidence and the arguments we make are valid in the case of the flash crash we 
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examine. A clearer view of the balance between sell and buy aggressive orders is presented in 

Figure 2.  

INSERT FIGURE 2 ABOUT HERE  

Consistent with the results of Figure 1, Figure 2 shows that, as predicted by our 

framework, there is a significant increase of aggressive sell orders until the stocks’ price 

attained their lowest levels during the flash crash (at 2:45 PM) and thereafter the number of 

aggressive sell orders are outstripped by the number of aggressive buy orders until the prices 

reverted back to their pre-crash levels. Furthermore, Figure 2 shows that we observe a peak in 

aggressive order imbalance (the difference between aggressive sell and buy orders) at 2:17 PM; 

this implies that as predicted by our framework, order aggressiveness could provide an 

indication of the onset of flash crashes. 

  However, it is important to note that, based on our predictions, a high fraction of 

aggressive orders during some specific days alone is not enough to cause an extreme price 

movement such as a flash crash; flash crashes are more likely induced by a large amount of 

aggressive orders. Therefore, we also need to examine the number of aggressive orders during 

the flash crash day in order to adequately investigate the prediction made in our framework.  

INSERT FIGURE 3 ABOUT HERE  

Figure 3 presents the evolution of the number of aggressive orders on May 6, 2010. As 

evident in the figure, there is a noteworthy rise in the number of aggressive orders as we 

approach the epicentre of the crash. The number of aggressive orders increases by about 6 times 

from the number at 2:00 PM (10,586/minute) to 62,760/minute at 2:43 PM, then falls 

precipitously to about 24,000/minute thereafter. Consistent with the data on the fraction of 

aggressive orders, we also observe a peak in the number of aggressive orders prior to the onset 

of the flash crash, at 2:22 PM (45,050/minute). This implies that the number of aggressive 

orders could be a signal for flash crashes. Furthermore, as evident in Figure 2, we observe an 
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excessive level of sell order aggressiveness from 2:17 PM to 2:45 PM and an excessive buy 

order aggressiveness thereafter. A review of the balance between aggressive sell and buy orders 

is useful in clarifying the changing of order dominance between the two order types. Thus, we 

compute aggressive order imbalance by the numbers of orders.   

INSERT FIGURE 4 ABOUT HERE  

Similar to the picture painted in Figure 2, Figure 4 shows that the predictions of our 

framework are completely in line with the evolution of the number of buy and sell orders during 

a real flash crash. We observe a surge in sell order aggressiveness prior to and during the first 

half of the flash crash until the price levels of instruments reached their minimum levels. 

Thereafter, the number of aggressive buy orders start to increase relative to the number of 

aggressive sell orders until the prices regain their pre-crash levels. The implications of the 

findings presented in Figure 2 and Figure 4 are significant, since the total number of aggressive 

orders could be high for a number of reasons; however, a flash crash is unlikely to ensue if 

there are no significant differences in the fractions and numbers of aggressive buy and sell 

orders. 

Figure 1 and Figure 3 show that, as predicted by our framework, aggressive trading 

activity is more prominent during the flash crash than in the surrounding periods, given that 

they are likely to be more profitable during periods of heightened price volatility, such as a 

flash crash. In order to formalise this, we compute number of aggressive orders for the flash 

crash and surrounding periods, and then examine the statistical significance of difference 

between the flash crash period (2:32 – 3:08PM) and the two surrounding intervals (1:30 – 

2:32PM and 3:08 – 4PM).  

INSERT TABLE 4 ABOUT HERE  

As evident in Table 4, the mean of the number of aggressive orders during the flash 

crash is about 62% higher than the mean of the number of aggressive orders during the 
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surrounding periods. This finding is in line with our arguments that aggressive orders could be 

more profitable during flash crashes and therefore, traders tend to submit more aggressive 

orders during these periods. We address the issue of profitability of aggressive orders during 

the flash crash later on in this section. Panel B in Table 4 shows that the difference between 

the number of aggressive orders during the flash crash and surrounding periods is statistically 

significant.  

Thus far, the univariate empirical results presented have been generally consistent with 

the predictions of our framework concerning the relationship between order aggressiveness and 

flash crashes. Firstly, there is a significantly increased level of sell order aggressiveness prior 

to and during the first half of the flash crash and then, buy order aggressiveness gradually 

outstrips sell order aggressiveness. Secondly, the number and the fraction of aggressive orders 

appear to signal or induce liquidity constraints leading to the flash crash. Thirdly, the number 

and the fraction of aggressive orders attain their highest levels during the flash crash and is in 

line with our argument that these types of orders might be more profitable during extreme price 

movements. Although the initial results suggest that our hypothesis on the predictive power of 

aggressive orders for flash crashes has merit, it is imperative that these results are formally 

tested within a multivariate framework. 

 

4.2. Multivariate Analysis 

Next, we test whether the number of aggressive orders signal future flash crashes within 

a multivariate framework. Specifically, we estimate the following regression model with stock-

specific variables: 

                                     (10) 
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where FCit is a binary dependent variable and time, t, equals one-second.8 We employ two 

cases of the Model (10). Firstly, we use the standard logit model; in this step, our aim is testing 

whether the number of aggressive sell and buy orders provide a signal about future flash 

crashes. In the logit model, FCit equals one for the pre-flash crash period (2:17 PM to 2:32 

PM). This construction allows us to capture whether aggressive orders’ build-up ahead of the 

flash crash helps predict it.  Secondly, we employ the multinomial logit mode; by using this 

model, our main aim is to further test whether the number of aggressive sell and buy orders 

provide a signal about the future flash crashes. The multinomial modelling approach allows us 

to concurrently examine the relationship between both the pre-flash crash and flash crash 

periods on the one hand and contemporaneous order aggressiveness on the other. Thus, in the 

multinomial estimation of Model (10), FCit equals one for the pre-flash period (2:17 PM – 2:32 

PM), two for the flash crash period (2:32:01 PM – 3:08 PM) and zero otherwise. NAO is the 

number of aggressive orders obtained by using the order classification scheme described above. 

We estimate the above regression for sell (NASO) and buy (NABO) aggressive orders 

separately in order to capture the marginal impact of each type of order. Estimating the depth 

of the impact of each order type is important since according to the literature and our 

framework, aggressive sell orders should play a more important role in flash crashes (see SEC 

2010). As already noted, the first three categories of orders are earmarked as aggressive orders. 

This is the most important variable in our study, and according to our arguments, we expect to 

see a positive relationship between the number of aggressive orders and the pre-flash crash 

(FCit=1) period (see also Griffiths et al. 2000, Mcinish et al. 2014, Wuyts 2011). 

 Apart from the key variable, we employ some control variables in order to strengthen 

the consistency of our results. lnV is the natural logarithm of the number of shares traded for 

                                                        
8 For robustness, we also employ five-second interval analysis and obtain qualitatively similar results. For 
parsimony, the results of the five-second estimation results are not presented; however, they are available on 
request. 
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one/five second interval. This proxy is used to control for the effect of trading volume. The 

VPIN metric is introduced as a real-time indicator of order flow toxicity. VPIN is a modified 

version of the Easley et al. (1996) and Easley et al. (1997) probability of an informed trade 

(PIN) metric and is proposed by Easley et al. (2011) as a measure of the probability of an 

informed trade in a high frequency environment. Easley et al. (2011) and Easley et al. (2012) 

highlight the role of order flow toxicity in the May 6, 2010 flash crash.9 Easley et al. (2012), 

Easley et al. (2011) argue that VPIN can be used to predict flash crashes. By contrast, Andersen 

and Bondarenko (2014) show that VPIN is a poor predictor for flash crashes after controlling 

for volume. Therefore, including VPIN as a control variable in Model (10) offers another 

opportunity to examine the flash crash predictability potentials of VPIN. In addition to VPIN, 

OIB is also employed to control for the order flow toxicity. Note that multicollinearity is not 

an issue here, since the correlation coefficient between VPIN and OIB is very low, at 0.054 (see 

Table 3). SEC (2010), Kirilenko et al. (2017), and Easley et al. (2011), show that a large order 

imbalance was one of the contributing factors to the May 6, 2010 the flash crash, hence the 

inclusion of order imbalance as an explanatory variable is completely in line with the literature. 

OIB is calculated as the absolute value of the difference between the number of buy and sell 

trades, divided by the total number of trades (see Chordia et al. 2008). In order to obtain OIB, 

trades must first be classified into buys and sells. Generally, three types of trade classification 

schemes are used to classify trades; these are the tick rule, the Lee and Ready (1991) algorithm, 

and Easley et al. (2012), Easley et al. (2011) bulk volume classification (BVC) method.  In this 

study, we employ the Lee and Ready (1991) algorithm for order classification.10 Chakrabarty 

                                                        
9 Computing VPIN requires determining the number of buckets to be employed for volume classification and a 
buy/sell trade classification method. We use 200 buckets for volume classification, because  Wu et al. (2013), 
who examine 16,000 various parameter combinations for evaluating the effectiveness of VPIN, concludes that 
200 buckets yield optimal results. Buy and sell volumes are computed using the BVC approach proposed by 
Easley et al. (2011). 
10 For robustness, we also compute OIB using the other two methods and employ them in Model (10), the 
inferences drawn from those estimations are unchanged irrespective of which OIB computation approach we use. 
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et al. (2015), in their comparative analysis of the aforementioned trade classification methods, 

conclude that the Lee and Ready (1991) algorithm method is a more accurate trade 

classification method than competing methods.  

 VLT is the one/five-second standard deviation of mid-price returns; this variable is 

introduced to control for trading volatility.11 Prior contributions report extreme price volatility 

during the May 6, 2010 flash crash day (see as examples Easley et al. 2011, Easley et al. 2012, 

Kirilenko et al. 2017, SEC 2010). Furthermore, an increase in the volatility of an instrument’s 

price will increase its market risk, leading to a larger price impact as well as extreme price 

movements. BAS is the one/five second spread between the best ask and best bid prices, and is 

a proxy for liquidity. BAS tends to be narrow when liquidity is high; hence, under liquidity 

constraints, i.e. when BAS is wide, we therefore expect a larger price impact (see Borkovec et 

al. 2010). MF corresponds to market fragmentation. Madhavan (2011) and Golub et al. (2012) 

show that market fragmentation is one of the factors that contribute to flash crashes, and 

Menkveld and Yueshen (2017) underscore and further explain the results of Madhavan (2011). 

In this study, the inverse of the Herfindahl-Hirschman Index is used for capturing how 

fragmented each stock is across various venues for each corresponding interval.12 

INSERT TABLE 3 ABOUT HERE  

 Table 3 presents the correlation matrix of the explanatory variables; the low correlation 

coefficient estimates suggest that multicollinearity is not an issue with the regression model. 

The results for both the logit and multinomial logit models’ estimations are presented 

in Table 5 and Table 6 respectively.  

INSERT TABLE 5 ABOUT HERE 

                                                        
11 We employ mid-price returns in order to reduce bid-ask bounce (see Avramov et al. 2006).  
12 The index is defined as: , where is volume share of venue k on day t. The value of the index 

ranges from 0 to 1; higher value implies less fragmentation. 
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The results presented in Table 5 show that, as predicted by our framework, aggressive 

orders are positively linked with the pre-flash crash period. The result holds for a combination 

of buy and sell aggressive orders as well as for each type of aggressive orders separately. The 

positive and statistically significant coefficients suggest the predictive power of the number of 

aggressive orders for flash crashes. An essential point to note is that the relationship between 

aggressive orders and pre-flash crash period is statistically significant even after controlling for 

volume, liquidity, order flow toxicity and volatility. This finding is important given recent 

findings by Andersen and Bondarenko (2014), showing that a popular metric for order flow 

toxicity, the VPIN metric, developed by Easley et al. (2012), Easley et al. (2011), is a poor 

predictor for flash crashes once trading activity is controlled for. The practical implication of 

this finding is that traders seeking to avoid the adverse effects of a flash crash must act quickly 

to do so. However, their actions could be inevitably endogenous, leading to a self-fulfilling 

prophecy, as their actions could exacerbate what might already be proving to be a challenging 

and increasingly illiquid trading environment. As already noted, according to the existing 

literature and the predictions of our approach, we expect that sell orders to play a more 

important role in the flash crash (SEC 2010) and therefore, estimation separate regressions for 

aggressive sell and buy orders may provide more insightful results. This expectation is by the 

magnitude of the coefficient estimates and explanatory power for both the buy and sell 

aggressive orders estimations. Firstly, the coefficient estimate for aggressive sell orders is 2.3 

times higher than the coefficient for the number of aggressive buy orders. Secondly, according 

to the McFadden’s R2, the model with the sell order has a higher explanatory power.  

The estimated coefficients for all the other explanatory variables, except MF (market 

fragmentation), are also significantly correlated with the pre-flash crash period; however, the 

aggressive orders variables (NAO, NASO and NABO) are the only positive and statistically 

significant predictors. As already noted, our model allows us to test the flash crash 
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predictability potential of VPIN after controlling for trading activity, liquidity and volatility. 

Our findings show that VPIN is negatively correlated with the pre-flash period; increases in the 

value of the VPIN metric does not provide a signal about extreme volatility. This is in some 

ways an unsurprising result, since Andersen and Bondarenko (2014) also show that VPIN is 

negatively correlated with future short-term volatility after controlling for trading activity. The 

explanatory power of the standard logit model reported for the NAO, NASO and NABO 

regressions using McFadden’s R2, are 2.5%, 2.9% and 2.51% respectively. This is also 

unsurprising because of the following two reasons. Firstly, we employ one-second frequency 

for the estimations.13 Secondly, although McFadden’s R2 is a similar measure of the goodness 

of fit to the classic R2, the value of McFadden’s R2 tend to be remarkably lower than the value 

of R2 (see David and Peter 1979). 

INSERT TABLE 6 ABOUT HERE 

Table 6 presents the results for the multinominal logit model estimation. We employ 

this model to test the consistency of the standard logit model and in order to examine the 

relationship between contemporaneous order aggressiveness on the one hand and the pre-flash 

crash and the flash crash period on the other. This approach expectedly leads to a higher model 

explanatory power for the multinominal logit model estimation (McFadden’s R2 of 6.9% and 

6.6% for the number of aggressive sell and buy orders, respectively) when compared with the 

standard logit model estimation reported in Table 5. Firstly, the findings in Table 6 are 

generally consistent with the results we present in Table 5; all the aggressive orders variables 

are positively and significantly related with the pre-flash crash period, which suggests that the 

number of aggressive orders can provide a signal about an impending flash crash. Furthermore, 

consistent with the findings from Table 5, the number of aggressive sell orders play a more 

                                                        
13 McFadden’s R2 rises to about 4.5% when we estimate the regression at five-second frequencies; the results are 
not presented for parsimony, but are available on request. 
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important role in the flash crash. The only difference in the results is that while market 

fragmentation (MF) is not statistically significant in the standard logit model, it is significantly 

and positively correlated with the pre-flash period in the multinominal logit model. This 

implies that prior market fragmentation is related to flash crashes (see also Madhavan 2011, 

Menkveld and Yueshen 2017). The second set of results in Table 6, based on the flash crash 

period itself, are also interesting. The results show that the NAO, NASO and NABO are 

positively and significantly correlated with the flash crash period even after controlling for 

volume, liquidity and volatility. The positive and statistically significant estimates of the 

aggressive orders variables appear to confirm that increases in aggressive orders make flash 

crashes more likely to ensue. Specifically, the results suggest that the probability of flash 

crashes at time t rises as the number of aggressive orders increases at the same time. The 

evidence is in line with our approach that order aggressiveness plays an important role in flash 

crashes.   

The regression results above, documenting the relationship between order 

aggressiveness and flash crashes, are consistent with the previous literature since they show 

that aggressive orders have a larger price impact than non-aggressive orders and that aggressive 

trading behaviour contributes to flash crashes (see as examples Griffiths et al. 2000, Mcinish 

et al. 2014, Wuyts 2011).  

The estimated coefficient estimates for all the other explanatory variables in Table 6 

are also consistent with the existing literature on flash crashes. For example, the market toxicity 

metric, VPIN, has a statistically significant and positive relationship with the flash crash period. 

Taken together with the metric’s documented relationship with the pre-flash crash period, the 

implication here is that while VPIN, may be a poor predictor of flash crashes when trading 

activity is controlled for (see also Andersen and Bondarenko 2014), it nevertheless is positively 

correlated with flash crashes themselves. This suggests that market toxicity has a direct 
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relationship with the flash crash; this evidence is in line with findings of Easley et al. (2012), 

Easley et al. (2011) that market toxicity plays an important role in the flash crash. Volatility 

exhibits a statistically significant and positive relationship with the flash crash. The positive 

coefficient is consistent with the stream of the market microstructure literature that states that 

an increase in the volatility of stock prices causes a larger price impact, since extreme price 

movements and flash crashes are characterized by extreme price volatility (see as examples 

Easley et al. 2011, Kirilenko et al. 2017, SEC 2010). One plausible explanation of this positive 

relationship is that an increase in the volatility of stock prices increases the market risk, which 

in turn leads to larger spreads and extreme price movements.  

The literature identifies order imbalance as one of the instigators of the May 6, 2010 

flash crash (see as examples Easley et al. 2011, Kirilenko et al. 2017, SEC 2010). Furthermore, 

Sun and Ibikunle (2016) find that order imbalance has information content and there is a 

significant and positive relationship between order imbalance and price impact in a high 

frequency trading environment. Thus, the positive relationship between OIB and the flash crash 

reported in Table 6 is unsurprising and is in line with the literature. The bid-ask spread, BAS, 

is also positively and statistically significantly related with the May 6, 2010 flash crash. This 

result is again unsurprising because existing literature finds that orders have a larger price 

impact when the bid-ask spread is wide (see Aitken and Frino 1996) and, as already 

enumerated, liquidity constraints contribute to extreme price movements in the market. 

Furthermore, Borkovec et al. (2010), SEC (2010), and Menkveld and Yueshen (2017) find that 

the spread during the May 6, 2010 flash crash was uncharacteristically wide. Market 

fragmentation, MF, exhibits a statistically significant and positive relationship with the flash 

crash as well; this result can be justified that market fragmentation is important in explaining 

the anatomy of the flash crash. This result underscores the results of Madhavan (2011), Golub 

et al. (2012), and Menkveld and Yueshen (2017) that show that the flash crash is linked directly 
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to market structure. When liquidity is fragmented across several venues, immediate access to 

counterparties becomes slightly more challenging given that orders may now need to be routed 

through several other channels in order for them to be filled. 

 

4.3. Directional returns during the flash crash  

We now turn our attention to the third mainline argument derived from our framework, 

which is that aggressive orders are more profitable during flash crashes. Earlier, we observe an 

increase in the volume of aggressive orders during the flash crash, we interpret this to be in 

response to their profitability during such periods. However, we also note that such increases 

may relate to the unwinding of untenable positions that arise as a result of extreme swings in 

instruments’ valuations during a flash crash. In order to examine the veracity of our argument 

regarding the profitability of aggressive orders, we follow the approach proposed by 

Ederington and Lee (1995) to compute hypothetical returns attributable to an informed trader 

active during the flash crash and its surrounding periods  (see also Caminschi and Heaney 2014, 

Frino et al. 2017). 

We estimate simple returns for each stock and sign the returns using a directional 

parameter (!"# $%&), based on the assumption that the informed trader holds private information 

regarding the trajectory of the stocks’ prices she trades. We define the directional return for 

each one-minute interval as 

!# $%& ' (#$%& ) !"# $%&                                              (11) 

where, #$%& represents simple return for stock s for time t. In order to define the 

directional parameter (!"# $%&), firstly we compute the returns of each stock for the flash crash 

period (from 14:32 PM to 15:08 PM) (#*+ %&). The direction factor,(!"# $%& ' ,  if(#*+ %& - . , 

!"# $%& ' / ,  if(#*+ %& 0 . , and !"# $%& ' .  if #*+ %& ' . . (!"# $%& ' , (1/ , 2 indicates that the 

trader takes a long (short) position at time t for stock, s. We compute the average directional 
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return, 3!# $, as the average of adjusted returns for all stocks for each one-minute interval. The 

cumulative average directional return, 43!# $ from 1:30 PM to 4:00 PM is estimated using the 

average directional returns. 

INSERT FIGURE 5 AND TABLE 7 ABOUT HERE 

Figure 5 reports the hypothetical returns attainable through aggressive (directional) 

trading in 53 selected S&P 500 stocks around the May 6, 2010 flash crash. Panel A shows the 

simple returns adjusted for direction of price movement over the flash crash period averaged 

across all 53 stocks, while Panel B shows the cumulative average direction-adjusted returns for 

the same stocks. As presented in Panel A, there are positive and significant directional returns 

during the flash crash. Remarkably, as predicted by our framework, the positive directional 

return is gained during the second half of the flash crash and only ends at the end of the flash 

crash at about 3:08 PM. The cumulative directional returns in Panel B shows the clear and 

continuous trend in adjusted returns during the flash crash period. This and the stabilisation of 

the cumulative returns following the conclusion of the flash crash support our arguments about 

the profitability of aggressive orders during periods of extreme price movements like flash 

crashes. The overall cumulative returns accruable to an informed trader during the flash crash 

is in excess of 1,482 basis points. 

Table 7 reports the average direction-adjusted returns in 10-minute batches. Consistent 

with the insights from Figure 5, there is a positive and statistically significant adjusted returns, 

which commences in the second half of the flash crash and continues until the end of the flash 

crash. All estimated directional returns outside of the flash crash period are not statistically 

significant.   

Overall, the directional returns analysis yields consistent results with the predictions of 

our framework, implying that aggressive orders are significantly more profitable during 

extreme price movements like flash crashes. 



33 
 

 

5. Conclusion 

In this paper, we develop a new framework for understanding the role of aggressive 

orders in flash crashes by extending the approach of Menkveld (2013). We then use ultra-high 

frequency data from 53 S&P 500 stocks affected by the May 6, 2010 flash crash to test the 

arguments motivated by the framework. The selection of the May 6, 2010 flash crash for our 

investigation is motivated by its recognition as the most significant flash crash in recent 

financial markets history. Our main framework predictions/arguments are as follows. Firstly, 

there should be a significant increase in sell order aggressiveness prior to and during the first 

half of flash crashes, i.e. until instruments’ price levels hit their lowest values and then the 

balance of order aggressiveness should shift to the buy side in the second half of the flash crash, 

i.e., until the prices re-attain their pre-crash levels). Secondly, our framework predicts that 

order aggressiveness is culpable in flash crashes and, therefore, flash crashes could be predicted 

by evaluating changes in the number or proportion of aggressive orders in the market. Thirdly, 

aggressive orders should be more profitable during extreme price movements and thus traders 

tend to submit orders that are more aggressive during those periods. 

In the formal test of the relationship between the number of aggressive orders and the 

pre-flash crash period, the empirical results are consistent with the predictions of our 

framework. Firstly, we find a significant increase in sell order aggressiveness prior to and 

during the first half of the May 6 2010 flash crash, thereafter the balance of order 

aggressiveness swings to the buy side, with traders submitting more aggressive buy orders 

relative to aggressive sell orders. The sell side is more aggressive until prices plummet to their 

lowest levels and then, the buy side becomes more aggressive in the run-up to prices regaining 

their pre-crash levels. Secondly, we find that the number of aggressive orders is positively and 

significantly related to the pre-flash crash period; thus, the number or level of aggressive orders 
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may signal flash crashes. Thirdly, the fraction and the number of aggressive orders during the 

flash crash are higher than the fraction and the number of orders during the surrounding periods 

due to the significantly larger (than other periods) profits accruable to informed investors 

during the flash crash. We estimate that for the stocks in our sample, an informed investor 

during the flash crash could achieve a return on his portfolio in excess of 1,482 bps, a return 

far larger than accruable during surrounding periods. This finding supports our argument that 

aggressive orders are more profitable markets are volatile and hence, traders tend to submit 

orders that are more aggressive during such periods.  

Our findings should not be misconstrued as an endorsement of policies aimed at 

limiting aggressive orders or aggressive trading behaviours in financial markets. While we 

acknowledge that aggressive traders can induce extreme price movements, aggressive trading 

in itself could be a symptom of deeper underlying structural issues, which are not the focus of 

this study. 

 



35 
 

References 
Aitken, M. and Frino, A. (1996) 'Execution costs associated with institutional trades on the 

Australian Stock Exchange', Pacific-Basin Finance Journal, 4(1), 45-58. 
 
Aldridge, I. (2010) High-Frequency Trading: A Practical Guide to Algorithmic Strategies and 

Trading Systems 2nd ed., Wiley. 
 
Andersen, T. and Bondarenko, O. (2014) 'VPIN and the flash crash', Journal of Financial 

Markets, 17, 1-46. 
 
Avramov, D., Chordia, T. and Goyal, A. (2006) 'The Impact of Trades on Daily Volatility', The 

Review of Financial Studies, 19(4), 1241-1277. 
 
Biais, B., Hillion, P. and Spatt, C. (1995) 'An empirical analysis of the limit-order book and 

order flow in the Paris Bourse', The Journal of Finance, 50, 1655-1689. 
 
Borkovec, M., Domowitz, I., Serbin, V. and Yegerman, H. (2010) 'Liquidity and Price 

Discovery in Exchange-Traded Funds: One of Several Possible Lessons from the Flash 
Crash', The Journal of Index Investing, 1(2), 24-42. 

 
Brock, W. and Hommes, C. (1998) 'Heterogeneous beliefs and routes to chaos in a simple asset 

pricing model', Journal of Economic Dynamics and Control, 22(8), 1235-1274. 
 
Brogaard, J., Carrion, A., Riordan, R., Shkilko, A. and Sokolov, K. (2014) High Frequency 

Trading and Extreme Price Movements, unpublished. 
 
Caminschi, A. and Heaney, R. (2014) 'Fixing a leaky fixing: short-term market reactions to the 

London pm gold price fixing', Journal of Futures Markets, 34, 1003-1039. 
 
Chakrabarty, B., Moulton, P. and Shkilko, A. (2015) 'Evaluating Trade Classification 

Algorithms: Bulk Volume Classification versus the Tick Rule and the Lee-Ready 
Algorithm', Journal of Financial Markets, 25, 52-79. 

 
Chordia, T., Roll, R. and Subrahmanyam, A. (2001) 'Market Liquidity and Trading Activity', 

Journal of Finance, 56(2), 501-530. 
 
Chordia, T., Roll, R. and Subrahmanyam, A. (2008) 'Liquidity and market efficieny', Journal 

of Financial Economics, 87, 249-268. 
 
David, S. H. and Peter, R. H. (1979) Behavioural travel modelling, London: Croom Helm. 
 
Degryse, H., Jong, F., Ravenswaaij, M. and Wuyts, G. (2005) 'Aggressive Orders and the 

Resiliency of a Limit Order Market', Review of Finance, 9(2), 201-242. 
 
Easley, D., De Prado, M. and O'Hara, M. (2011) 'The microstructure of the "flash crash": flow 

toxicity, liquidity crashes, and the probability of informed trading', Journal of Portfolio 
Management, 37(2), 118-129. 

 
Easley, D., De Prado, M. and O'Hara, M. (2012) 'Flow Toxicity and Liquidity in a High-

frequency World', The Review of Financial Studies, 25(5), 1457-1493. 



36 
 

 
Easley, D., Kiefer, N., O'Hara, M. and Paperman, J. (1996) 'Liquidity, Information, and 

Infrequently Traded Stocks', The Journal of Finance, 51(4), 1405-1436. 
 
Easley, D., Kiefer, N. M. and O'Hara, M. (1997) 'One Day in the Life of a Very Common 

Stock', The Review of Financial Studies, 10(3), 805-835. 
 
Ederington, L. H. and Lee, J. H. (1995) 'The Short-Run Dynamics of the Price Adjustment to 

New Information', the Journal of Financial and Quantitative Analysis, 30(1), 117-134. 
 
Foucault, T. (1999) 'Order flow composition and trading costs in a dynamic limit order market', 

Journal of Financial Markets, 2, 99-134. 
 
Frino, A., Ibikunle, G., Mollica, V. and Steffen, T. (2017) 'The impact of commodity 

benchmark on derivatives markets: The case of the dated Brent assessment and Brent 
futures', journal of Banking & Finance, 1-17. 

 
Glosten, L. and Milgrom, P. (1985) 'Bid, ask, and transaction prices in a specialist market with 

heterogeneously informed agents', Journal of Financial Economics, 14, 71-100. 
 
Golub, A., Keane, J. and Poon, S. (2012) High Frequency Trading and Mini Flash Crashes, 

unpublished. 
 
Griffiths, M., Smith, B., Turnbull, A. and White, R. (2000) 'The costs and determinants of order 

aggressiveness', Journal of Financial Economics, 56, 65-88. 
 
Hagströmer, B., Nordén, L. and Zhang, D. (2014) 'How Aggressive Are High-Frequency 

Traders?', The Financial Review, 49, 395-419. 
 
Hirschey, N. (2017) Do High-Frequency Traders Anticipate Buying and Selling Pressure?, 

London Business School: unpublished. 
 
Ibikunle, G. (2015) 'Opening and closing price efficiency: Do financial markets need the call 

auction?', Journal of International Financial Markets, Institutions & Money, 34, 208-
227. 

 
Jacob Leal, S., Napoletano, M., Roventini, A. and Fagiolo, G. (2016) 'Rock around the clock: 

An agent-based model of low- and high-frequency trading', Journal of Evolutionary 
Economics, 26(1), 49-76. 

 
Kirilenko, A., Kyle, A., Samadi, M. and Tuzun, T. (2017) 'The Flash Crash: High Frequency 

Trading in an Electronic Market', The Journal of Finance, Forthcoming. 
 
Lee, C. and Ready, M. (1991) 'Inferring Trade Direction from Intraday Data', The Journal of 

Finance, 46(2), 733-746. 
 
Luce, D. (1959) Individual Choice Behavior, New York: Wiley. 
 
Madhavan, A. (2011) Exchange-Traded Funds, Market Structure and the Flash Crash, 

unpublished. 



37 
 

 
Manski, C. and McFadden, D. (1981) Structural analysis of discrete data with econometric 

applications, Cambridge: MIT Press. 
 
McFadden, D. (1974) Frontiers in Econometrics, New York: Academic Press. 
 
Mcinish, T., Upson, J. and Wood, R. (2014) 'The Flash Crash: Trading Aggressiveness, 

Liquidity Supply, and the Impact of Intermarket Sweep Orders', Financial Review, 
49(3), 481-509. 

 
Menkveld, A. and Yueshen, B. (2017) The Flash Crash: A Cautionary Tale about Highly 

Fragmented Markets, unpublished. 
 
Menkveld, A. J. (2013) 'High frequency trading and the new market makers', Journal of 

Financial Markets, 16(4), 712-741. 
 
Pellizzari, P. and Westerhoff, F. (2009) 'Some effects of transaction taxes under different 

microstructures', Journal of Economic Behavior and Organization, 72(3), 850-863. 
 
SEC (2010) Findings Regarding the Market Events of May 6, 2010, unpublished. 
 
Sofianos, G. (1995) Specialist gross trading revenues at the New York Stock Exchange, New 

York Stock Exchange: unpublished. 
 
Sun, Y. and Ibikunle, Y. (2016) 'Informed trading and the price impact of block trades : A high 

frequency trading analysis', International Review of Financial Analysis. 
 
Train, K. (2002) Discrete Choice Methods with Simulation, Cambridge: Cambridge University 

Press. 
 
Westerhoff, F. (2008) 'The Use of Agent-Based Financial Market Models to Test the 

Effectiveness of Regulatory Policies', Journal of Economics and Statistic, 228(2-3), 
195-227. 

 
Wu, K., Bethel, W., Leinweber, D., Rübel, J. and Gu, M. (2013) 'A big data approach to 

analyzing market volatility', Algorithmic Finance, 2(3-4), 241-267. 
 
Wuyts, G. (2011) 'The impact of aggressive orders in an order-driven market: a simulation 

approach', The European Journal of Finance, 18, 1015-1038. 
 



38 
 

Figure 1. Intraday evolution of the fraction of aggressive orders 

Panels A and B depict the minute-by-minute evolution of the fraction of aggressive orders for 53 S&P 500 stocks affected by the May 6 2010 flash crash; Panel B presents the 
fraction of aggressive orders when disaggregated into buys and sells, as well as the fraction of all aggressive orders, while Panel presents only the fraction of all aggressive 
orders. 99% confidence bands are constructed for Panel A using the means of the minute-by-minute fractions of aggressive orders across the stocks in the sample. The sample 
period covers 1:30 PM to 4 PM May 6, 2010. The shaded area indicates the flash crash period. 
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Panel B. Fraction of total, buy and sell aggressive orders 
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Figure 2. Intraday  evolution of aggressive order imbalance I  

The figure presents the minute-by-minute evolution of aggressive order imbalance (difference between the fractions of aggressive sell and buy orders) for 53 S&P 500 stocks 
affected by the May 6 2010 flash crash. The sample period covers 1:30 PM to 4 PM May 6, 2010. The shaded are indicates the flash crash period. The shaded area indicates 
the flash crash period. 
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Figure 3. Intraday evolution of aggressive orders 

The figure presents the minute-by-minute evolution of the numbers of total, sell and buy aggressive orders for 53 S&P 500 stocks affected by the May 6 2010 flash crash. The 
sample period covers 1:30 PM to 4 PM May 6, 2010. The shaded area indicates the flash crash period. The shaded area indicates the flash crash period. 
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Figure 4. Intraday evolution of aggressive order imbalance II 

The figure presents the minute-by-minute evolution of aggressive order imbalance (difference between the number of aggressive sell and buy orders) for 53 S&P 500 stocks 
affected by the May 6 2010 flash crash. The sample period covers 1:30 PM to 4 PM May 6, 2010. The shaded area indicates the flash crash period. The shaded area indicates 
the flash crash period. 
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Figure 5. Directional returns   

Panels A and B are minute-by-minute plots of average direction-adjusted returns and cumulative average direction-adjusted returns measures (in basis points) respectively for 
53 S&P 500 stocks affected by the May 6 2010 flash crash. The sample period covers 1:30 PM to 4 PM May 6, 2010. The shaded area indicates the flash crash period. 

 

Panel A. Average direction-adjusted returns 
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Panel B. Cumulative Average Adjusted Return 
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Table 1. Transactions’ summary statistics and statistical tests 
Panels A and B respectively present trading summary statistics and statistical tests of differences between the 
period of the flash crash and surrounding periods for 53 S&P 500 stocks affected by the May 6 2010 flash crash. 
The statistical tests conducted are two-sample t-tests and pairwise Wilcoxon-Mann-Whitney U tests. The sample 
period covers 1:30 PM to 4 PM May 6, 2010. The time series on May 6 2010 is divided into three: before the flash 
crash (from 1:30 PM to 2:32 PM), the flash crash period (from 2:32 PM to 3:08 PM), and after the flash crash 
(from 3.08 PM to 4 PM). 
 
Panel A. Summary statistics 

  Total transactions 
(000s) 

Average per minute 
transactions (000s) 

Number of  1:30 PM – 2:32 PM  186.6 3.0 
Transactions 2:32 PM – 3:08 PM 329.9 8.9 
 3:08 PM – 4 PM 405.8 7.8 
 All 922.3 19.7 

 

  Total trading volume 
(000s) 

Average per minute trading 
volume (000s) 

Trading  1:30 PM – 2:32 PM  62878.8 1014.2 
Volume 2:32 PM – 3:08 PM 98185.5 2653.7 
 3:08 PM – 4 PM 119209.9 2292.5 
 All 280274.2 5960.4 

 

  Total dollar trading 
volume ($'000,000) 

Average per minute dollar 
trading volume ($'000,000) 

Dollar 1:30 PM – 2:32 PM  2541.6 41.0 
Trading 2:32 PM – 3:08 PM 4332.2 117.1 
Volume 3:08 PM – 4 PM 5239.7 100.8 
 All 12113.5 258.9 

 
Panel B. Statistical tests 

Trading volume 
Method  p-value 
Two-Sample T tests   
Pooled  <0.0001 
Satterthwaite  <0.0001 
Wilcoxon-Mann-Whitney U tests  <0.0001 

Dollar trading volume 
Method  p-value 
Two-Sample T tests   
Pooled  <0.0001 
Satterthwaite  <0.0001 
Wilcoxon-Mann-Whitney U tests  <0.0001 
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Table 2. Order quoting summary statistics 
Table presents order quoting summary statistics for 53 S&P 500 stocks affected by the May 6 2010 flash crash. 
The sample period covers 1:30 PM to 4 PM May 6, 2010. The time series on May 6 2010 is divided into three: 
before the flash crash (from 1:30 PM to 2:32 PM), the flash crash period (from 2:32 PM to 3:08 PM), and after 
the flash crash (from 3.08 PM to 4 PM). 
 

  
Total number of shares 

at the bid side 
(000,000s) 

Average shares/minute at the 
bid side (000,000s) 

Number of  1:30 PM – 2:32 PM  168.4 2.7 
shares in 
orders 
submitted 

2:32 PM – 3:08 PM 93.3 2.5 

at the bid side 3:08 PM – 4 PM 130.0 2.5 
 All 391.7 7.7 

 

  
Total number of 

shares/minute at the 
ask side (000,000s) 

Average shares/minute at the 
ask side (000,000s) 

Number of  1:30 PM – 2:32 PM  168.3 2.7 
Shares in 
orders 
submitted 

2:32 PM – 3:08 PM 85.7 2.3 

at the ask side 3:08 PM – 4 PM 123.9 2.4 
 All 377.8 7.4 
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Table 3. Correlation matrix of explanatory variables 
The table presents the correlation matrix for the explanatory variables employed in the flash crash models. NAO 
is the number of aggressive orders, NASO is the number of aggressive sell orders, NABO is the number of 
aggressive buy orders, VPIN is the Volume-Synchronized Probability of Informed Trading, VLT is the standard 
deviation of the mid-price returns, OIB is the order imbalance, BAS is a bid-ask spread, MF represents market 
fragmentation, and lnV is the natural logarithm of the number of shares. The sample includes 53 S&P 500 stocks 
affected by the May 6 2010 flash crash. The sample period covers 1:30 PM to 4 PM May 6, 2010. 
 

 NAO NASO NABO VPIN VLT OIB BAS MF lnV 
NAO 1         

NASO 0.91 1        
NABO 0.90 0.92 1       
VPIN 0.014 0.013 0.014 1      
VLT 0.093 0.094 0.093 0.146 1     
OIB 0.385 0.383 0.384 0.054 0.139 1    
BAS -0.013 -0.012 -0.014 0.10 0.27 0.03 1   
MF 0.273 0.274 0.273 0.12 0.20 0.13 0.05 1  
lnV 0.394 0.395 0.394 0.08 0.30 0.27 0.05 0.58 1 
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Table 4. Summary statistics and statistical tests for aggressive orders/quotes 
Panels A and B present aggressive orders summary statistics and statistical tests of differences between the period 
of the flash crash and surrounding periods respectively for selected 53 S&P 500 stocks. The statistical tests 
conducted test the null of equality between the number of aggressive orders during the flash crash and the 
surrounding periods. The sample period covers 1:30 PM to 4 PM May 6, 2010. The time series on May 6 2010 is 
divided into three: before the flash crash (from 1:30 PM to 2:32 PM), the flash crash period (from 2:32 PM to 
3:08 PM), and after the flash crash (from 3.08 PM to 4 PM). 
 

Panel A. Summary statistics 

  Total aggressive sell 
orders (000s) 

Average per minute aggressive 
sell orders (000s) 

Number of  1:30 PM – 2:32 PM  397.3 6.4 
Aggressive 2:32 PM – 3:08 PM 515.4 13.9 
Sell Orders 3:08 PM – 4 PM 608.4 11.9 
 All 1519.5 10.1 

 

  Total aggressive buy 
orders (000s) 

Average per minute aggressive 
buy orders (000s) 

Number of  1:30 PM – 2:32 PM  362.8 5.8 
Aggressive 2:32 PM – 3:08 PM 513.7 13.8 
Buy Orders 3:08 PM – 4 PM 604.4 11.8 
 All 1480.9 9.8 

 

  Total aggressive 
orders (000s) 

Average per minute aggressive 
orders (000s) 

Number of  1:30 PM – 2:32 PM  760.1 12.2 
Aggressive 2:32 PM – 3:08 PM 1029.2 27.8 
Orders 3:08 PM – 4 PM 1212.8 23.7 
 All 3002.2 20 

 

Panel B. statistical tests 

  Mean number of aggressive orders 
Flash Crash Period 28204.1 
Surrounding Period  17413.7 
Difference 10790.4 

 
                                                                       Number of aggressive orders 

Method  p-value 
Two-Sample T tests   
Pooled  <0.0001 
Satterthwaite  <0.0001 
Wilcoxon-Mann-Whitney U tests  <0.0001 
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Table 5. Standard logit model for one second frequency 
The predictive power of the number of aggressive orders on flash crashes is estimated using the following model: 

 

The table reports logit regressions’ coefficient estimates using one second frequencies. Results for standard logit 
model estimations are presented for the number of aggressive orders, aggressive sell orders and aggressive buy 
orders in the second, third and fourth columns respectively. FCit equals zero from 1:30 PM to 2:17 PM, and from 
2:32 PM to 4:00 PM, while it takes the value of one from 2:17 PM to 2:32 PM. NAO, NASO and NABO are the 
number of aggressive orders, number of aggressive sell orders and number of aggressive buy orders, respectively, 
lnV is the natural logarithm of the number of shares, VPIN is the Volume-Synchronized Probability of Informed 
Trading, VLT is the standard deviation of the mid-price returns, OIB is the order imbalance, BAS is the prevailing 
bid-ask spread and MF represents market fragmentation. Standard errors are presented in parentheses. The sample 
includes 53 S&P 500 stocks affected by the May 6 2010 flash crash. The sample period covers 1:30 PM to 4 PM 
May 6, 2010. *** and ** correspond to statistical significance at the 0.01 and 0.05 levels, respectively. 
 
 

Variables NAO NASO NABO 
 4.98 x 10-3*** 

(2.18 x 10-4) 
1.66 x 10-2*** 

(7.27 x 10-4) 
7.12 x 10-3*** 

(3.12 x 10-4) 
lnV -1.23 x 10-2*** 

(2.37 x 10-3) 
-1.23 x 10-2*** 

(2.37 x 10-3) 
-1.23 x 10-2*** 

(2.37 x 10-3) 
VPIN -1.2531*** 

(2.43 x 10-2) 
-1.2531*** 

(2.43 x 10-2) 
-1.2530*** 

(2.43 x 10-2) 
VLT -1460.6*** 

(45) 
-1460.6*** 

(46.002) 
-1460.5*** 

(45.998) 
OIB -3 x 10-5*** 

(5.1 x 10-6) 
-3.11 x 10-5*** 

(5.1 x 10-6) 
-3 x 10-5*** 

(5.1 x 10-6) 
BAS -1.34*** 

(6.48 x 10-2) 
-1.3432*** 

(6.48 x 10-2) 
-1.3431*** 

(6.48 x 10-2) 
MF 1.70 x 10-3 

(5.26 x 10-3) 
1.68 x 10-3 

(5.26 x 10-3) 
1.7 x 10-3 

(5.26 x 10-3) 
Mc Fadden’s R2 0.025 0.0292 0.0251 
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Table 6. Multinomial logit model for one second frequency 
The predictive power of the number of aggressive orders is estimated using the following model: 

 

 
The table reports multinomial logit regressions’ coefficient estimates using one second frequencies; Results for multinomial logit model estimations for the number of aggressive 
orders, the number of aggressive sell orders and the number of aggressive buy orders are presented in the second, third and fourth columns respectively. FCit equals zero from 1:30 
PM to 2:17 PM, and from 3:08 PM to 4:00 PM, while it takes the value of one from 2:17 PM to 2:32 PM (pre-flash crash period) and takes the value of two from 2:32 PM to 3:08 
PM (the flash crash period). NAO, NASO and NABO are the number of aggressive orders, the number of aggressive sell orders and the number of aggressive buy orders, respectively, 
lnV is the natural logarithm of the number of shares, VPIN is the Volume-Synchronized Probability of Informed Trading, VLT is the standard deviation of the mid-price returns, 
OIB is the order imbalance, BAS is the prevailing bid-ask spread and MF represents market fragmentation. Standard errors are presented in parentheses. The sample includes 53 
S&P 500 stocks affected by the May 6 2010 flash crash. The sample period covers 1:30 PM to 4 PM May 6, 2010. *** and ** correspond to statistical significance at the 0.01 and 
0.05 levels, respectively. 

 NAO NASO NABO 
Variables FC = 1 FC = 2 FC = 1 FC = 2 FC = 1 FC = 2 

 6.30 x 10-3*** 

(2.33 x 10-4) 
3.81 x 10-3*** 

(1.79 x 10-4) 
2.09 x 10-2*** 
(7.74 x 10-3) 

1.27 x 10-2*** 

(5.95 x 10-4) 
9.0 x 10-3*** 

(3.32 x 10-3) 
5.45 x 10-3*** 

(2.55 x 10-4) 
lnV -2.75 x 10-2*** 

(2.43 x 10-3) 
4.71 x 10-2*** 

(1.77 x 10-3) 
-2.75 x 10-2*** 

(2.43 x 10-3) 
4.71 x 10-2*** 

(1.77 x 10-3) 
-2.74 x 10-2*** 

(2.43 x 10-3) 
4.71 x 10-2*** 

(1.77 x 10-3) 
VPIN -4.25 x 10-1*** 

(2.53 x 10-2) 
2.88*** 

(1.72 x 10-2) 
-4.25 x 10-1*** 

(2.53 x 10-2) 
2.88*** 

(1.72 x 10-2) 
-4.25 x 10-1*** 

(2.53 x 10-2) 
2.88*** 

(1.72 x 10-2) 
VLT -1045.2 *** 

(47.81) 
1106.9 *** 

(19.25) 
-1045.5 *** 

(47.81) 
1106.8 *** 

(19.24) 
-1045.0 *** 

(47.81) 
1106.9 *** 

(19.24) 
OIB -2.00 x 10-5*** 

(5.27 x 10-6) 
2.4 x 10-5*** 

(2.74 x 10-6) 
-2.10 x 10-5*** 

(5.27 x 10-6) 
2.4 x 10-5*** 

(2.74 x 10-6) 
-2.10 x 10-5*** 

(5.27 x 10-6) 
2.4 x 10-5*** 

(2.74 x 10-6) 
BAS -5.2 x 10-1*** 

(6.94 x 10-2) 
2.05*** 

(3.08 x 10-2) 
-5.2 x 10-1*** 

(6.94 x 10-2) 
2.05*** 

(3.08 x 10-2) 
-5.2 x 10-1*** 

(6.94 x 10-2) 
2.05*** 

(3.08 x 10-2) 
MF 4.18 x 10-2*** 

(5.36 x 10-3) 
1.71 x 10-1*** 

(4.24 x 10-3) 
4.18 x 10-2*** 

(5.36 x 10-3) 
1.71 x 10-1*** 

(4.24 x 10-3) 
4.18 x 10-2*** 

(5.36 x 10-3) 
1.71 x 10-1*** 

(4.24 x 10-3) 
Mc Fadden’s R2 0.066 0.0702 0.0665 
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APPENDIX A. Framework variables and definitions 

VARIABLE  DEFINITION 

 Ask Price at time t. 

 Bid Price at time t. 

 Mid-Price at time t. 

 Ask Price at time t under aggressive trading strategy. 

 Bid Price at time t under aggressive trading strategy. 

 Mid-Price at time t under aggressive trading strategy. 

 Ask Price at time t under market-making strategy. 

 Bid Price at time t under market-making strategy. 

 Mid-Price at time t under market-making strategy. 

 Profit at time t under aggressive trading strategy. 

 Profit from bid-ask spread at time t under aggressive trading 

strategy. 

 Profit from position at time t under aggressive trading strategy. 

 Attractiveness or fitness function of each type of strategy at 

time t. 

 Memory parameter. 

 Intensity of switching parameter. 

 Relative weight of aggressive trading strategy at time t. 
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APPENDIX B. Proof of the logit (discrete choice) model 

Logit is the most popular and easiest discrete choice model and has been extensively 

used to compute the relative weights of each trading strategy (see as examples Jacob Leal et al. 

2016, Pellizzari and Westerhoff 2009, Westerhoff 2008). Originally introduced by Luce 

(1959), it was further developed by McFadden (1974). McFadden (1974) and Train (2002) 

derive the logit choice probabilities model as a specific form of a discrete choice model. We 

introduce their proof step-by-step:  

The choice under logit model is based on unobserved utility, and this utility is 

decomposed into two components, i.e. the known ("!and unknown ( " parameters: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(B1) 

McFadden (1974) shows that the unobserved utility under logit model is a distributed 

extreme value. Therefore, it is assumed that the unknown parameter () is an independently 

and identically distributed extreme value, and the density for each is given as: 

!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(B2) 

and the cumulative distribution is: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(B3)!

! By using the formula of unobserved utility and following McFadden (1974), we can 

say that the probability of selecting alternative I is determined as follows:  

              (B4) 

If is considered given, this formula is the cumulative distribution for each

evaluated at  and, according to Equation B3, it is #   !

Since and are independent, the cumulative distribution is the product of the individual 

cumulative distributions: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(B5) 

 

 Then we can derive the logit choice probabilities as follows: 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!(B6) 

If s is $!then: 

!!(B7)!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

Define  such that #!Note that as s approaches infinity then 

t approaches zero. Furthermore, as s approaches negative infinity, t becomes large. Using that, 

!! !!!!!!!!!!!(B8) 

 As the first parameters of unobserved utility (and "!are known, they!can be 

specified as a linear in parameters. We follow Brock and Hommes (1998), Westerhoff (2008), 

and Pellizzari and Westerhoff (2009), and define fitness function ( " and the intensity of 

switching parameter ( ) as our parameters for the specification of the representative utilities. 

Then we can obtain the relative weights of each trading strategy as: 

                                                                        (B9) 

                                                                (B10) 
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APPENDIX C. List of the sample stocks 

ISIN CODE RIC Security name 
US0378331005 AAPL.OQ Apple Inc. 

US03073E1055 ABC.N AmerisourceBergen Corp. 
IE00B4BNMY34 ACN.N Accenture plc 
US0530151036 ADP.OQ Automatic Data Processing Inc. 
US0236081024 AEE.N Ameren Corp. 
US0015471081 AKS.N AK Steel Holding Corp. 
US0200021014 ALL.N Allstate Corp. 
US0231351067 AMZN.OQ Amazon.com Inc. 
US0325111070 APC.N Anadarko Petroleum Corp. 
US1101221083 BMY.N Bristol-Myers Squibb Co. 
US0846707026 BRKb.N Berkshire Hathaway Inc. 
US2058871029 CAG.N ConAgra Brands Inc. 
US1491231015 CAT.N Caterpillar Inc. 
US1651671075 CHK.N Chesapeake Energy Corp. 
US1567001060 CTL.N CenturyLink Inc. 
US1667641005 CVX.N Chevron Corp. 
US2635341090 DD.N E I du Pont de Nemours and Co. 
US2479162081 DNR.N Denbury Resources 
US2605431038 DOW.N Dow Chemical Co. 
US2786421030 EBAY.OQ eBay Inc. 
US2686481027 EMC.N EMC Corp. 
US30219G1085 ESRX.OQ Express Scripts Holding Co. 
US2971781057 ESS.N Essex Property Trust Inc. 
US3453708600 F.N Ford Motor Co. 
US3696041033 GE.N General Electric Co. 
US38259P7069 GOOG.OQ Alphabet Inc. (Google Inc. Class C) 
US4370761029 HD.N Home Depot Inc. 
US4282361033 HPQ.N Hewlett-Packard Inc. 
US4592001014 IBM.N International Business Machines Corp. 
US4581401001 INTC.OQ Intel Corp. 
US9255501051 JDSU.OQ JDS Uniphase Corp. 
US4781601046 JNJ.N Johnson & Johnson 
US1912161007 KO.N The Coca Cola Co. 
US5260571048 LEN.N Lennar Corp. 
US58155Q1031 MCK.N McKesson Corp. 
IE00BTN1Y115 MDT.N Medtronic Plc. 
US88579Y1010 MMM.N 3M Co. 
US02209S1033 MO.N Altria Group Inc. 
US5949181045 MSFT.OQ Microsoft Corp. 
US68389X1054 ORCL.OQ Oracle Corp. 
US7134481081 PEP.N PepsiCo Inc. 
US7170811035 PFE.N Pfizer Inc. 
US7427181091 PG.N Procter & Gamble Co. 
US7181721090 PM.N Philip Morris International Inc. 
US7132911022 POM.N Pepco Holdings Inc. 
US8454671095 SWN.N Southwestern Energy Co. 
US8835561023 TMO.N Thermo Fisher Scientific Inc. 
US8825081040 TXN.N Texas Instruments Inc. 
US91324P1021 UNH.N United Health Group Inc. 
US9497461015 WFC.N Wells Fargo & Co. 
US9311421039 WMT.N Wal-Mart Stores Inc. 
US30231G1022 XOM.N Exxon Mobil Corp. 
US9884981013 YUM.N Yum! Brands Inc. 
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