Optimal Purchase of Life and Longevity Risk Insurance Products for Retired Couples

Andreas Hubener, Raimond Maurer, and Ralph Rogalla

Longevity Risk Conference, September 2011
Motivation and Research Question

Uncertainty of lifetimes is major risk for retired couples:
• risk of outliving their assets and leaving too little bequest
• risk of losing the income of the deceased spouse

How can this risk be hedged by the dynamic allocation using
• term life insurance
• single annuities
• joint and survivor annuities
• stocks and bonds
Literature and Contributions

Brown and Poterba (2000, JRI): welfare gains of full annuitization in joint and survivor annuities for couples in retirement

Horneff et al. (2008, JRI): dynamic annuitization and portfolio choice in retirement framework

Love (2010, RFS): dynamic life cycle portfolio choice for families - investment universe: stocks, bonds, life insurance

Our contribution: discrete time portfolio choice model for a couple in retirement with dynamic annuitization and life insurance purchases
Our Model – Family State

Family State

- “family” is Markov chain with four states:
 - couple
 - widow
 - widower
 - both deceased

- transitions are only mortality driven (→ no divorce etc.) and given by the individual one-year survival probabilities.

\[
\begin{align*}
\text{Couple} & \quad p^f (1 - p^m) \\
\text{Widow} & \quad (1 - p^f) \\
\text{Widower} & \quad (1 - p^f) \cdot (1 - p^m) \\
\text{both deceased} & \quad (1 - p^m)
\end{align*}
\]
Our Model – Preferences

Family Preferences

• utility is gained from consumption and bequest in CRRA framework (RRA $\gamma = 5$; time pref. $\beta = 0.96$)

• consumption is normalized by consumption scaling factor ϕ_s (“effective family size”)

\rightarrow couple: $\phi_s = 1.3$ singles: $\phi_s = 1$

• bequest Parameter $B = 2$ gives the strength of the bequest motive

\[
J_t = \max\{u(C, s) + \beta E_t [J_{t+1}]\}
\]

Markov chain

\[
u(C, s) = \frac{1}{1 - \gamma} \left(\frac{C}{\phi_s}\right)^{1-\gamma}
\]

\[
\text{Bequest} = \frac{1}{1 - \gamma} \left(\frac{W_t}{B}\right)^{1-\gamma}
\]
Our Model – Financial & Insurance Products

Financial and Insurance Products

- liquid wealth can be invested in
 - riskless bonds (interest rate: \(R_f - 1 = 2\% \))
 - risky stocks (risk premium 4%, volatility 15.7%)

- renewable one-year term life insurance for each spouse

- single annuities for each spouse

- joint annuities – constant payments till the last spouse dies

\[
LP_t = L \cdot \frac{1 - p_t}{R_f}
\]

\[
AP_t = A \cdot \sum_{\tau=t+1}^{T} \frac{p_{\tau,t}}{(R_f)^{\tau-t} \bar{a}_t}
\]

\[
p_{\tau,t}^j = p_{\tau,t}^f + p_{\tau,t}^m - p_{\tau,t}^f p_{\tau,t}^m
\]
Our Model – Financial & Insurance Products

Joint and Survivor Annuities: Survivor Benefit Ratio

• upon first death payments are reduced to survivor benefit ratio K

• Annuity pricing factor: $\ddot{a}_t^K = (1 - K)(\ddot{a}_t^f + \ddot{a}_t^m) + (2K - 1)\ddot{a}_t^j$

• single and joint annuities ($K=1$) allow for any survivor benefit ratio K

• the overall annuity holdings of the family can be seen as a combination of:
 - j&s annuity with a specific survivor benefit ratio, and
 - an additional single annuity for one spouse

• example:

 model
 - wife $A^f = 4$
 - husband $A^m = 3$
 - joint ($K=1$) $A^j = 4$

 interpretation
 - j&s ($K=0.7$) $A^{K=0.7} = 10$
 - wife $A^f = 1$
Our Model – Policies

Decision Variables in each Period:

• consumption

• expenditures on life insurances
 o wife
 o husband

• expenditures on annuities
 o wife
 o husband
 o joint
 (availability is restricted to maximum age)

• allocation of (remaining) liquid wealth to stocks and bonds

Solution for optimal decisions found by value function iteration.
Life Cycle Profile without Pre-Annuitized Wealth

Wealth

- liquid wealth
- annuity PV

Life insurance (face values)

- LI husb
- LI wife

Annuity payments

- annu husb
- annu wife
- annu joint
- annu total

Survivor benefit ratio K

0,4 0,5 0,6 0,7 0,8 0,9 1
Life Cycle Profile with Pre-Annuitized Wealth (husband)

Wealth

- liquid wealth
- annuity PV

Life insurance (face values)

- LI husb
- LI wife

Annuity payments

- annu husb
- annu wife
- annu joint
- annu total

Survivor benefit ratio K

- K_{husb}
- K_{wife}
Welfare Analysis

- certainty equivalent at age 65:

\[CE_{65} = \left((1 - \gamma) \cdot J_{65} \right)^{\frac{1}{1-\gamma}} \]

<table>
<thead>
<tr>
<th></th>
<th>no pre-annuitization</th>
<th>with pre-annuitization (only husband)</th>
</tr>
</thead>
<tbody>
<tr>
<td>annuities available up to age 80</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>no annuities available at all</td>
<td>0.83</td>
<td>0.86</td>
</tr>
<tr>
<td>annuities available up to age 65</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>annuities available up to age 80 no life insurance</td>
<td>0.999</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Welfare Analysis

• Certainty equivalent at age 65:

\[CE_{65} = \left((1 - \gamma) \cdot J_{65} \right)^{\frac{1}{1-\gamma}} \]

<table>
<thead>
<tr>
<th></th>
<th>no pre-annuitization</th>
<th>with pre-annuitization (only husband)</th>
</tr>
</thead>
<tbody>
<tr>
<td>annuities available up to age 80</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>no annuities available at all</td>
<td>0.83</td>
<td>0.86</td>
</tr>
<tr>
<td>annuities available up to age 65</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>annuities available up to age 80 no life insurance</td>
<td>0.999</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Welfare Analysis

- certainty equivalent at age 65:

\[CE_{65} = \left((1 - \gamma) \cdot J_{65} \right)^{\frac{1}{1-\gamma}} \]

<table>
<thead>
<tr>
<th></th>
<th>no pre-annuitization</th>
<th>with pre-annuitization (only husband)</th>
</tr>
</thead>
<tbody>
<tr>
<td>annuities available up to age 80</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>no annuities available at all</td>
<td>0.83</td>
<td>0.86</td>
</tr>
<tr>
<td>annuities available up to age 65</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>annuities available up to age 80 no life insurance</td>
<td>0.999</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Welfare Analysis

- certainty equivalent at age 65:
 \[CE_{65} = \left((1 - \gamma) \cdot J_{65} \right)^{\frac{1}{1 - \gamma}} \]

<table>
<thead>
<tr>
<th>Annuities Available up to</th>
<th>No Pre-annuitization</th>
<th>With Pre-annuitization (Only Husband)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 80</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>No Annuities Available at All</td>
<td>0.83</td>
<td>0.86</td>
</tr>
<tr>
<td>Age 65</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>No Life Insurance</td>
<td>0.999</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Welfare Analysis

- certainty equivalent at age 65:

\[CE_{65} = \left((1 - \gamma) \cdot J_{65} \right)^{\frac{1}{1-\gamma}} \]

<table>
<thead>
<tr>
<th></th>
<th>no pre-annuitization</th>
<th>with pre-annuitization (only husband)</th>
</tr>
</thead>
<tbody>
<tr>
<td>annuities available up to age 80</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>no annuities available at all</td>
<td>0.83</td>
<td>0.86</td>
</tr>
<tr>
<td>annuities available up to age 65</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>annuities available up to age 80 no life insurance</td>
<td>0.999</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Conclusion

• Joint & survivor annuities are useful products to hedge both kinds of mortality risk.

• Liquid wealth (invested mainly in stocks) is preferred over life insurance for bequest.

• Life insurance is used to insure pre-annuitized retirement wealth (e.g. DB pensions) of one spouse. Then they yield high welfare gains.
Thank you!
Backup
• Household may purchase annuities only at the beginning of retirement

• What is the survivor benefit factor of the optimal j&s annuity?

<table>
<thead>
<tr>
<th>consumption scaling factor</th>
<th>survivor benefit ratio K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.000</td>
</tr>
<tr>
<td>1.10</td>
<td>0.924</td>
</tr>
<tr>
<td>1.20</td>
<td>0.848</td>
</tr>
<tr>
<td>1.30</td>
<td>0.784</td>
</tr>
<tr>
<td>1.40</td>
<td>0.729</td>
</tr>
<tr>
<td>1.50</td>
<td>0.681</td>
</tr>
<tr>
<td>1.60</td>
<td>0.639</td>
</tr>
<tr>
<td>1.70</td>
<td>0.602</td>
</tr>
<tr>
<td>1.80</td>
<td>0.570</td>
</tr>
<tr>
<td>1.90</td>
<td>0.540</td>
</tr>
<tr>
<td>2.00</td>
<td>0.516</td>
</tr>
</tbody>
</table>

![Graph showing the effect of consumption scaling on survivor benefit ratio.](image)