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Abstract 
To date, much effort has been directed towards the development of stochastic models 
that are analogous to traditional deterministic methods. In practice, however, the 
traditional models are often altered to incorporate expert opinion. This paper 
considers the use of Bayesian models to allow practitioners to apply their judgement 
to the development factors in the chain-ladder technique. The implementation uses 
MCMC methods within winBUGS. In this way, it is possible to use stochastic models 
to obtain predictive distributions of reserves in a much wider range of situations. 
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1. Introduction 
 
 
In recent years, significant advances have been made in the development of stochastic 
models for claims reserving in general insurance. This has resulted in a greater 
understanding of the stochastic nature of forecasts of outstanding claims, and a range 
of models have been developed for obtaining prediction errors, and predictive 
distributions, for outstanding claims. England and Verrall (2002) provides a summary 
of the developments.  
 
To date, much effort has been directed towards the development of stochastic models 
that are analogous to traditional deterministic methods. In practice, however, the 
traditional models are often altered to incorporate expert opinion. One aspect of this, 
which is considered in this paper, is when the actuary intervenes to change the 
parameter estimates used to forecast outstanding claims from the values actually 
estimated from the data. This is an important consideration, and it is desirable to be 
able to reproduce this process within a stochastic framework. The advantage of 
incorporating this practical approach within a stochastic framework is that additional 
quantities can also be calculated: prediction errors, prediction intervals, predictive 
distributions, and so on. 
 
This paper considers the use of Bayesian models to allow the practitioner to intervene 
in the estimation of the development factors. In practice, the intervention usually 
involves changing the value used for a development factor for a particular row, or 
only using a portion of the data to estimate the development factors used to forecast 
outstanding claims. This approach is often taken in practice if there is evidence that 
the settlement pattern has changed, with the result that it would not be appropriate to 
use the same development factor for each row. We anticipate that a practitioner would 
be able to extend the specific cases considered in this paper to cover other situations, 
which, although not covered here, would also be useful and could be formulated as 
Bayesian models. The specific cases we consider are: 
 

• the intervention in a development factor in a particular row, and  
• the choice of how many years of data to use in the estimation. 

  
A natural approach to use is a Bayesian method, and this paper shows how this can be 
done, and examines the effects of prior information on the results. This paper can be 
read as a sequel to England and Verrall (2002): it develops further the Bayesian 
models introduced in that paper and shows how the stochastic approach can include 
expert judgement.  
 
A number of papers on Bayesian methods in claims reserving have appeared in recent 
years. Ntzoufras and Dellaportas (2002) consider a number of models in a Bayesian 
framework. De Alba (2002) formulates the chain-ladder technique as a conditional 
multinomial model, and thereby obtains a full predictive distribution of outstanding 
claims. De Alba uses vague prior distributions, and hence no prior knowledge is 
assumed about any of the parameters. In this paper, we look in more detail at the 
Bayesian models in order to consider how proper prior distributions may be used to 
incorporate prior opinion. England and Verrall (2002), Section 8, used a similar 
approach to obtain a full predictive distribution for the outstanding liabilities using the 



chain-ladder technique, again without assuming any prior knowledge. These papers 
showed how Bayesian methods naturally provide predictive distributions.  
 
A different, although related, approach is bootstrapping. Bootstrapping also enables 
prediction errors and predictive distributions to be obtained fairly straightforwardly 
(using just a spreadsheet for simple models), as shown in England and Verrall (1999) 
and England (2002). This has resulted in bootstrapping becoming one of the most 
popular methods for stochastic reserving. We believe that Bayesian methods have 
even greater potential, because of the potential for introducing knowledge about the 
parameters obtained using additional information. 
 
In a related paper, Verrall (2004) showed how the Bornhuetter-Ferguson technique 
can be reformulated as a Bayesian model. The similarity with this paper is that prior 
knowledge is incorporated into the reserve estimates and predictive distributions. 
However, the Bornhuetter-Ferguson technique (and the related stochastic model 
derived in Verrall, 2004) assumes that there is prior knowledge about the expected 
ultimate claims in each row. Thus, a prior distribution is specified for the parameters 
associated with each row – the accident, or underwriting years. Here we consider 
incorporating prior knowledge about the development factors – the parameters 
associated with each column, or development period. 
 
Thus, this paper shows how proper (or “informative”) Bayesian prior distributions can 
be used to combine knowledge from the business about the run-off patterns into 
reserve estimates and distributions using the chain-ladder technique. Of course, it is 
easy to obtain reserve estimates even when the estimates of the link ratios 
(development factors) using past data are not used. However, this suffers from the 
same deficiency as the chain-ladder technique: only point estimates are available, and 
no information concerning variability of the forecasts. 
 
The paper is set out as follows. Section 2 summarises the stochastic models for the 
chain-ladder technique that are used in subsequent sections. Section 3 derives the 
recursive negative binomial model in a Bayesian context. Section 4 describes the 
extension of the Bayesian approach so that it is possible to intervene in the 
development factors, and section 5 contains the implementation. The computer code 
used in the implementation is supplied in the appendix. Section 6 concludes. 
 
 
2. Stochastic Models for the Chain-ladder Technique 
 
This section gives a brief summary of stochastic models that are related to the chain-
ladder technique. A number of the models, with various positivity constraints, give 
the same reserve estimates as the chain-ladder technique. 
 
Although the methods described in this paper can be applied to more general shapes 
of claims data, it simplifies the notation if we assume that we have a conventional 
triangle of data. Thus, without loss of generality, we assume that the data consist of a 
triangle of incremental claims: 
 
 { }C j n i i nij : , , ; ,= − + =1 1 1… … . 



 
The cumulative claims are defined by: 
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and the development factors of the chain-ladder technique are denoted by 
{ }λ j j n: , ,= 2 … . The estimates of the development factor from the standard chain-
ladder technique are 
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These are then applied to the latest cumulative claims in each row ( 1, +−iniD ) to 
produce forecasts of future values of cumulative claims: 
 

21,2,
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Previous papers have explored the connections between the chain-ladder technique 
and various stochastic models. Mack (1993) takes a non-parametric approach and 
specifies only the first 2 moments for the cumulative claims, and in that model the 
mean and variance of ijD  are 1, −jij Dλ  and 1,

2
−jij Dσ , respectively. Estimates of all the 

parameters are derived, and the properties of the model are examined. The advantages 
of this approach are that the parameter estimates and prediction errors can be obtained 
just using a spreadsheet, without having recourse to a statistical package or any 
complex programming. Also, the estimates can be obtained for most data, whether 
there are negative incremental claims or not. One disadvantage is that a predictive 
distribution is not available, since the distribution of the data has not been fully 
specified. Also, there are separate parameters in the variance that must also be 
estimated, separately from the estimation of the development factors. 
 
Renshaw and Verrall (1998) used an approach based specifically on generalised linear 
models (McCullagh and Nelder, 1989) and examined the over-dispersed Poisson 
model for incremental claims. “Over-dispersion” is used to add flexibility to the 
models used, by adding a parameter to the variance. We use it in the context of the 
Poisson and negative binomial distributions, and it is defined so that the random 
variable, Y, is defined by Y Xϕ= , where X has a Poisson or negative binomial 
distribution. Thus, for the over-dispersed Poisson distribution, Y has mean and 
variance ϕμ  and 2ϕ μ , where [ ]E Xμ = . The over-dispersed Poisson distribution 



may be parameterised in a number of different ways. Renshaw and Verrall (1998) 
used a log link function and an additive predictor, so that 
 
log( )ij i jE C c α β⎡ ⎤ = + +⎣ ⎦  with the restriction that α β1 1 0= = . 
 
An alternative parameterisation uses an identity link and a multiplicative structure: 
 

| , , ~ijC x y ϕ  independent over-dispersed Poisson, with mean i jx y , and yk
k

n

=
∑ =

1

1. 

(2.1) 
 

Here { }1 2, , , nx x x x= …  is a parameter vector relating to the rows (accident years) and 

[ ]x E Di in= , expected ultimate cumulative claims (up to the latest development year 
so far observed, n) for the ith accident year. The parameter vector { }1 2, , , ny y y y= …  
relates to the columns (development years) of the run-off triangle, and jy  can be 
interpreted as the proportion of ultimate claims which emerge in development year j. 
When maximum likelihood estimation is used, or Bayesian estimation with non-
informative prior distributions, this model gives the same reserve estimates as the 
chain-ladder technique (as long as the row and column sums of incremental claims are 
positive). However, the connection with the chain-ladder technique is not immediately 
apparent from the formulation of the model. For this reason, we prefer to use the 
negative binomial model. This was developed by Verrall (2000), building on the over-
dispersed Poisson model. Verrall (2000) showed that the same predictive distribution 
can be obtained from a negative binomial model (also with the inclusion of an over-
dispersion parameter). This model is the basis for the Bayesian approach in this paper, 
and is derived in the following section. 
 
 
3. The Negative Binomial Model for the Claims Triangle 
 
The negative binomial model is a recursive approach, and hence we need to consider 
the data recursively, and write the likelihood accordingly. The data is received in the 
following order: 
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The data vector at time t can be defined by 
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The likelihood can be written in a recursive form as: 
 
( )1 2, , , | , ,nf C C C x y ϕ…  

( ) ( ) ( )1 2 1 1 2 1| , , | , , , | , , , , , ,n nf C x y f C C x y f C C C C x yϕ ϕ ϕ−= … …  
 
In this paper, we use a Bayesian approach, and obtain the posterior distribution of the 
parameters using Bayes theorem: 
 

( )1 2, | , , , ,nf x y C C C ϕ ∝… ( ) ( )1 2, , , | , , ,nf C C C x y f x yϕ…  
 
Note that the over-dispersion parameter, ϕ , is treated as a nuisance parameter and a 
plug-in estimate is used. A full Bayesian approach would give this parameter a prior 
distribution and include it in the prior-posterior analysis. The approach taken here is 
simpler and is similar to the approach which is often used in a classical analysis. 
 
By considering the likelihood in recursive form, we can also find the posterior 
distribution of the parameters recursively as follows: 
 
 ( )1 2, | , , , ,tf x y C C C ϕ ∝… ( ) ( )1 2 1| , , , | , , ,t tf C x y f x y C C Cϕ −…  
 
The aim of claims reserving is to derive the one-step-ahead predictive distribution of 
future claims:  
 

( )1 2 1| , , , ,t tf C C C C ϕ−… .      (3.1) 
 
It is straightforward to extend this to n-steps-ahead prediction. Leaving aside the 
estimation of the dispersion parameter, ϕ , this predictive distribution can be derived 
for the over-dispersed Poisson model by first deriving the posterior distribution of the 
parameters, and then integrating these out: 
 
( ) ( ) ( )1 2 1 1 2 1| , , , , | , , , | , , , ,t t t tf C C C C f C x y f x y C C C dxdyϕ ϕ ϕ− −= ∫∫… …  (3.2) 

 
This predictive distribution can be written as 
 
( )1 2 1| , , , ,t tf C C C C ϕ− =…  

( ) ( )( ) ( )1 2 1 1 2 1| , , | , , , , , | , , , ,t t tf C x y f x C C C y dx f y C C C dyϕ ϕ ϕ− −= ∫ ∫ … …
 

          (3.3) 
 
We consider first ( ) ( )1 2 1| , , | , , , , ,t tf C x y f x C C C y dxϕ ϕ−∫ … . This is the distribution of 

tC , using the posterior distribution for the row parameters, x, but conditioning 
throughout on the column parameters. Note that the distribution of the parameters, 

1 2, , , nx x x…  is obtained conditional on y and ϕ , using only the data in the appropriate 
row. Also, there is one data point from each row in tC , and hence we consider 



( ) ( ), 1 1 2 1| , , | , , , , ,i t i i t if C x y f x C C C y dxϕ ϕ− + −∫ … . This distribution was also considered in 
detail by Verrall (2000). The following theorem derives the form of this distribution 
when non-informative prior distributions are used for the row parameters. 
 
Theorem 
 
If non-informative gamma prior distributions are used for the row parameters, 

( ) ( ), 1 1 2 1| , , | , , , , ,i t i i t if C x y f x C C C y dxϕ ϕ− + −∫ …  is an over-dispersed negative binomial 
distribution with mean and variance 
  

( )1 ,1t i i t iDλ − + −−   and  ( )1 1 ,1t i t i i t iDϕλ λ− + − + −− ,   respectively, 
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Proof 
 
Note that if Y has an over-dispersed Poisson distribution, with mean and variance ϕμ  

and 2ϕ μ , then YX
ϕ

=  has a Poisson distribution with mean [ ]E Xμ = . Hence  
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Consider first ( )1 2 1| , , , , ,i tf x C C C y ϕ−… ( ) ( ),1 ,2 ,, , , | , ,i i i t i i if C C C x y f xϕ−∝ …  
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Hence 1 2 1| , , , , ,i tx C C C y ϕ−…  has a gamma distribution, with parameters ,i t iD
ϕ

−  and 

1

t i

k
k

y

ϕ

−

=
∑

.  

 



Hence ( ), 1
1 2 1| , , | , , , , ,i t i

t

C
f x y f x C C C y dxϕ ϕ

ϕ
− +

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ …  

,

, 1
,

1

1
1 1 1

, 1 ,0

1 exp exp
1

i t i

i t i
i t i

D
t i

k
k

t i
C D i k

i t i i t i k
i i

i t i i t i

y

x y
x y x y x dx

C D

ϕ

ϕ
ϕ

ϕ

ϕ ϕ ϕ
ϕ ϕ

−

− +
−

−

=
−

∞ −
− + − + =

− + −

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠ ⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎝ ⎠ ⎝ ⎠Γ + Γ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑

∑
∫

 
,

, 1

, 1

1 1
1

1
1

, 1 , 0

exp
1

i t i

i t i

i t i

D
t i

C
k

t i k
t i

D i k
k

i i
i t i i t i

y
y

x y
x dx

C D

ϕ

ϕ

ϕ

ϕ ϕ

ϕ
ϕ ϕ

−

− +

− +

−

− + =
− +

∞ −
=

− + −

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎛ ⎞⎜ ⎟⎝ ⎠
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟= −

⎛ ⎞ ⎛ ⎞ ⎜ ⎟Γ + Γ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑

∑
∫  

,

, 1

, 1

1 1

, 1

, 1 , 1

1

1

i t i

i t i

i t i

D
t i

C
k

t i k

i t i

D
i t i i t i t i

k
k

y
y

D

C D
y

ϕ

ϕ

ϕ

ϕ ϕ
ϕ

ϕ ϕ

ϕ

−

− +

− +

−

− + =

− +

− + − − +

=

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎛ ⎞⎜ ⎟⎝ ⎠ Γ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞ ⎛ ⎞
Γ + Γ ⎛ ⎞⎜ ⎟ ⎜ ⎟

⎜ ⎟⎝ ⎠ ⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
 

 
,, 1

, 1

1 1
1 1

, 1 ,

1 1
1

i t ii t i DC
t i

i t i
k

t i k
t i t i

i t i i t i
k k

k k

D
y

y
C D y y

ϕ ϕ

ϕ

ϕ ϕ

−− +
−

− +

− + =
− + − +

− + −

= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟=
⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟Γ + Γ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑

∑ ∑
. 

 

This is a negative binomial distribution, with parameters ,i t iD
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Hence, ( ) ( ), 1 1 2 1| , , | , , , , ,i t i tf C x y f x C C C y dxϕ ϕ− + −∫ …  is an over-dispersed negative 
binomial distribution with mean and variance 
  

( )1 ,1t i i t iDλ − + −−   and  ( )1 1 ,1t i t i i t iDϕλ λ− + − + −− ,   respectively, 
 
which completes the proof of the theorem. 
 
Notes: 
1. In the proof of the theorem, we have derived the posterior distribution of 

1 2 1| , , , , ,i tx C C C y ϕ−… . It should be noted that only the data in row i is needed to 
derive this distribution, since the distribution of the data in the other rows does not 
depend on ix . 
2. The relationship between the parameters 1 2, , , ny y y…  and the parameters 

2 3, , , nλ λ λ…  was explored in Verrall (1991). Note that there are the 1n −  free 
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3. The mean of the distribution of ( ) ( ), 1 1 2 1| , , | , , , , ,i t i tf C x y f x C C C y dxϕ ϕ− + −∫ …  is 
clearly closely related to the chain-ladder technique. In fact, by adding the previous 
cumulative claims, an equivalent model for ijD  has an over-dispersed negative 
binomial distribution, with mean and variance λ j i jD , −1   and  ( ) 1,1 −− jijj Dλφλ ,   



respectively. Here the connection with the chain-ladder technique is immediately 
apparent in the mean. 
 
 
This theorem can be used with (3.3) in order to show that the predictive distribution of 
future claims can be obtained by supplying prior distributions for the column 
parameters. If non-informative, improper prior distributions are also used for the 
column parameters, then the forecasts will be the same as those from the chain-ladder 
technique. Again, the same positivity constraints apply as for the over-dispersed 
Poisson model. The necessity for the column sums to be positive is immediately 
apparent from the form of the variance: a negative sum would result in a development 
factor less than 1 ( 1jλ < ), and hence a negative variance. 
 
It is important to note that exactly the same predictive distribution can be obtained 
from either the Poisson or negative binomial models, as long as non-informative prior 
distributions are used. Verrall (2000) also argued that the model could be specified 
either for incremental or cumulative claims, with no difference in the results. The 
negative binomial model has the advantage that the form of the mean is exactly the 
same as that which naturally arises from the chain-ladder technique. This paper only 
considers proper prior distributions when modelling the column parameters, not the 
row parameters, which are always given non-informative prior distributions, and the 
result of the theorem, above, used: we always use the recursive negative binomial 
model. Giving the row parameters proper prior distributions is equivalent to the 
Bornhuetter-Ferguson method (see Verrall, 2004): in this paper, we are more 
concerned with the run-off shape.  
 
The purpose of this paper is to show how expert opinion, from sources other than the 
specific data set under consideration, can be incorporated into the predictive 
distributions of the reserves for the models that, subject to the positivity constraints, 
give the same reserves as the chain-ladder technique. The next section specifies a 
Bayesian approach to the negative binomial model. 
 
4. Bayesian Models 
 
Section 3 has shown that by using non-informative prior distributions for the row 
parameters, we can then use the recursive negative binomial model for the data to 
estimate the column parameters. The column parameters can be defined in a number 
of ways, including those used in sections 2 and 3, 1 2, , , ny y y…  and 2 3, , , nλ λ λ… . 
Thus, it is possible to define prior distributions for either set of parameters. Since it is 
usual to think in terms of the development factors, in this section we define some 
prior distributions for 2 3, , , nλ λ λ… , and consider the predictive distribution of future 
claims using the equivalent of (3.3). In other words, we use the distribution of 

( ) ( ), 1 1 2 1| , , | , , , , ,i t i tf C x y f x C C C y dxϕ ϕ− + −∫ … , which is an over-dispersed negative 

binomial distribution with mean ( )1 ,1t i i t iDλ − + −−  and variance ( )1 1 ,1t i t i i t iDϕλ λ− + − + −− , 
and apply appropriate prior distributions for 2 3, , , nλ λ λ… .  
 
In this way, Bayesian models are specified which allows the practitioner to intervene 
in the estimation of the development factors. In practice, intervention usually means 



simply changing a development factor for a particular row. Thus, although the same 
development parameters (and hence run-off pattern) is usually applied for all accident 
years, if there is some exogenous information that indicates that this is not 
appropriate, the practitioner may decide to apply a different development factor (or 
set of factors) in some, or all, rows. The reasons for intervening in this way could be 
that there is information that the settlement pattern has changed, for example. This 
would mean that it would not be appropriate to use the same development factor for 
each row. Thus, the first step is to generalise the negative binomial model so that 
incremental claims, ijC , have an over-dispersed negative binomial distribution, with 
mean and variance 
  
( ), , 11i j i jDλ −−   and  ( ), , , 11i j i j i jDϕλ λ −− ,   respectively. 
 
That is, the development factors depend on both origin year i and development year j.  
As it stands, this model is obviously over-parameterised but it is not intended that it 
should be used in this form without, for example, prior assumptions on some of the 
parameters. Also, the development factors could be set equal to each other for most 
rows, with only those where the development pattern is thought to have changed 
being given a separate value. For example, it could be postulated that 
 

1,2 2,2 3,2 2λ λ λ λ= = =  
 
but 4,2λ  has a different value (with a prior distribution motivated by external 
information). 
An equivalent formulation (which is more in line with the statistical packages) is ijC  
has an over-dispersed negative binomial distribution, with parameters 
 

, 1i jD −   and  ,
,

1
i j

i j

p
λ

= . 

 
Additionally, the over-dispersion parameter can be more easily dealt with by noting 
that  
 

 ijC
ϕ

  ~ negative binomial, parameters , 1i jD
ϕ

−   and  
,

1

i jλ
. 

 
Thus, the model can be treated by either using the original data and a “quasi-
likelihood” to incorporate the over-dispersion, or else the original data can be divided 
by the over-dispersion parameter and the exact likelihood used. The quasi-likelihood 
approach cannot be used for prediction purposes, and the possible shortcomings of the 
second method are discussed in section 8 of England and Verrall (2002). 
 
The next stage is to define prior distributions for the parameters, ,i jp  or (equivalently) 

,i jλ . It is possible to set some of these equal to each other (within each column), as 
above. To revert to the standard chain-ladder model, one would set 
 



 ,i j jλ λ=  for  1, 2, , 1; 2,3, ,i n j j n= − + =… …  
 
and define vague prior distributions for jλ  ( )2,3, ,j n= … . This was the approach 
taken in Section 8 of England and Verrall (2002) and is very similar to that taken by 
de Alba (2002). This can provide a very straightforward method to obtain prediction 
errors and predictive distributions. 
 
However, we show here how it is also possible to use a proper Bayes prior to 
encompass the expert opinions about the development parameters. There is a number 
of ways in which this could be used, and we describe some possibilities here. It is 
expected that a practitioner would be able to extend these to cover situations which, 
although not specifically covered here, would also be useful. The cases considered 
here are: 
 
(1) the intervention in a development factor in a particular row, and  
(2) the choice of how many years of data to use in the estimation.  
 
The reasons for intervening in these ways could be that there is information that the 
settlement pattern has changed, making it inappropriate to use the same development 
factor for each row. 
 
For the first case, what may happen in practice is that a development factor in a 
particular row is simply changed. Thus, although the same development parameters 
(and hence run-off pattern) is usually applied for all accident years, if there is some 
exogenous information that indicates that this is not appropriate, the practitioner may 
decide to apply a different development factor (or set of factors) in some, or all, rows. 
 
In the second case, it is common to look at, say, 3-year volume weighted averages in 
calculating the development factors, rather than using all the available data in the 
triangle. Bayesian methods make this particularly easy to do, and are flexible enough 
to allow many possibilities 
 
We use a 10 10×  triangle in the illustrations in the following section. For the first of 
the two cases described above, we suppose that there is information that implies that 
the second development factor (from column 2 to column 3) should be given the value 
1.5, for rows 8, 9,and 10, and that there is no indication that the other parameters 
should be treated differently from the standard chain-ladder technique. An appropriate 
way to treat this would be to specify: 
 
 
 ,i j jλ λ=  for  1, 2, , 1; 1,3, ,i n j j n= − + =… …  
 ,2 2iλ λ=  for  1,2, ,7i = …  
 8,2 9,2 10,2λ λ λ= =  
 
The means and variances of the prior distributions of the parameters are chosen to 
reflect the expert opinion: 
 



8,2λ  has a prior distribution with mean 1.5 and variance W, where W is set to reflect 
the strength of the prior information 
 

jλ ( )2,3, ,j n= …  have prior distributions with large variances. 
 
 
For the second case, we divide the data into two parts using the prior distributions. To 
do this, we set 
 

,i j jλ λ=  for 3, 2, 1, , 1i n j n j n j n j n j= − − − − − − − − +  
*

,i j jλ λ=  for 1, 2, , 4i n j= − −…  
 
and give both jλ  and *

jλ  prior distributions with large variances so that they are 
estimated from the data. Adjustments to the specification are made in the later 
development years, where there are less than 5 rows. For these columns there is just 
one development parameter, jλ . 
 
The specific form of the prior distribution (gamma, log-normal, etc) is usually chosen 
so that the numerical procedures in winBUGS work as well as possible. It is not 
appropriate to devote a large part of this paper on matters related to the 
implementation of winBUGS: the reader is invited to consult the references given, 
such as Congdon (2001, 2003) or Skollnik (2003) which provide many more details.  
 
These models are used as illustrations of the possibilities for incorporating expert 
knowledge about the development pattern, but it is (of course) possible to specify 
many other prior distributions. Before looking at the uses of the Bayesian models, we 
should discuss the nuisance parameter ϕ . In a full Bayesian analysis, we should also 
give this a prior distribution and estimate it along with the other parameters. However, 
for ease of implementation we instead use a plug-in estimate, in line with the 
approach usually taken in classical methods (in England and Verrall, 2002, for 
example). The value used is that obtained from the application of the over-dispersed 
Poisson model, estimating the row and column parameters using maximum likelihood 
estimation (it is possible to use S-Plus or excel for this). The value in each case is 
found by calculating the sum of the squares of the deviance residuals and dividing by 
the degrees of freedom. 
 
 
 
5. Illustration 
 
In order to implement the Bayesian models, we make use of the software package 
winBUGS (Spiegelhalter et al, 1996). This software package is freely available from 
http://www.mrc-bsu.cam.ac.uk/bugs. In the Appendix, we provide the programme for 
carrying out the Bayesian analysis for the models described in this paper. An excellent 
reference for Bayesian modelling using MCMC methods in the context of actuarial 
modelling is Skollnik (2001). The software uses a simulation approach to obtain the 
posterior distributions for the parameters and predictive distributions for future 



observations, which are often not easy to find analytically. In other words, the 
posterior distribution is not derived analytically; instead Monte Carlo simulation is 
used. 
 
We now consider using a prior distribution to intervene in some of the parameters of 
the chain-ladder model, instead of using prior distributions with large variances which 
just reproduce the chain-ladder estimates. The data set we consider in this section is 
taken from Taylor and Ashe (1983), and has also been used in a number of previous 
papers on stochastic reserving. The incremental claims data is given in table 1, 
together with the chain-ladder results for comparison purposes.  
 
Table 1. Data from Taylor and Ashe (1983) with the chain-ladder estimates 
 
     357,848       766,940       610,542       482,940       527,326       574,398       146,342       139,950       227,229         67,948  
     352,118       884,021       933,894    1,183,289       445,745       320,996       527,804       266,172       425,046   
     290,507    1,001,799       926,219    1,016,654       750,816       146,923       495,992       280,405    
     310,608    1,108,250       776,189    1,562,400       272,482       352,053       206,286     
     443,160       693,190       991,983       769,488       504,851       470,639      
     396,132       937,085       847,498       805,037       705,960       
     440,832       847,631    1,131,398    1,063,269        
     359,480    1,061,648    1,443,370         
     376,686       986,608          
     344,014           
 
Chain-ladder development factors: 

3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177
Chain-ladder reserve estimates: 
                 2               94,634  

                 3             469,511  

                 4             709,638  

                 5             984,889  

                 6          1,419,459  

                 7          2,177,641  

                 8          3,920,301  

                 9          4,278,972  

               10          4,625,811  
  

Overall       18,680,856  
 
 
We consider 2 cases, as discussed in section 4. For the first case, we assume that there 
is information that implies that the second development factor (from column 2 to 
column 3) should be given the value 1.5, for rows 7, 8, 9,and 10, and that there is no 
indication that the other parameters should be treated differently from the standard 
chain-ladder technique. In order to implement this, the parameter for the second 
development factor for rows 7-10 is given a prior distribution with mean 1.5. We then 
look at two different choices for the prior variance for this parameter. Using a large 
variance means that the parameter is estimated separately from the other rows, but 
using the data without letting the prior mean influence it too greatly. We then use a 
standard deviation of 0.1 for the prior distribution, so that the prior mean has a greater 
influence. Since MCMC methods use a simulation approach, rather than deriving the 



posterior distributions analytically, there is some flexibility with the prior 
distributions that can be used. In particular, there is no need to use conjugate prior 
distributions or to restrict attention to distributions which make the derivation of 
posterior distributions tractable. In the examples given here, we define the prior 
distributions so that the development factors are automatically greater than one. Two 
ways to do this, both of which give reasonable results, are to define 
 
 1j jgλ = +  
 
and  give jg  either a log-normal or a gamma distribution. For the first case illustrated 
here, we use gamma prior distributions for jg  with parameters 0.005 and 0.01, and 25 
and 50. Hence, the mean of jg  is 0.5 and the mean of jλ  is 1.5, and the variance of 

jg  (and of jλ ) is either 50 or 0.01. 
 
We consider first the estimate of the second development factor. The chain ladder 
estimate is 1.7473 and the individual development factors for the triangle are shown 
in table 2. The rows for the second development factor that are modelled separately 
are shown in italics. The estimate using the Bayesian models is 1.68 for rows 1-6. 
When a large variance is used for the prior distribution of the development factor for 
rows 7-10, the estimate using the Bayesian model is 1.971. With the smaller variance 
for this prior distribution, the estimate is 1.673, and has been drawn down towards the 
prior mean of 1.5. This clearly shows how the prior distributions can be used to 
influence the parameter estimates. 
 
Table 2. Individual development factors 

3.143 1.543 1.278 1.238 1.209 1.044 1.040 1.063 1.018
3.511 1.755 1.545 1.133 1.084 1.128 1.057 1.086  
4.448 1.717 1.458 1.232 1.037 1.120 1.061   
4.568 1.547 1.712 1.073 1.087 1.047   
2.564 1.873 1.362 1.174 1.138    
3.366 1.636 1.369 1.236     
2.923 1.878 1.439      
3.953 2.016        
3.619         

 
 
 
The effect on the reserve estimates is shown in table 3, which compares the reserves 
and prediction errors for the two cases outlined above with the results for the chain-
ladder model. The chain-ladder figures are slightly different from those given in table 
1 because winBUGS was used to produce the figures in table 3, and this is a 
simulation method. 
 
 
 
 
 
 



 
 
 
 
Table 3. Reserves and prediction errors for the chain-ladder and Bayesian models 
 
 Chain-ladder Large variance Small variance 
 Expected Prediction Expected Prediction Expected Prediction
 Reserve Error (%) Reserve Error (%) Reserve Error (%)

Year 2               97,910  115%         96,890 117%         95,140 114%
Year 3             471,200  46%       478,100 46%       473,500 46%
Year 4             711,100  38%       720,000 36%       716,300 36%
Year 5             989,200  31%    1,001,000 31%       986,800 31%
Year 6          1,424,000  27%    1,435,000 26%    1,427,000 26%
Year 7          2,187,000  23%    2,200,000 22%    2,183,000 23%
Year 8          3,930,000  20%    3,960,000 20%    3,933,000 20%
Year 9          4,307,000  24%    5,026,000 26%    4,076,000 25%

Year 10          4,674,000  43%    5,348,000 44%    4,472,000 43%
Overall         18,790,000 16%   20,260,000 17%  18,360,000 16%

 
It can be seen that when a large variance is used for the second development factor in 
the last two rows, the result is that the reserves for those rows increase since the 
estimate of the second development factor for those rows is larger. When the strong 
prior information is used, the estimate is decreased towards the prior mean, and the 
reserves come back down again. It is interesting to note that, in this case, the 
intervention has not had a marked effect on the prediction errors (in percentage 
terms). Other prior distributions could have a greater effect on the percentage 
prediction error. 
 
The second case we consider is when we use only the most recent data for the 
estimation of each development factor. To do this, we use separate prior distributions 
for the parameters in the last three diagonals, by defining 
 

*
,i j jλ λ=  for 2,3, ,7; 1,2, ,7 1j i j= = − +… …  

,i j jλ λ=  otherwise 
 
where *

jλ  and jλ ( )2,3, ,j n= …  have log-normal distributions with large variances. 
 
For the last 3 development factors, all the data is used because there is no more than 3 
years for each. For the other development factors, only the 3 most recent years are 
used. The estimates of the development factors are shown in table 4. The estimates of 
the first development factor are not affected by the change in the model (the small 
differences could be due to simulation error or the changes elsewhere). For the other 
development factors, the estimates can be seen to be affected by the model 
assumptions. 
 
 
 



 
 
 
 
Table 4. Development factors using 3 most recent years data separately 

Incremental 
Factors          
3 Yr Wtd Ave 3.579 1.852 1.393 1.155 1.085 1.099 1.054 1.076 1.018
All rows 3.527 1.751 1.46 1.175 1.104 1.087 1.054 1.076 1.018
    
Cumulative 
Factors    
3 Yr Wtd Ave 14.681 4.102 2.215 1.590 1.377 1.269 1.155 1.095 1.018
All rows 14.678 4.162 2.377 1.628 1.385 1.255 1.155 1.095 1.018
    

 
 
The effect of using only the latest 3 years in the estimation of the development factors 
in the forecasting of outstanding claims can be seen in table 5. 
 
Table 5 Reserve estimates using 3 most recent years data 
 Chain-ladder Bayesian Model 
 Expected PredictionExpected Prediction
 Reserve Error (%) Reserve Error (%)
Year 2         97,910  115%         96,910 121%
Year 3        471,200 46%       468,200 48%
Year 4        711,100 38%       708,100 38%
Year 5        989,200 31%    1,032,000 31%
Year 6     1,424,000 27%    1,382,000 28%
Year 7     2,187,000 23%    2,058,000 25%
Year 8     3,930,000 20%    3,481,000 23%
Year 9     4,307,000 24%    4,269,000 28%
Year 10     4,674,000 43%    4,682,000 50%
Overall   18,790,000 16%  18,180,000 19%
 
In this case, the effect on the reserves is not particularly strong, since there is little 
evidence from the data of a changing payment pattern. Even so, the movements in the 
expected reserves compared to the stochastic chain ladder model can be explained by 
comparing the cumulative development factors for the pure chain ladder model and 
the 3-year volume weighted average model at various stages of development.  For 
example, the expected reserves are lower in years 6,7,8 and 9, but higher in year 10, 
which is consistent with a higher cumulative development factor at the first 
development period, but lower cumulative development factors at development 
periods 2,3,4 and 5. 
 
The prediction errors have increased for most years, although the effect is not strong.  
 
The importance of the Bayesian method is the ability to assess the uncertainty of the 
outcome using different prior assumptions in a way that is analogous to traditional 



models for claims reserving. These 2 cases illustrate the possibilities available, and 
both depart from the straightforward chain-ladder technique.  

 
6. Conclusions 
 
This paper has shown how expert opinion, separate from the reserving data, can be 
incorporated into the prediction intervals for a stochastic reserving model. The 
advantages of a stochastic approach are that statistics associated with the predictive 
distribution are also available, rather than just a point estimate. In fact, with Bayesian 
methods, it is possible to produce a full predictive distribution of all cash flows, rather 
than just the first two moments, which is essential in dynamic financial analysis 
(DFA).  
 
Strictly, the use of the over-dispersed negative binomial distribution implies that the 
data consist of multiples of the dispersion parameter. In practice, this can be over-
looked for the observed past data, although it is obviously more problematic when 
simulating future observations: the properties of the predictive distributions will be 
consistent with the assumptions made, but the distribution of a single cell in the run-
off triangle will appear unrealistic. When forecasting in practice, it is more convenient 
to use an alternative forecast distribution, such as the Gamma distribution, 
parameterised such that the mean and variance equal their theoretical values. In 
making this pragmatic compromise, it could be argued that we are introducing a 
conceptual inconsistency. 
 
Alternative modelling distributions could also be used, such as the normal distribution 
As shown in England and Verrall (2002), use of the normal distribution gives the 
same results for the mean and prediction error as Mack’s approach (Mack, 1993). 
When formulated as a Bayesian model, a full predictive distribution for Mack’s model 
can also be obtained, in addition to the prediction error.  With Mack’s model, each 
development period has its own variance parameter.  In the same way, the assumption 
used in this paper of a constant scale parameter for the over-dispersed negative 
binomial model can be relaxed to allow the scale parameter to vary by development 
period. 
 
In this paper, we have concentrated on two common situations where expert opinion 
is used. However, the same approach could also be taken for other modelling 
methods, for example where curves are fitted to allow extrapolation for the estimation 
of tail factors. We acknowledge that methods based on the chain-ladder framework 
are commonly used, and by staying within that framework, we hope that actuaries will 
appreciate the suggestions made in this paper, and experiment with the programmes 
supplied. 
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Appendix  
 
 
model 
{ 
#Model for data: 
 for( i in 1 : 45 ) { 
  Z[i] <- Y[i]/(scale*1000) 
  pC[i]<-D[i]/(scale*1000) 
  C[i]<-Z[i]+pC[i] 
  zeros[i]<- 0 
  zeros[i] ~ dpois(phi[i]) 
  phi[i]<-(loggam(Z[i]+1)+loggam(pC[i])-loggam(C[i])-
pC[i]*log(p1[row[i],col[i]])-Z[i]*log(1-p1[row[i],col[i]])) 
   } 
 
       DD[3]<-DD[2]+Y[47] 
 for( i in 1 : 2 ) {DD[4+i]<-DD[4+i-1]+Y[49+i-1]} 
 for( i in 1 : 3 ) {DD[7+i]<-DD[7+i-1]+Y[52+i-1]} 
 for( i in 1 : 4 ) {DD[11+i]<-DD[11+i-1]+Y[56+i-1]} 
 for( i in 1 : 5 ) {DD[16+i]<-DD[16+i-1]+Y[61+i-1]} 
 for( i in 1 : 6 ) {DD[22+i]<-DD[22+i-1]+Y[67+i-1]} 
 for( i in 1 : 7 ) {DD[29+i]<-DD[29+i-1]+Y[74+i-1]} 
 for( i in 1 : 8 ) {DD[37+i]<-DD[37+i-1]+Y[82+i-1]} 
  
#Model for future observations 
 for( i in 46 : 90 ) { 
  a1[i]<- max(0.01,(1-p1[row[i],col[i]])*DD[i-45]/(1000*scale)) 
   b1[i]<- p1[row[i],col[i]]/(1000*scale) 
   Z[i]~dgamma(a1[i],b1[i]) 
   Y[i]<-Z[i] 
     } 
 
 
 
  
# Set up the parameters of the negative binomial model.  
 for (k in 1:9) { 
   p[k]<-1/lambda[k] 
   lambda[k]<-exp(g[k])+1 
   g[k]~dnorm(0.5,1.0E-6)    
  } 
# Choose one of the following (1,2 or 3) and delete the "#" at the start of each line 
before running. 
 
# 1. Vague Priors: Chain-ladder model 
# scale <- 52.8615  
# for (j in 1:9) { 
# for (i in 1:10) {p1[i,j]<-p[j]} 
#   } 



 
# 2. Intervention in second development factor.  
# scale <- 51.285  
# for (i in 1:10) {p1[i,1]<-p[1]} 
# for (i in 1:6) {p1[i,2]<-p[2]} 
# p1[7,2]<-p82 
# p1[8,2]<-p82 
# p1[9,2]<-p82 
# p1[10,2]<-p82 
# for (j in 3:9) { 
# for (i in 1:10) {p1[i,j]<-p[j]} 
#   } 
# lambda82<-g82+1 
# p82<-1/lambda82 
# Use one of the following 2 lines:  
# g82~dgamma(0.005,0.01) #This is a prior with a large variance 
# g82~dgamma(25,50) #This is a prior with a small variance 
 
#3. Using latest 3 years for estimation of development factors. 
# scale <- 55.7366  
# for (j in 1:6) { 
# for (i in 1:(7-j)) {p1[i,j]<-op[j]} 
# for (i in (8-j):10) {p1[i,j]<-p[j]} 
# } 
# for (j in 7:9) { 
# for (i in 1:10) {p1[i,j]<-p[j]} 
#  } 
# for (k in 1:6) { 
#   op[k]<-1/olambda[k] 
#   olambda[k]<-exp(og[k])+1 
#   og[k]~dnorm(0.5,1.0E-6) 
#     } 
 
# Row totals and overall reserve   
  R[1] <- 0 
  R[2] <- Y[46] 
  R[3] <- sum(Y[47:48]) 
  R[4] <- sum(Y[49:51]) 
  R[5] <- sum(Y[52:55]) 
  R[6] <- sum(Y[56:60]) 
  R[7] <- sum(Y[61:66]) 
  R[8] <- sum(Y[67:73]) 
  R[9] <- sum(Y[74:81]) 
  R[10] <- sum(Y[82:90]) 
  Total <- sum(R[2:10])  
   
 } 
 
 
 



# DATA 
list( 
row=c(1,1,1,1,1,1,1,1,1, 
2,2,2,2,2,2,2,2, 
3,3,3,3,3,3,3,4,4, 
4,4,4,4,5,5,5,5,5, 
6,6,6,6,7,7,7,8, 
8,9,2,3,3,4,4, 
4,5,5,5,5,6,6,6,6,6, 
7,7,7,7,7,7,8,8,8,8, 
8,8,8,9,9,9,9,9,9,9, 
9,10,10,10,10,10,10,10,10,10), 
col=c(1,2,3,4,5,6,7,8,9, 
1,2,3,4,5,6,7,8, 
1,2,3,4,5,6,7,1,2,3, 
4,5,6,1,2,3,4,5,1, 
2,3,4,1,2,3,1, 
2,1,9,8,9,7,8,9, 
6,7,8,9,5,6,7,8,9,4, 
5,6,7,8,9,3,4,5,6,7, 
8,9,2,3,4,5,6,7,8,9, 
1,2,3,4,5,6,7,8,9), 
Y=c( 
766940,610542,482940,527326,574398,146342,139950,227229,67948, 
884021,933894,1183289,445745,320996,527804,266172,425046, 
1001799,926219,1016654,750816,146923,495992,280405, 
1108250,776189,1562400,272482,352053,206286, 
693190,991983,769488,504851,470639, 
937085,847498,805037,705960, 
847631,1131398,1063269, 
1061648,1443370, 
986608, 
NA, 
NA,NA, 
NA,NA,NA, 
NA,NA,NA,NA, 
NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA), 
D=c( 
357848,1124788,1735330,2218270,2745596,3319994,3466336,3606286,3833515, 
352118,1236139,2170033,3353322,3799067,4120063,4647867,4914039, 
290507,1292306,2218525,3235179,3985995,4132918,4628910, 
310608,1418858,2195047,3757447,4029929,4381982, 
443160,1136350,2128333,2897821,3402672, 
396132,1333217,2180715,2985752, 
440832,1288463,2419861, 
359480,1421128, 



376686, 
NA, 
NA,NA, 
NA,NA,NA, 
NA,NA,NA,NA, 
NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA,NA), 
DD=c(5339085, 
4909315,NA, 
4588268,NA,NA, 
3873311,NA,NA,NA, 
3691712,NA,NA,NA,NA, 
3483130,NA,NA,NA,NA,NA, 
2864498,NA,NA,NA,NA,NA,NA, 
1363294,NA,NA,NA,NA,NA,NA,NA, 
344014,NA,NA,NA,NA,NA,NA,NA,NA)) 
 
 
#INITIAL VALUES 
This is what is used for 1.  
 
For 2, replace the first line by  
list(g=c(0,0,0,0,0,0,0,0,0),  g82=0.5, 
 
For 3, replace the first line by  
list(g=c(0,0,0,0,0,0,0,0,0), og=c(0,0,0,0,0,0),   
 
list(g=c(0,0,0,0,0,0,0,0,0),   
Z=c(NA,NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA,NA, 
NA,NA,NA,NA,NA, 
NA,NA,NA,NA, 
NA,NA,NA, 
NA,NA, 
NA, 
0, 
0,0, 
0,0,0, 
0,0,0,0, 
0,0,0,0,0, 
0,0,0,0,0,0, 
0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0)) 
 


