Managing Retirement Risks with Reverse Mortgage Loans and Long-Term Care Insurance

Adam W. Shao1, Hua Chen2, Michael Sherris1

1. ARC Centre of Excellence in Population Ageing Research (CEPAR) University of New South Wales, Australia

2. Temple University, U.S.

11th International Longevity Risk and Capital Markets Solutions Conference
7 - 9 September 2015, Lyon France
Topic Coverage

1. Introduction
2. Financial Assets and Risks
3. Model Framework
4. Results
5. Conclusion
Topic coverage

1. Introduction

2. Financial Assets and Risks

3. Model Framework

4. Results

5. Conclusion
Two important risks in individuals’ retirement planning: health shocks and house price risk

LTC costs are increasingly higher and the increasing trend is projected to continue (Congressional Budget Office, 2004; Shi and Zhang, 2013)

LTC costs funding scheme
- Australia: lifetime stop-loss mechanism
- U.S.: Medicaid and Medicare + private insurance + personal payment

The private LTC insurance market is an important supplement (Glendinning et al., 2004; Colombo et al., 2011)

Important to take into account health risk in a lifecycle model (Ameriks et al., 2011; Yogo, 2009)
Research Motivation

- Two important risks in individuals’ retirement planning: health shocks and **house price risk**
- Large component of wealth in home equity (Home-ownership rate: 80% for 65+)
- House price dynamics in the optimal portfolio choice field
 - Not taking into account housing asset (Ameriks et al., 2011)
 - Unrealistic model: Deterministic, Binomial, Log-Normal (Yogo, 2009; Davidoff, 2010; Yao and Zhang, 2005; Li and Yao, 2007)
- Motivation for use of a more realistic time series model, borrowing ideas from studies in other fields (e.g., Chen et al., 2010; Lee et al., 2012; Yang, 2011)
- Path dependent house price dynamics - complexity in lifecycle model
- Asset rich but cash poor: Role for equity-release products
Research Questions

- How can retirees use reverse mortgage and private long-term care insurance (LTCI) to better manage retirement risks?
- What is the impact of house price and health risks on retirees’ optimal portfolio choice?
- What is the welfare gain when reverse mortgage and/or private LTCI are added to the menu?
- What are the interacting effects between reverse mortgage and private LTCI?
Topic coverage

1. Introduction
2. Financial Assets and Risks
3. Model Framework
4. Results
5. Conclusion
Overview

- Financial assets
 - Risk-free asset
 - House
 - Reverse mortgage loans
 - Long-term care insurance

- Risks
 - Health dynamics and mortality risk: Markov model
 - House price: ARIMA-GARCH
Health Dynamics

- 1 - Healthy (difficulty in no ADLs)
- 2 - Mildly disabled (difficulty in 1 ADL) and staying at home
- 3 - Severely disabled (difficulty in 2+ ADLs) and staying at home
- 4 - Institutionalized
- 5 - Dead

Assumption: moving into a nursing home is non-reversible

Health transition rates/probabilities estimated using GLM (Fong et al., 2013)

Data: Health and Retirement Studies (HRS)
Long-Term Care Insurance

- LTC costs
 - depend on health states \(i \in \{2, 3, 4\} \)
 - increase at the inflation rate \(f_s \)

\[
LTC_t^i = LTC^i \exp \left(\sum_{s=1}^{t} f_s \right)
\]

- Public LTC insurance: \(GI = 10\% \) (Different from empirical 71% covered by Medicare and Medicaid)
- Private LTC insurance
 - paying premium at age 65
 - choosing coverage \([0, 1 - GI]\)
 - actuarially fair premium calculated using estimated health dynamics
 - funds LTC costs when severely disabled (State 3) or moving to LTC facilities (State 4)
House Value Model

- Housing consumption: Lower when moving into LTC facilities
- Capital Growth: ARMA-GARCH

\[y_t = \psi y + \sum_{i=1}^{p} \phi_i y_{t-i} + \sum_{j=1}^{q} \theta_j z_{t-j} + z_t, \]

\[\sigma_t^2 = \psi \sigma^2 + \sum_{i=1}^{m} \mu_i \sigma_{t-i}^2 + \sum_{j=1}^{n} \nu_j z_{t-j}^2, \]

(2)

- \(y_t \): house price growth rate
- \(\sigma_t^2 \): conditional variance given information up to \(t - 1 \)
- We select the optimal lags in the ARMA-GARCH model (Li et al., 2010; Chen et al., 2010)
- The optimal specification is a ARMA(2,4)-GARCH(1,1)
House Price Projection

Figure. House value projections based on the ARMA(2,4)-GARCH(1,1) model of house value growth rates. The current house value is assumed to be $300,000.
Reverse Mortgage

Reverse mortgage loan balance

\[RMLB_t = \begin{cases}
RM \cdot e^{(r_f + \pi)t}, & \Lambda_t \in \{1, 2, 3\} \\
0, & \Lambda_t \in \{4, 5\}
\end{cases} \]

- **RM**: lump sum reverse mortgage loan at age 65
- **\(r_f \)**: risk-free rate
- **\(\pi \)**: mortgage insurance premium rate for providing no-negative equity guarantees (Shao et al., 2015; Chen et al., 2010)
- Repayment is triggered when admitted to LTC facilities (State 4) or dead (State 5)

\[\min\{RMLB_t, HV_t\} \]
Topic coverage

1. Introduction
2. Financial Assets and Risks
3. Model Framework
4. Results
5. Conclusion
Utility and Bequest

- Contemporary utility

\[
U(C_t, H_t) = \frac{\left(C_t^\eta H_t^{1-\eta} \right)^{1-\gamma}}{1 - \gamma},
\]

- \(C_t\): non-housing consumption
- \(H_t\): housing consumption
- \(\gamma\): the risk aversion parameter
- \(\eta\): Cobb-Douglas aggregation parameter

- Bequest motive

\[
B(W_t) = \beta \frac{W_t^{1-\gamma}}{1 - \gamma},
\]

- \(\beta\): bequest motive strength
- \(W_t\): bequest wealth
Utility Maximization

\[V(t, i, G_t) = \max_{O_t} \mathbb{E} \left[U(C_t, H_t) + \alpha \left(\sum_{j \neq 5} p_{x+t}^{ij} V(t + 1, j, G_{t+1}) + p_{x+t}^{i5} B(W_{t+1}) \right) \right] \bigg| \mathcal{F}_t \]

s.t. Wealth Dynamics

- \(O_t = (C_t, RM, PI) \): choice variables
- \(i \): health state
- \(G_t = (B_t, HV_{1:t}) \): non-health state variables
- \(p_{x+t}^{ij} \): annual probability of transitions from State \(i \) to State \(j \)
- \(V(t, i, G_t) \): value function

Optimization methods:

- **Endogenous Grid Method** to avoid time-consuming root-finding routine
- **Regression method** to allow for path dependent house price dynamics and avoid the “Curse of Dimensionality”
Topic coverage

1. Introduction
2. Financial Assets and Risks
3. Model Framework
4. Results
5. Conclusion
Certainty Equivalent Consumption (CEC) for a 65-year-old female endowed with $500k initial liquid wealth and a house worth $300k.
Optimal Consumption Path

$500k initial liquid wealth and a house worth $300k

LT VR: ratio of reverse mortgage loan to house value
PI: long-term care insurance coverage
Proportion of the Alive

Starting with a cohort of 100,000 65-year-old healthy females
Optimal Liquid Wealth Path

$500k initial liquid wealth and a house worth $300k

- `LTVR`: ratio of reverse mortgage loan to house value
- `PI`: long-term care insurance coverage
Optimal Bequest Wealth Path

$500k initial liquid wealth and a house worth $300k

- LTVR: ratio of reverse mortgage loan to house value
- PI: long-term care insurance coverage
Welfare Analysis

Table. Percentage increase of the value function achieved when retirees have access to reverse mortgage loans and/or long-term care insurance.

<table>
<thead>
<tr>
<th></th>
<th>No Private LTCI</th>
<th>With Private LTCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Reverse Mortgage</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>With Reverse Mortgage</td>
<td>5.74%</td>
<td>7.07%</td>
</tr>
</tbody>
</table>

Table. Retirees’ willingness to pay for having access to reverse mortgage loan and/or long-term care insurance ($1,000).

<table>
<thead>
<tr>
<th></th>
<th>Reverse Mortgage</th>
<th>Private LTCI</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72.48</td>
<td>-4.91</td>
<td>90.20</td>
</tr>
</tbody>
</table>

- Home equity substitutes LTCI
- Bundle reverse mortgage and private LTCI
Topic coverage

1. Introduction
2. Financial Assets and Risks
3. Model Framework
4. Results
5. Conclusion
Conclusion

- We use a discrete time life-cycle model, taking into account health shocks and house price risk
- A more realistic (path dependent) house price process is used
- Optimal portfolio choice with respect to consumption, reverse mortgage, and private long-term care insurance
- Welfare gains for having access to both products
- Insights into product designs of combining reverse mortgage and private LTCl: Demand side
- What about supply side?
 - Reduced adverse selection
 - E.g., people with bad health – higher risk for LTCl but lower risk for reverse mortgage
References

