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Introduction

? For any agent maximizing profits or minimizing costs the efficient use of the
capacity of the agents production facilities is of utmost importance.

? In many cases utilization of capacity is varying over time. This may, for
instance, be due to seasonal variations of the year, variation over weekdays,
time of day variations etc.

? Obviously, modelling the variation may help determine the optimal capac-
ity.

? In some cases the problem faced has two import aspects.

� The optimal size of the facilities handling the inflows to the system and
the outflows from the system.

� The optimal size of the facilities handling the stock within the system.

? An example of such a system is the tourist industry in, for instance, Mallorca.

� The inflow and outflow are mainly determined by the "airport capac-
ity" at the island. That is airlines, aircraft support services, passenger
services, security, baggage logistics etc.

� while the "hotel capacity", that is hotels, apartments and houses for
short term rents, restaurants etc., is the main supply side determinant
of the number of tourists in Mallorca.

The data describing the system is

? the number of passengers flying in to Mallorca each day, at

? the number of passengers flying out each day,dt

? the net inflow of passengers, ft

? and the cumulation of the net inflow, that is the stock of passengers on the
island of Mallorca, st.

The arrivals a, departures d, net inflow f , and stock s are strongly seasonal
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and the arrivals a, and the departures d have a strong weekly pattern as well,

while the stock s, has no weekly pattern
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? The figures above immediately tell us that

� the variation in the utilization of airport capacity varies more over the
week than over the year, especially in the summer time,

� the variation in the utilization of the hotel capacity varies much more
over the year than over the week.

From the following figure it is learned that Saturdays and Sundays are the big
arrival and departure dates during the summer months.

0 10 20 30 40 50

25000

50000

75000 Arrival 1
Arrival 3
Arrival 5
Arrival 7

Arrival 2
Arrival 4
Arrival 6

0 10 20 30 40 50

25000

50000

75000
Departure 1
Departure 3
Departure 5
Departure 7

Departure 2
Departure 4
Departure 6

0 10 20 30 40 50

-20000

-10000

0

10000

Net flow 1
Net flow 3
Net flow 5
Net flow 7

Net flow 2
Net flow 4
Net flow 6

0 10 20 30 40 50

0

200000

Stock 1
Stock 3
Stock 5
Stock 7

Stock 2
Stock 4
Stock 6

Day-of-the-week at, dt, ft, and st (2001.01-2001.52)

The following features are also apparent from the figures above:

? A very close co-movement of arrivals and departures suggesting a strong
common seasonal pattern in the two series over the year. A feature that is
expected in "charter tourism".

? The arrivals and departures have strong day-of-week effects and this feature
seems to change over the year. This might indicate that these series poten-
tially can be modelled as changing seasonal or periodic seasonal processes.

? Multicointegration in daily transit data.
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� A further aspect of the present data set concerns the possibility of a
multicointegration like feature amongst the series. If we assume that
the arrivals and departures series are cointegrated in some sense, then
it is of interest to look at the cumulated net flow series, i.e. the stock
variable generated from arrivals and departures.

� It appears from figures 1 and 2 that although the stock series has much
less weekly variation, the level around some trend co-varies with both
the arrivals and departures series. This is an interesting phenomenon
because it allows for the possibility of more than just one cointegrating
relationship existing between just two series.

� The property is often being referred to as multicointegration.

Empirical Questions

1. Changing intra-week seasonality, and interaction between weekly season-
ality, annual pattern and trend of flow variables: ARE THE ARRIVALS AND
DEPARTURES PERIODICALLY INTEGRATED?

2. Net flows do not show the features of arrivals and departures: ARE THE
ARRIVALS AND DEPARTURES COINTEGRATED? AND IS COINTEGRATION PE-
RIODIC OR NONPERIODIC?

3. Stock of visitors seems to share the same annual pattern/trend of the flow
variables: ARE THE ARRIVALS AND DEPARTURES ALSO PERIODICALLY MUL-
TICOINTEGRATED?

4. Day-of-week series share annual seasonality and business cycle: HAS THE
SHORT-RUN COMPONENT OF THE DAILY AIRPORT DATA COLINEAL PERI-
ODIC AUTOCORRELATIONS?

Empirical Model: Weekly Representation

Consider the weekly representation of Yn = (y1,n, ..., y7,n)
0 to make inference on

different properties of the daily process

Γ(L7)| {z }
ANNUAL SEAS.

BUSINESS CYCLES

∆7Yn = µ+Ψdn| {z }
DET. SEAS.

+ Θcaln| {z }
CAL.EFF.

+ Π|{z}
WEEKLY. SEAS

LONG-RUN

Yn�1 +Un

5



1. dt is periodically integrated <–> Yn = (d1,n, ..., d7,n)
0 is a cointegrated sys-

tem with 6 cointegrating relations.

2. (at, dt)’ is periodically cointegrated <–> Yn = (a1,n, ..., a7,n, d1,n, ..., d7,n)
0 is a

cointegrated system with 13 cointegrating relations.

3. (at, dt)’ is periodically multicointegrated <–> Yn = (d1,n, ..., d7,n, 1
7 Σ7

s=1ss,n)0

is a cointegrated system with 7 cointegrating relations.

4. The PeACF of (1� ϕsL)dt is colineal <–> Yn has (polynomial) weak form
of Serial Common Correlation Features/Common Periodic Features.

Periodic Integration?

The intra-week1 seasonality is represented by means of the relations among the
day-of-the-week processes Yn � (y1,n, ..., y7,n)

0 :

Φ0Yn = C+Φ1Yn�1 + ...+ΦPYn�P + En

C � (c1, ..., c7)
0, En � (ε1n, ..., ε7n)

0i.i.d(0, Σ), Σ = diag(σ2
1, ..., σ2

7), and

Φ0=

266664
1 0 � � � 0

�φ2,1
. . . . . . ...

... . . . . . . 0
�φ7,6 � � � �φ7,1 1

377775 , Φk=

266664
φ1,7k � � � � � � φ1,7k�6

... . . . ...

... . . . ...
φ7,7k+6 � � � � � � φ7,7k

377775
Periodic Integration?

jΦ(L)jYn = Φ�(1)C+Φ�(L)En

yt is first-order unit root nonstationary when some roots of jΦ(z)j = 0 lie on
the unit circle while all the others lie outside.

Different types of first-order unit root nonstationary are associated with differ-
ent cointegration2 relations among ys,n :

Γ(L7)∆7Yn = eC+ αβ0Yn�1 +Un

1see Gladyshev (1961)
2Osborn (1993, JE) and Franses (1994, JE)
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Periodic Integration?

yt � I(1) (no periodic/seasonal integration) when rank(Π) = 6 and

β0 =

0BBBBBB@
�1 1 0 0 0 0 0
0 �1 1 0 0 0 0
0 0 �1 1 0 0 0
0 0 0 �1 1 0 0
0 0 0 0 �1 1 0
0 0 0 0 0 �1 1

1CCCCCCA
∆yt˜PI(0)

Periodic Integration?

yt � PI(1) (periodic integration, Osborn, 1988, JAE) when rank(Π) = 6 and

β0 =

0BBBBBB@
�ϕ2 1 0 0 0 0 0

0 �ϕ3 1 0 0 0 0
0 0 �ϕ4 1 0 0 0
0 0 0 �ϕ5 1 0 0
0 0 0 0 �ϕ6 1 0
0 0 0 0 0 �ϕ7 1

1CCCCCCA
ϕ1 = (ϕ2ϕ3ϕ4ϕ5ϕ6ϕ7)

�1

ϕs 6= 1 for some s

(1� ϕsL)yt˜PI(0) for all s

Periodic Integration?

yt � SI(d0, d1, d2, d3) (seasonal integration at not all the frequencies, Hylleberg,
Engle, Granger, and Yoo 1990, JE) when 0 < rank(Π) < 6, and

(1� L)d0(1� 2 cos
2π

7
L+ L2)d1(1� 2 cos

4π

7
L+ L2)d2 �

(1� 2 cos
6π

7
L+ L2)d3yt˜PI(0)

yt � SI(1, 1, 1, 1) when Yn is a noncointegrated I(1) process, and

∆7yt˜PI(0)
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Periodic Integration Analysis

LR0 LR1 LR2 LR3 LR4 LR5 LR6
at 168.51��� 114.49��� 76.70��� 50.11��� 28.54��� 11.41�� 1.28
dt 181.64��� 115.55��� 80.39��� 52.99��� 32.09��� 14.65��� 2.31
ft 985.82��� 733.18��� 545.96��� 397.70��� 272.08��� 168.67��� 70.55���

st 850.82��� 634.46��� 438.52��� 271.06��� 167.71��� 73.15��� 2.91bϕi
1 bϕi

2 bϕi
3 bϕi

4 bϕi
5 bϕi

6 bϕi
7

at 0.910 0.561 3.039 0.683 1.100 1.390 0.617
dt 0.889 0.551 3.087 0.602 1.044 1.583 0.665
st 0.999 0.999 1.000 0.998 0.997 1.001 1.006

? Arrivals and departures are PI(1) with very similar periodic integration co-
efficients. Therefore, the accumulation of shocks has changed the intra-week
pattern of the flow variables (Franses, 1996).

? Net Flows is PI(0), suggesting nonperiodic cointegration between arrivals
and departures, and stock of visitors is I(1).

Periodic Cointegration?

at, dt˜PI(1) and cointegrated (at � ksdt �PI(0)) (Franses, 1994, JE)
Yn � (An, Dn)0: where An = (a1,n, ..., a7,n)

0 and Dn = (d1,n, ..., d7,n)
0:

Γ(L7)∆7

�
An
Dn

�
= C+ α

�
I7 K0

0 β0

� �
An�1
Dn�1

�
+Un

I7 is the 7-dimensional identity matrix, 0 is the 6 � 7-dimensional null matrix,
K �diag(�k1, ...,�k7) (s=1,...,7)) and β0Dn˜I(0).

? There is cointegration between all the pairs (as,n,ds,n) (Osborn, 2002, WP).

? The cointegrating vectors ks 6= k (at least for some s) may be different.

? When ϕ1
s = ϕ2

s for all s, cointegration is not periodic (ks = k all s).
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Periodic Cointegration Analysis (1)

Cointegration can be analyzed with a reduced system: (An, 1
7 Σ7

s=1d,n)0 :

LR0 LR1 LR2 LR3
330.33��� 166.53��� 113.51��� 78.319

LR4 LR5 LR6 LR7
50.965��� 27.616��� 11.329��� 1.207

? We do not reject cointegration between the arrivals and departures.

Periodic Cointegration Analysis (2)

Nonperiodic versus Periodic Cointegration only can be analyzed with the whole
system (An, Dn)0:

LR0 LR1 LR2 LR3 LR4 LR5 LR6
769.77��� 594.74��� 475.16��� 376.21��� 300.01��� 232.61��� 175.08���

LR7 LR8 LR9 LR10 LR11 LR12 LR13
124.88��� 90.72��� 61.25��� 40.81��� 22.20��� 9.40 1.35bk1 bk2 bk3 bk4 bk5 bk6 bk7

1.003 1.043 1.013 1.105 1.237 1.030 0.977bϕi
1 bϕi

2 bϕi
3 bϕi

4 bϕi
5 bϕi

6 bϕi
7

at 0.895 0.592 3.125 0.646 1.156 1.331 0.609
dt 0.872 0.569 3.219 0.592 1.032 1.598 0.642

? The likelihood ratio test (LR12 = 9.40) is rather close to the 10% critical value
9.67.

? Contrary to the univariate analysis, nonperiodic Cointegration is rejected at
1%.

Periodic Multicointegration?

Jones and Brelsford (1967, Biometrika):

yt = cs + Σp
j=1λ0,jyt�j| {z }

NON PERIODIC COMP.

+ Σ3
k=1Σp

j=1(λk,jyαk,t�j + γk,jyβk,t�j)| {z }
PERIODIC COMP.

+ εt,
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yαk,t = cos
�

2πk
7 t
�

yt, yβk,t = sin
�

2πk
7 t
�

yt, (k = 1, 2, 3).
The cyclical parameters ψj = (λ0,j, λ1,j, γ1,j, λ2,j, γ2,jλ3,j, γ3,j)

0 and the periodic
parameters φj = (φ1,j, φ2,j, ..., φ7,j)

0 satisfy ψj = Rφj

R=
1
7

26664
1 1 � � � 1

2 cos (12π
7 ) 2 cos (22π

7 ) � � � 2 cos (72π
7 )

...
...

...
2 sin (12π

7 3) 2 sin (22π
7 3) � � � 2 sin (72π

7 3)

37775
Ex.: λ0,j =

1
7 Σ7

s=1φs,j.

Periodic Multicointegration?

dt � PI(1) and st � I(1) and Periodic CI(1, 1)

? (Dn, SC
n )
0: where SC

n = RSn = (sα0,n, ..., sβ3,n)
0 are the systematically sampled

weekly version of the HEGY variables (Hylleberg et al., 1990, Osborn, 2002),
with sα0,n =

1
7 Σ7

s=1ss,n:

Γ(L7)∆7

�
Dn
SC

n

�
= C� + α�

�
I7 k η
0 0 θ02

� �
Dn�1
SC

n�1

�
+U�

n,

k = (�k1, ...,�k7)
0.

Π(L7)∆7

�
Dn

sα0,n

�
= C�� + α�� [I7,k]

�
Dn�1

sα0,n�1

�
+U��

n .

Periodic Multicointegration Analysis

Multicointegration is analyzed with (Dn, sα0,n)
0:

LR0 LR1 LR2 LR3
293.69��� 211.14��� 141.63��� 84.741���bk1 bk2 bk3 bk4

0.013 0.004 0.006 0.011
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LR4 LR5 LR6 LR7
56.983��� 34.333��� 16.059��� 0.001bk5 bk6 bk7

0.006 0.007 0.022

? The cointegration rank is 7 and hence suggesting the stock to cointegrate
with the departure series.

? Arrivals and departures are periodically multicointegrated.

Common Periodic Features?

Serial Correlation Common Features (SCCF): Engle and Kozicki (1993, JBES), Vahid
and Engle (1993, JAE)

Yn has Weak Form of SCCF (Hecq, Palm, & Urbain, 2004, forth. JE) if there
exists a 7� s1 (0 < s1 < 7) cofeature matrix α1?, α01?Γj = 0 (j = 1, ..., P� 1).

Then r1(� 7� s1)� 1 vector of dynamic factors generate the short-run dynam-
ics of all ys,n (and all yαk,n, yβk,n)

∆7Yn = eC+ αβ0Yn�1 + α1(β
0
1∆7Yn�1 + ...+ β0P�1∆7Yn�P�1)| {z }

r1 COMMON FEATURES

+Un

α01?α1 = 0.

0|{z}
NO COMMON FEATURES

< s1 � 6|{z}
ONE DYNAMIC FACTOR

Common Periodic Features?

Codependent Cycles: Vahid and Engle (1997, JE), Polynomial SCCF: Cubadda and
Hecq, 2001, EL)

Yn has Weak Form of PSCCF (Hecq, Palm, & Urbain, 2004)

∆7Yn = eC+ αβ0Yn�1 + Γ1∆7Yn�1 + α2(β
0
2∆7Yn�2 + ...+ β0P�1∆7Yn�P�1)| {z }
r2 COMMON DYNAMIC FACTORS

+Un
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Common Periodic Features Analysis: Arrivals

s ξm=0(s) ξm=1(s) ξm=2(s) ξm=3(s) ξm=4(s) ξm=5(s) ξm=6(s)
1 50.39 33.38 28.34 15.34 10.71 4.37 0.02
2 107.22� 77.47 65.00 35.78 27.82 14.28 0.54
3 196.99��� 139.77� 113.24� 62.61 47.59 26.05 1.82
4 306.10��� 210.00��� 167.96�� 107.96 78.75 43.57 10.00
5 432.96��� 303.89��� 228.06��� 154.76� 122.33�� 64.56 23.61
6 581.74��� 412.46��� 307.06��� 228.13��� 185.20��� 108.84�� 44.82
7 862.96��� 637.36��� 503.77��� 337.59��� 277.53��� 168.61��� 75.92���

? Day-of-week arrivals have 1 PSCCF(0), 2 PSCCF(1), 4 PSCCF(4), 5 PSCCF(5)
and 6 PSCCF(6) features.

Common Periodic Features Analysis: Departures

s ξm=0(s) ξm=1(s) ξm=2(s) ξm=3(s) ξm=4(s) ξm=5(s) ξm=6(s)
1 49.12 36.53 24.49 11.65 9.31 2.56 0.01
2 120.19�� 81.42 58.56 40.49 30.80 13.84 1.14
3 211.65��� 137.26� 107.46 81.31 58.17 31.55 4.67
4 307.36��� 212.90��� 173.78��� 141.49��� 102.82��� 50.98 15.22
5 441.22��� 306.19��� 254.94��� 209.20��� 160.48��� 88.58��� 29.24
6 581.41��� 422.86��� 345.65��� 292.86��� 229.93��� 138.92��� 58.77���

? Day-of-week departures have 1 PSCCF(0), 2 PSCCF(1), 3 PSCCF(2), 4 PSCCF(5),
and 5 PSCCF(6).
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Common Periodic Features Analysis: Stock of Visitors’

s ξm=0(s) ξm=1(s) ξm=2(s)
1 4.90 2.10 0.04
2 17.61 8.54 0.49
3 37.09 18.73 1.54
4 59.75 32.11 3.48
5 92.30 48.72 11.32
6 135.96 72.61 31.02

? Day-of-week Stock of visitors have 6 PSCCF(0).

Concluding Remarks

? First evidence on daily PI(1)ness of economic data. (Daily Dutch tax rev-
enues: Koopman and Ooms (2004, WP), Hourly Return volatility: PGARCH(1,1)
Bollerslev and Ghysels (1996, JBES), and S&P500 Composite Index: PAR(p)+PGARCH(1,1):
Franses and Paap (2004)).

? Empirical Evidence on daily nonperiodic cointegration and periodic multi-
cointegration.

? Extension of common features to periodic models.

? Daily model for an airport transit/tourism variable.
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