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Abstract 

In this paper we investigate the feasibility of using the Lee-Carter methodology to 

construct mortality forecasts for the Italian population. We fit the model to the matrix of 

Italian death rates for each gender from 1950 to 2000. A time-varying index of mortality 

is forecasted in an ARIMA framework and is used to generate projected life tables. In 

particular we focus on life expectancies at birth and, for the purpose of comparison, we 

introduce an alternative approach for forecasting life expectancies on a period basis. 

The resulting forecasts  generated by the two methods are then compared. 
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1. Introduction and motivation 

1.1. Mortality on the move 

During the 20th century life expectancy has increased dramatically. 

The Human Mortality Database shows that Italian life expectancy at birth 

from 1900 to 1999 rose from 41.90 to 82.26 years for females and from 

41.65 to 76.12 for males. Moreover, the trends in mortality rates for many 

industrialised countries have also been downwards for several years. 

Usually we view such mortality improvements in an optimistic way: 

according to the statistics we live longer than our ancestors. But these 

changes clearly affect pricing and reserve allocation for life annuities and 

represent one of the major threats to a social security system that has been 

planned on the basis of more modest life expectancy. Even when using 

updated mortality tables, these trends in mortality reduction present risks 

for insurers. This is because these tables do not take these trends into 

account. Put otherwise, the risk is of underestimating the survival 

probability, thus determining inappropriate premiums. This risk, is known 

in the actuarial literature as Longevity Risk, that being the risk derived 

from a future mortality rate which, ex post, does not reflect the forecasted 

one: see Brouhns, Denuit, Vermunt (2002b). To face this risk, it is 

necessary to build projected tables including this trend. Thus, reasonable 

mortality forecasting techniques have to be used to consistently predict the 

trends (Brouhns, Denuit, Vermunt, 2002a). 

In this paper, we investigate how the Lee Carter approach can be used to 

forecast mortality (Lee and Carter, 1992; Lee, 2000; Lee and Miller, 2000; 

Lee and Miller, 2001), by using the Italian mortality experience of the past 

half-century. We follow the methodology of Renshaw and Haberman 

(2003a), which is the inspiration for the paper. 
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 There were two reasons for selecting the Lee-Carter model in our 

work. Firstly, this model represents one of the most influential recent 

developments in the field of mortality forecasts. Secondly, the important 

feature of this model is that for a precise value of the time index k , we can 

define a complete set of death probabilities that allow us to calculate all of 

the life table. Once we estimate the parameters, depending on age { }xx βα , , 

they stay constant and invariant through time. Hence, when we know k , we 

can use the parameters for any year of interest. Another important feature 

that drove us to choose this model is that traditional projection models 

provide the forecaster with point estimates of future mortality rates. On the 

contrary, the LC method allows for uncertainty in forecasts (the so-called 

longevity risk). 

The paper is organised as follows. Section 2 describes the Lee-Carter 

method for mortality projection and introduces the notation used in this 

paper. Model fitting on Italian mortality data is illustrated, with particular 

attention to the re-estimation of tk . The standard Box and Jenkins 

methodology to generate an ARIMA model for the mortality index tk  is 

discussed in Section 3. Section 4 is devoted to forecasting the index of 

mortality, which is used to generate associated life table values. Next a 

comparison between the LC and the alternative approach to forecast life 

expectancies at birth is examined. Concluding comments are presented in 

Section 5. 

2. Lee-Carter mortality forecasting methodology 

2.1. The model  

The Lee-Carter method is a powerful approach to mortality projections 

which describes the log of a time series of age-specific death rates txm ,  as 

the sum of an age-specific component xα , that is independent of time and 
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another component that is the product of a time-varying parameter tk , 

reflecting the general level of mortality, and an age-specific component xβ , 

that represents how rapidly or slowly mortality at each age varies when the 

general level of mortality changes: 

(1)  ( ) txtxxtx km ,,ln εβα ++=  

This interesting alternative for forecasting mortality was proposed in 1992 

by Lee and Carter, who published a new method extrapolating long-run 

forecasts of the level and age pattern of mortality, based on a combination 

of statistical time series methods and parametric approach.   

2.2. Notation and data   

In this contribution we fit the Lee-Carter model to the matrix of Italian 

death rates, from year 1950 to 2000. Then we use the forecasts of this 

single parameter to generate forecasts both of the level and of the age 

distribution of mortality for the next 25 years. In particular we focus on life 

expectancies at birth and, for the purpose of comparison, we introduce an 

alternative approach for forecasting life expectancies on a period basis.

 The data for the Italian population, supplied by the Human Mortality 

Database, is divided by gender (Wilmoth et Al., 2000). Rather than using 

the entire dataset, we consider a subgroup of death rates for five-year age 

groups under 105 years old, so as to only cover five-year groups with a 

sample size significant enough for our analysis. The same is repeated for 

the corresponding exposure to risk. We denote the “Number of deaths” and 

the “Exposure to risk” by two 15×  matrices, where the first number refers 

to the age interval, and the second number refers to the time interval 

(Elandt-Johnson and Johnson, 1980). For each gender and for each 

calendar year: ,1,,.........1, 111 nthtttt =−++=  where ,11 +−= tth n  we consider 

all the ages ,,.......,, 21 kxxxx =  grouped in classes as 
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[ ]104100,9995,,.........1410,95,41,0 −−−−− . From these data we construct an 

array of crude rates of deaths 
tx

tx
tx e

d
m

,

,
, = . 

2.3. Model fitting  

The LC model cannot be fitted by ordinary regression methods, because 

there are no given regressors; thus in order to find a least squares solution 

to the equation (1) we use a close approximation, suggested by Lee and 

Carter (1992), to the singular value decomposition (SVD) method, 

assuming that the errors are homoschedastic. To obtain a unique solution, 

we impose that the sum of the xβ  coefficients is equal to 1.0, and that the 

sum of the tk  parameters is equal to zero.  

 Under these assumptions, it can be seen that the xα  coefficients must 

be simply the average values over time of the ( )txm ,ln  values for each x .  

We estimate xα  as the logarithm of the geometric mean of the crude 

mortality rates, averaged over all t , for each x :  

(2) ⎥
⎦

⎤
⎢
⎣

⎡
== ∏∑

==

tn

tt
xt

tn

tt
xthx

hmm
11

1
1

lnlnα  

Furthermore, tk  must equal the sum over age of ( )( )xtxm α−,ln . All that 

remains, is to estimate the sxβ . We found each xβ  by regressing 

( )( )xtxm α−,ln  on tk , without a constant term, separately for each age group 

x . More precisely, we estimate xβ  from ( ) ( ) '1ln xttxxxt km εβα +=−  (where ( )1
tk  

refers to the tk  estimated above) using the least squares estimation, i.e. 

choosing xβ  to minimize ( )( )∑ −−
tx

txxxt km
,

21ln βα
( )( )

( )∑

∑
=⇒

=

=

−

tn

tt
t

tn

tt
xxtt

k

mk

x

1

21

1

1 ln α

β . The raw 

estimates of xα , xβ  and tk  are inserted in the Appendix A.  
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Here xα  describes the general age shape of the age specific death 

rates txm , , while tk  is an index that describes the variation in the level of 

mortality to t . The xβ  coefficients describe the tendency of mortality at age 

x  to change when the general level of mortality ( tk ) changes. When xβ  is 

large for some x , then the death rate at age x  varies substantially when the 

general level of mortality changes (as with 0=x  for infant mortality, for 

example) and when xβ  is small, then the death rates for that age vary little 

when the general level of mortality changes (as is often the case with 

mortality at older ages). 

The Lee Carter model also assumes that all the age specific death 

rates move up or down together, although not necessarily by the same 

amounts, since all are driven by the same period index, tk . Although not all 

occurrences of xβ  need to have the same sign, in practice all the sxβ  do 

have the same sign, at least when the model is fit over fairly long periods. 

As shown in the Appendix A, the sxβ  for both females and males have the 

same sign, which is positive. In Fig. 1, the values of xβ , as determined with 

the SVD, are plotted against x , for each case separately i.e. by gender.  

Fig.1 Beta versus age 

From Fig.1 we can see that when xβ  is large for some x , then the 

death rate at age x  varies significantly when the general level of mortality 

changes (again, as with 0=x  for infant mortality) and when xβ  is small, 
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then the death rate at that age varies little when the general level of 

mortality changes. This often the case with mortality at older ages. 

2.4. Reestimating kt 

Because the first stage estimation is based on logs of death rates rather than 

the death rates themselves, sizable discrepancies can occur between 

predicted and actual deaths. To guarantee that the fitted death rates will 

lead to the actual numbers of deaths, when applied to given population age 

distribution, we have reestimated tk  in a second step, taking the xα  and xβ  

estimates from the first step. To correct for this, we apply the methodology 

from Section 3 of Lee and Carter (1992). We thereby find a new estimate 

for k  by an iterative search, adjusting the estimated tk  so that the actual 

total observed deaths ∑
=

xk

xx
xtd

1

 equal the total expected deaths ∑
=

+
xk

xx

k
xt

txxee
1

)( βα , for 

each year t . 

The iterative method proceeds as follows: 

1) We compare the total expected deaths ( )

∑
=

+
xk

xx

k
xt

txxee
1

)( 1βα  to the actual total 

observed deaths ∑
=

xk

xx
xtd

1

 in each period. 

2) This comparison reveals one of three possible states: 

(i) If ( )

∑∑
==

+ >
xk

xx
xt

xk

xx

k
xt dee txx

11

)( 1βα , we need to decrease the expected 

deaths, adjusting the estimated tk  so that the new estimate 

of tk , say ( )2
tk , will be: ( ) ( )( ),112 dkk tt −=  if ( ) 01 >tk  (where ( )1

tk  

is the first estimate of tk ) ; ( ) ( )( )dkk tt += 112 , if ( ) 01 <tk , where 

d  is a small number. 

(ii) If ( )

∑∑
==

+ =
xk

xx
xt

xk

xx

k
xt dee txx

11

)( 1βα , we stop here the iterations. 
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(iii) If ( )

∑∑
==

+ <
xk

xx
xt

xk

xx

k
xt dee txx

11

)( 1βα , we need to increase the expected 

deaths adjusting the estimated tk  so that : ( ) ( )( ),112 dkk tt +=  if 
( ) 01 >tk ; ( ) ( )( ),112 dkk tt −= , if ( ) 01 <tk . 

3) Go back to Step 1. 

 

As Lee and Carter (1992) point out, this approach differs from the direct 

SVD estimates. This is because the low death rates of youth contribute far 

less to the total deaths, yet when fitting the log-transformed rates they are 

weighted equivalently to the high death rates of the older ages. It is also 

worth noting that differences in population age group sizes also results 

in different weights in the second-stage estimation of k.   

2.5. First application and comments 

We have run this iterative process 1000 times using a VBA macro 

and Microsoft Excel to find the new estimate of k , shown in the Appendix 

B.  
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                    Fig.2  Re-estimates of k  
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Fig.2 plots estimates of k , for females and males; as shown, k  declines  

roughly linearly from 1950 - 2000, more for females than for males. If we 

look at the values of k , shown in Appendix B, k  declines at about the same 

pace during the first half of the period as it does during the second half. It 

also is striking that short-run fluctuations in k  do not appear much greater 

in the first part of the period than they do in the second, with the exception 

of the male series in the first years. We can note that these results are 

consistent with the findings of Lee and Carter (1992) in their analysis of the 

total USA population. Both these features of k  (its linear decline and its 

relatively constant variance) are very convenient for forecasting purposes. 

We can see from the re-estimated tk  that mortality improved in Italy.  For 

the purposes of comparison with other countries, for example Britain (as 

presented in Renshaw and Haberman, 2003a), we can see that the Italian 

improvement is more pronounced. This is probably due to the fact that 

mortality was initially higher in Italy than in Britain, making the relative 

improvement greater and therefore more apparent. If we compare male to 

female mortality we might expect to see the same effect. Male mortality is 

higher than female mortality, thus possible improvements in male mortality 

could again be more evident than improvements in female mortality in an 

analogous way to the country comparison.  

3. ARIMA methodology 

3.1.  Modelling mortality index 

The estimated time-dependent parameter tk  can be modelled as a 

stochastic process; we thus used the standard Box and Jenkins 

methodology (identification-estimation-diagnosis) to generate an 

appropriate ARIMA (p,d,q) model for the mortality index tk  (Box and 

Jenkins, 1976; Hamilton, 1994). 
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Considering the time series given by the reestimated tk , we need to 

identify a correct model, for our series, among the general class of ARIMA 

models. The procedure to construct the model goes through different 

iterative phases to arrive at a model that fits our data well (Francis X. 

Diebold, 2004; Makridakis, Wheelwright, Hyndman, 1998). The phases are 

the following: 

1) Preliminary analysis of the series and possible transformation. 

2) Identification of the order of the model. 

3) Parameter estimation. 

4) Evaluation of the model. 

In the first step, we analyse the general pattern of the time series, as is 

illustrated in Fig. 2. A clear, almost linear, trend emerges, indicating that 

mortality enjoyed a steady erosion over the years. 

The input series for an ARIMA needs to be stationary, that is, it should 

have a constant mean, variance, and autocorrelation through time. 

Therefore, the series usually needs to be differenced first until it is 

stationary. The number of times the series needs to be differenced to 

achieve stationarity is reflected in the d  parameter. In order to determine 

the necessary level of differencing, one should examine the plot of the data 

and autocorrelogram, that displays graphically and numerically the 

autocorrelation function (ACF). We examine the ACF of the series and 

choose the value of d  that gives rise to a rapid decrease of the ACF 

towards zero.  

3.2.  Identification phase 

In the Identification phase, after we made the series stationary, we also 

need to decide how many autoregressive parameters ( )p  and/or moving 

average parameters ( )q  are necessary to yield an effective, but still 

parsimonious model of the process. We experimented with twelve models, 
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based on combinations of the p  and q  parameters varying between zero 

and two. The sample autocorrelations and partial autocorrelations, together 

with related diagnostics, provided graphical aids to model selection. This 

complemented our automatic identification criteria, the Akaike and 

Schwarz information criterion per model. To guide model selection we use 

these two criterions even though the SIC usually selects more parsimonious 

models due to its greater concern over the number of parameters to be 

estimated. Using a model selection strategy involving not just examination 

of AIC and SIC, but also examination of autocorrelations and partial 

autocorrelations, we are led to choose the ARIMA (0,1,0) for males and an 

ARIMA (0,1,1) for female. For males a model with an ar(1) term added 

could be marginally superior, but we preferred a random walk with drift on 

grounds of parsimony. We examine the general pattern of the time series 

for both genders in Fig.2, and we saw that a clear, decreasing trend 

emerges for each, indicating that the series are not stationary in mean. We 

are led to the same conclusions if we look at the autocorrelation function or 

the partial autocorrelation functions in Fig.3 (females) and 4 (males).  

0 5 10 15 20 25
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0.0
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1.0
ACF-Females 

0 5 10 15 20 25

-0.5

0.0

0.5

1.0
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       Fig.3 Female autocorrelation and partial autocorrelation function 
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       Fig.4 Male autocorrelation and partial autocorrelation function 

       As we can see, if we look at the graph of the autocorrelation function 

(ACF), this approaches zero gradually rather than abruptly. On the 

contrary, the partial autocorrelation function (PACF) cuts off abruptly; 

specifically, at displacement 1, the partial autocorrelations are significant 

while coefficients on all longer lags are zero. This is a clear sign of a 

nonstationary series. 

Thus, following the Box and Jenkins methodology, we considered the 

differenced series, which we show in Fig.5 
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       Fig.5 Differenced female and male series 

After differencing the series, the nonstationarity in mean seems to be 

eliminated. Also the autocorrelation and partial autocorrelation functions 

(Fig.6), become consistent with the hypothesis of a stationary series. 

Because of the decreasing trend, when we estimated our model we also 

took a constant into consideration.   
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  Fig.6 Autocorrelation and partial autocorrelation functions after differencing the series 
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3.3. Parameters estimation   

Concerning the third phase, there are several different methods for 

estimating parameters. All of them should produce very similar estimates, 

but may be more or less efficient for any given model. Model parameters 

are estimated using statistical software, in our case time series estimation 

was performed by EViews using a least squares procedure. The tk  index 

for males was modelled as an ARIMA (0,1,0) process, i.e.:  

ttt KK ελ ++= −1  

and for females as an ARIMA (0,1,1) process, i.e.:  

111 −− −++= tttt KK εθελ  

The constant terms λ  indicate the average annual change of tk . It is this 

change that drives the forecasts of the long-run change in mortality. θ  

represents the moving average term. 

The estimated parameters for both genders, and their standard errors, 

appear in the table below: 
      

 

Male ARIMA (0,1,0) 

Variable Coefficient Std. Error t-Statistic Prob. 

λ  -0.424882 0.137488 -3.090321 0.0033 

     

Female ARIMA (0,1,1) 

Variable Coefficient Std. Error t-Statistic Prob. 

λ  -0.566485 0.045168 -12.54168 0.0000 

θ  -0.644956 0.108801 -5.927839 0.0000 

     

The autoregressive parameter ϕ  is equal to zero in both cases; as we see 

from the t-statistics, the other parameters are significant.  Furthermore, the 

Ljung-Box test and the residual plot guide us towards retaining the chosen 

model due to its good fit to the data. 
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For comparison, we note that Renshaw and Haberman (2003a), fitted the 

same ARIMA (1,1,0) process for males and females using the LC model, 

obtaining parameters estimates of 532,0−=ϕ  and 3041,0−=λ  for males and 

of 572,0−=ϕ  and 3525,0−=λ   for females. This was based on data for 

England and Wales over the period 1950-1998, and results in parameters 

which are comparable with our above estimates. 

3.4. Evaluation of the model 

The evaluation of the model aims at verifying that the model identified 

and estimated in the previous phases is adequate. If it is not, we have to 

suggest an alternative model. The objective of diagnostic checking is to 

ascertain whether the model "fits" the historical data well enough.  

To verify that the model we have previously identified and estimated fits 

the historical data well, we perform a number of analyses. We fit different 

models to the matrix of Italian death rates from 1950 to 1985, thereby using 

a 35 years in-sample period, to generate out-of-sample forecasts for the 

next 15 years. After fitting a range of models in-sample, we compute the 

Root of Mean Square Error (RMSE) for each ARIMA model and we find 

that the models we have chosen (ARIMA (0,1,0) for males and ARIMA 

(0,1,1) for females) are the ones with the lowest RMSE. This indicates that 

these are the models which best approximate the historical data.  

4. Projecting lifetables 

4.1. Traditional method 

Now we can use the ARIMA (0,1,1) and ARIMA (0,1,0) models to 

generate the forecasts of the index of mortality tk  for the next 25 years 

based on the period 1950-2000. Appendix C lists these values for both 

genders. 
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Figure 7 and 8, instead, plot the past values of k  along with the forecasts 

based on the time series model and the associated confidence intervals, for 

females and males respectively. It is worth noticing that we have used the 

Lee-Carter method for calculating the prediction intervals that concentrates 

just on variability due to kappa. The other sources of variability could be 

allowed for by using a bootstrap method: see  Brouhns, N., Denuit, M., Van 

Keilegom (2005). 

 

Fig. 7 Forecasts of Female Mortality Index k  with confidence interval 
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Fig. 8 Forecasts of Male Mortality Index k  with confidence interval 

Once we have forecasted the index of mortality, we can generate associated 

life table values at five-year intervals. First we insert the projected ,2000 sk +  

,25,.....,2,1=s  into the formulas  

(3) 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−= +

°

+

°

2000

^

2000

^

2000,

^

2000, exp kkmm sxxsx β  

to compute forecast mortality rates by alignment to the latest available 

empirical mortality rates  2000,

^

xm .  

Figure 9 shows the shapes of the mortality rates that we forecast for the 

females generations born in years 2001 and 2025. It is worth noticing that 

the mortality rates for age groups 1 - 4 and 5 - 9 become virtually identical 

by 2001 and 2025. 
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Fig. 9 Forecasted mortality rates for the female generations born in years 2001 and 2025         

From these projected mortality rates, we can build projected life tables and 

compute life expectancy at birth: see Keyfitz N. (1977). 

Thus, we convert the life table death rates, xm , into probabilities of death, 

xq . Let xf  be the average number of years lived within the age interval 

[ )1, +xx  for people dying at that age. As in Renshaw and Haberman 

(2003a), we assume that 2
1=xf  for all age group except age 0  (for 0=x  we 

fix 15,0=xf  for males and 16,0=xf  for females). We then compute  xq  

from xm  and xf according to the formula,  

(4) 
xxx

xx
x mwf

mwq
'1+

≅ ,                     ,,....,, 210 −= kxxxx  

  

for 104100,......,95,41,0 −−−=x , iixi xxw −= +1 , 22=k  and xx ff −=1' .  

  To complete the life table calculation, let xp  be the probability of 

surviving from age x  to 1+x .   

 

Therefore, 

(5) xx qp −= 1 , 



 
 

18

for all five-year age groups up the age of 104.  

From xq  calculated by (4) and an arbitrary 0l  (in our case we make it equal 

to 100000) the life table is constructed by working down the column of l ’s 

and d ’s, applying the recurrence equations 

(6) ( )xxwxx qll −=+ 1 ,                      ,,....,, 210 −= kxxxx  

(7) ,xxwxxx qllld
x
=−= +                 ,,....,, 210 −= kxxxx  

where xl  indicates the number of survivors and xd  is the distribution of 

deaths by age in the life table population. 

The person-years lived by the life-table population in the age interval 

[ )1, +xx  are 

(8) ( ),' xxxxx dflwL −=                       .,....,, 210 −= kxxxx  

The person-years remaining for individuals of age x  equal  

(9) ∑
−

=

=
1k

i

i

x

xx
xx LT  

imply that life expectancy is given by 

(10) .
i

i
i x

x
x l

Te =  

Appendix D lists forecasts of life expectancy at birth obtained using the 

Lee-Carter model and also shows forecasts obtained with the alternative 

method which will be discussed later.  

4.2. The alternative approach to forecast life expectancy 

The method seen above allowed us to compute life expectancies from 

forecasted mortality rates. In that approach we found an appropriate 

ARIMA time series model for the mortality index tk  and then we used that 

mortality model to generate forecasts of the mortality rates. From the 

forecasts of mortality rates it was straightforward to calculate life tables 

and life expectancy at birth.  
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Now we introduce an alternative approach by modelling and forecasting 

life expectancy directly; we perform a time series analysis of the annual life 

expectancies at age x  to generate forecasts directly. In particular, we 

consider annual life expectancies at birth for the Italian population, 

supplied by the Human Mortality Database and divided by gender, from 

1950 to 2000. As before, we use the standard Box and Jenkins 

methodology to generate an appropriate ARIMA (p,d,q) model for our time 

series, represented in this case by the males and females life expectancies at 

birth.  

In this case the life expectancies are intrinsically viewed as a stochastic 

process and are estimated and forecasted within an ARIMA time series 

model. We find that an appropriate model for males and females is ARIMA 

(1,1,1): 

(11) 1111 −− −++∇=∇ tttt ee εθελϕ  

where ∇  is the differencing operator and { }tε  denotes white noise. 

The fitted ARIMA (1,1,1) model generates sex-specific life expectancy 

forecasts directly. Appendix D shows forecasts of life expectancy at birth, 

comparing the results obtained using the Lee-Carter methodology and the 

alternative approach. Both approaches are illustrated in Figure 10, which 

shows life expectancy at birth from 1950 to 2000 and forecasts from 2001 

to 2025. As shown the forecasts based on the LC model are dominated by 

the forecasts obtained under the direct time series approach (for both 

genders), thus bearing out the conservative nature of the life expectancy 

under the LC approach. We want to stress that our results are consistent 

with the findings of Lee and Carter (1992) and Renshaw and Haberman 

(2003a), in their forecasting of life expectancies in the USA and in England 

and Wales, respectively.   
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Fig. 10 Life Expectancy at birth and Forecasts     

 

      

5. Conclusions 

We have presented an application of the model underpinning the Lee-

Carter methodology for forecasting vital rates. In particular we have 

focused on forecasting life expectancies on a period basis and we have 

compared the life expectancies forecasted under the LC model, with the 

time-series-based forecast. The results are interesting; the a priori 

assumption would be that they would be different, and this is what we find 

in our analysis. The modelling of the underlying mortality rates is a 

superior method in theoretical terms yet employing the alternative allow us 

to examine the effect of a different approach. Moreover, the difference in 

results is evident for both genders. 
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Appendix A: raw estimates of xα , xβ and tk  

Estimation αx

Age Group Females Males
0 -4,033699707 -3,835790179

1-4 -7,213929985 -7,10874839
5-9 -8,160779498 -7,8680444

10-14 -8,26407312 -7,813319463
15-19 -7,864148005 -6,945887141
20-24 -7,651584535 -6,717847306
25-29 -7,452283749 -6,677807228
30-34 -7,176244489 -6,52591061
35-39 -6,82668437 -6,267172662
40-44 -6,42665121 -5,857718365
45-49 -5,97721047 -5,367224209
50-54 -5,5362239 -4,85898577
55-59 -5,099981417 -4,371698852
60-64 -4,618943106 -3,908334419
65-69 -4,091446245 -3,46120974
70-74 -3,513642443 -3,004627826
75-79 -2,91609241 -2,533438599
80-84 -2,340328469 -2,054049223
85-89 -1,816543952 -1,608759955
90-94 -1,360558507 -1,204260676
95-99 -0,98275526 -0,858826013

100-104 -0,683975682 -0,571001792  
Estimation βx

Age Group Females Males
0 0,102499919 0,141392134

1-4 0,115756234 0,154637924
5-9 0,076369591 0,1048845

10-14 0,06054872 0,077513092
15-19 0,046862446 0,036496079
20-24 0,052411099 0,027122682
25-29 0,052634309 0,028254762
30-34 0,049035161 0,029940744
35-39 0,046391497 0,03824621
40-44 0,041574381 0,043840993
45-49 0,0371411 0,043890003
50-54 0,035471203 0,040208161
55-59 0,034728713 0,034730071
60-64 0,036185567 0,029289642
65-69 0,038141047 0,024775806
70-74 0,03928069 0,024092927
75-79 0,03702842 0,024840021
80-84 0,031747846 0,024819726
85-89 0,025296883 0,023897241
90-94 0,018481342 0,021030037
95-99 0,013483991 0,018642631

100-104 0,00892984 0,007454613  
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Raw kt

Year Females Males
1950 14,76794409 8,583743518
1951 14,89155126 9,913426279
1952 13,408219 8,394651321
1953 12,52239962 7,846443414
1954 10,62992411 6,157210056
1955 9,842540872 6,678494859
1956 10,87206043 7,63722919
1957 9,952250993 6,926523736
1958 8,333794839 5,760670293
1959 7,666052493 4,684290325
1960 7,514274804 5,502144527
1961 6,452023934 4,67497325
1962 7,350708893 5,924349376
1963 7,437428484 6,008580608
1964 5,035484367 4,149811148
1965 5,574608009 4,440954214
1966 3,765069333 3,160189717
1967 4,097046229 2,997962203
1968 4,145444986 3,741762929
1969 3,538285116 3,239875422
1970 2,803734674 2,594174948
1971 2,15831635 2,1059274
1972 1,746190265 1,687278316
1973 1,709463933 2,05402866
1974 0,043476874 0,49638264
1975 0,085074077 1,008839268
1976 -0,48958581 0,302168793
1977 -1,406965414 -0,064006487
1978 -2,454922639 -0,523079984
1979 -2,794406103 -0,942828408
1980 -1,942370504 -0,584121479
1981 -3,91343144 -1,793326397
1982 -4,657875266 -2,739795273
1983 -4,248820047 -2,475348897
1984 -5,901708476 -3,960446015
1985 -5,964310903 -4,129592882
1986 -6,714897273 -4,911413514
1987 -7,42132546 -5,417138884
1988 -7,575054175 -5,531328024
1989 -8,556732355 -6,055195481
1990 -8,365313614 -5,705874419
1991 -8,247115251 -5,245437366
1992 -8,664645546 -5,975670242
1993 -8,610286143 -6,494699583
1994 -9,306065233 -7,242041819
1995 -9,841560985 -7,062980989
1996 -10,14304994 -8,138229592
1997 -11,10687368 -9,046047702
1998 -11,81185036 -9,821817576
1999 -12,90587746 -11,02581041
2000 -13,29832396 -11,78585499  
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Appendix B: tk  re-estimated 

Reestimated kt

Year Females Males
1950 12,239065 7,127597
1951 13,261274 8,301183
1952 12,594144 7,754879
1953 12,055052 7,318683
1954 9,651698 5,478459
1955 9,163218 5,265724
1956 11,254295 7,463961
1957 9,853836 6,647819
1958 7,950729 4,876913
1959 7,034265 4,145711
1960 7,632881 5,196660
1961 6,159950 4,190676
1962 7,683678 5,772402
1963 7,480289 5,813922
1964 5,299921 4,079973
1965 6,234911 4,901331
1966 4,399276 3,478168
1967 4,684472 3,650243
1968 5,330330 4,475201
1969 4,693498 4,603788
1970 3,442278 3,068314
1971 2,802146 2,750540
1972 2,117816 2,410300
1973 2,955119 3,103914
1974 1,363817 2,088754
1975 1,885872 2,989996
1976 0,000000 2,486175
1977 0,000000 0,000000
1978 -0,767902 0,000000
1979 -1,524324 0,000000
1980 -1,043566 0,000000
1981 -1,971115 0,000000
1982 -3,159363 -0,890456
1983 -2,010931 0,000000
1984 -4,507087 -1,983047
1985 -4,416243 -2,085719
1986 -5,308517 -2,968874
1987 -6,862385 -4,323954
1988 -7,192844 -4,789860
1989 -8,570573 -5,953422
1990 -8,606526 -6,217906
1991 -9,022171 -6,417020
1992 -10,235814 -7,592074
1993 -10,703506 -7,944450
1994 -11,313666 -8,573662
1995 -12,367972 -9,549911
1996 -13,367315 -10,741046
1997 -13,494783 -11,336797
1998 -13,349057 -11,294018
1999 -14,263166 -12,552274
2000 -15,503808 -14,116502  
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Appendix C: Forecasted tk  

Years Kt_Females Kt_Males
2001 -16,07029342 -14,54138354
2002 -16,63677847 -14,96626551
2003 -17,20326352 -15,39114747
2004 -17,76974857 -15,81602944
2005 -18,33623361 -16,2409114
2006 -18,90271866 -16,66579337
2007 -19,46920371 -17,09067533
2008 -20,03568876 -17,5155573
2009 -20,60217381 -17,94043926
2010 -21,16865886 -18,36532123
2011 -21,73514391 -18,79020319
2012 -22,30162895 -19,21508515
2013 -22,868114 -19,63996712
2014 -23,43459905 -20,06484908
2015 -24,0010841 -20,48973105
2016 -24,56756915 -20,91461301
2017 -25,1340542 -21,33949498
2018 -25,70053924 -21,76437694
2019 -26,26702429 -22,18925891
2020 -26,83350934 -22,61414087
2021 -27,39999439 -23,03902284
2022 -27,96647944 -23,4639048
2023 -28,53296449 -23,88878677
2024 -29,09944953 -24,31366873
2025 -29,66593458 -24,7385507

Forecasted kt
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Appendix D: Comparison between the two different approaches  
Alternative Method Lee-Carter method

Years Female(1,1,1) Female(0,1,1)
2001 82,72917824 82,67351256
2002 82,99835649 82,86201097
2003 83,26753473 83,04787938
2004 83,53671298 83,23118379
2005 83,80589122 83,41198693
2006 84,07506946 83,59034841
2007 84,34424771 83,76632497
2008 84,61342595 83,93997054
2009 84,8826042 84,11133649
2010 85,15178244 84,28047172
2011 85,42096068 84,44742281
2012 85,69013893 84,61223418
2013 85,95931717 84,77494818
2014 86,22849542 84,93560524
2015 86,49767366 85,09424397
2016 86,7668519 85,25090125
2017 87,03603015 85,40561236
2018 87,30520839 85,55841107
2019 87,57438664 85,70932971
2020 87,84356488 85,85839928
2021 88,11274312 86,00564951
2022 88,38192137 86,15110895
2023 88,65109961 86,29480504
2024 88,92027786 86,43676419
2025 89,1894561 86,57701179

Alternative Method Lee Carter method
Years Males (1,1,1) Males (0,1,0)
2001 76,78736631 76,74722129
2002 77,02473263 76,8981853
2003 77,26209894 77,04728176
2004 77,49946526 77,19458884
2005 77,73683157 77,34018047
2006 77,97419788 77,48412656
2007 78,2115642 77,62649319
2008 78,44893051 77,76734287
2009 78,68629683 77,90673464
2010 78,92366314 78,04472435
2011 79,16102945 78,18136473
2012 79,39839577 78,31670564
2013 79,63576208 78,45079417
2014 79,8731284 78,58367483
2015 80,11049471 78,71538963
2016 80,34786102 78,84597827
2017 80,58522734 78,97547824
2018 80,82259365 79,10392494
2019 81,05995997 79,23135178
2020 81,29732628 79,35779032
2021 81,53469259 79,48327033
2022 81,77205891 79,60781993
2023 82,00942522 79,73146564
2024 82,24679154 79,85423249
2025 82,48415785 79,9761441  
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