LUCIO SARNO
DANIEL L. THORNTON
GIORGIO VALENTE

Federal Funds Rate Prediction

We examine the forecasting performance of a range of time-series models of the daily U.S. effective federal funds (FF) rate recently proposed in the literature. We find that: (1) most of the models and predictor variables considered produce satisfactory one-day-ahead forecasts of the FF rate, (2) the best forecasting model is a simple univariate model where the future FF rate is forecast using the current difference between the FF rate and its target, and (3) combining the forecasts from various models generally yields modest improvements on the best performing model. These results have a natural interpretation and clear policy implications.

JEL codes: E43, E47
Keywords: federal funds rate, forecasting, term structure, nonlinearity.

The importance of the effective federal funds (FF) rate in U.S. financial markets is unquestionable. The Federal Reserve (Fed) implements monetary policy by targeting the effective FF rate. The ability of market participants to predict the FF rate is important to modern analyses of monetary policy in that other interest rates are believed to be linked to the FF rate by the market’s expectation of monetary policy actions that directly affect the FF rate. It is therefore not surprising that a vast body of research has studied the behavior of the FF rate and proposed empirical models designed to explain it. One strand of this literature focuses on the

This paper was partly written while Lucio Sarno was a Visiting Scholar at the Federal Reserve Bank of St. Louis, the International Monetary Fund and the Central Bank of Norway, whose hospitality is gratefully acknowledged. We are grateful to Ken West (editor) and three anonymous referees for constructive comments and suggestions which led to a substantially improved paper. We are also thankful to Mike Dueker, Jim Hamilton, Oscar Jordà, Lutz Kilian, Chris Neely, and participants to the 2003 Royal Economic Society Annual Conference at the University of Warwick for useful conversations or comments on previous drafts. The views expressed do not necessarily reflect the views of the Federal Reserve Bank of St. Louis, the Board of Governors of the Federal Reserve System, the International Monetary Fund, or the Central Bank of Norway.

Lucio Sarno is a professor of finance, Finance Group, Warwick Business School, University of Warwick, and a Research Affiliate, Centre for Economic Policy Research (CEPR), London (E-mail: lucio.sarno@warwick.ac.uk). Daniel L. Thornton is a vice president and economic advisor at the Federal Reserve Bank of St. Louis (E-mail: thornton@stls.frb.org). Giorgio Valente is a lecturer in finance, Finance Group, Warwick Business School, University of Warwick (E-mail: giorgio.valente@wbs.ac.uk).

Received August 20, 2002; and accepted in revised form December 28, 2004.

Journal of Money, Credit, and Banking, Vol. 37, No. 3 (June 2005)
Copyright 2005 by The Ohio State University
FF rate using data at monthly or quarterly frequency to establish the extent to which arguments of interest to the Fed—such as inflation and the output gap—are sufficient to explain the variation in the FF rate (e.g., Taylor, 1993, 1999, Clarida, Gali, and Gertler, 1998, 2000, and the references therein). A related literature investigates the impact of monetary policy shocks on key macroeconomic aggregates, again using low frequency data, identifying shocks to monetary policy using the FF rate in structural vector autoregressions (e.g., Christiano, Eichenbaum, and Evans, 1999, and the references therein). Other studies focus on the high-frequency behavior of the FF rate, using data at the daily frequency. This frequency is appealing because each day the Trading Desk of the Federal Reserve Bank of New York (hereafter Desk) conducts open market operations designed to move the FF rate in the desired direction (e.g., Hamilton, 1996, Roberds, Runkle, and Whiteman, 1996, Balduzzi, Bertola, and Foresi, 1997, Taylor, 2001).1

The literature has suggested that several variables have predictive power for explaining FF rate movements: FF futures rates (Krueger and Kuttner, 1996), the FF rate target (Rudebusch, 1995, Taylor, 2001), and other interest rates linked to the FF rate via no-arbitrage conditions or the term structure of interest rates (e.g., Enders and Granger, 1998, Hansen and Seo, 2002, Sarno and Thornton, 2003, Clarida et al., 2004). A number of models, both univariate and multivariate, linear and nonlinear, have been proposed to capture the unknown process that drives FF rate movements. To date, however, there appears to be no consensus on what variables and models best characterize the behavior of the FF rate at the daily frequency. This paper attempts to fill this gap in the literature by examining a variety of univariate and multivariate, linear and nonlinear empirical models of the FF rate, largely taken directly from or inspired by previous research in this context. We estimate these models using daily data for the period from January 1, 1990 through December 31, 1996 and generate forecasts over the remaining four years of data. We also examine the potential to improve on the individual or ‘primitive’ models by using combinations of forecasts (see, inter alia, Diebold, 2001, Stock and Watson, 1999b, 2003, Swanson and Zeng, 2001).

To anticipate our results, we find that, in general, most of the models and predictor variables considered produce satisfactory one-day-ahead forecasts of the FF rate. However, the best forecasting model is a very parsimonious univariate model where the one-day-ahead funds rate is forecast using the current difference between the funds rate and its target. This model can be thought of as a simple variant of the Desk’s reaction function proposed by Taylor (2001). Combining the forecasts from various models provides generally modest improvements on the Desk’s reaction function. We argue that these results have a natural interpretation and that they are in line with the growing empirical evidence suggesting that the Fed’s policy is well described as a forward-looking interest rate rule.2

2. We stick to one-step-ahead forecasting in this paper. In a previous version of the paper, we also analyzed forecasts up to eight weeks ahead, although an exercise of this kind would ideally require a model of how the FF rate target changes. Given our focus on one-day-ahead forecasts, changes in the target affect very few of the observations and hence the models considered here are not intended to explore issues related to explaining or forecasting target changes.
The remainder of the paper is set out as follows. In Section 1, we describe the empirical models of the daily FF rate considered in the paper. We also briefly discuss some econometric issues relevant to estimation of these models. In Section 2, we describe the data. Some preliminary data analysis and the in-sample estimation results are given in Section 3, while in Section 4 we present our forecasting results using both the primitive models and the combinations of forecasts, including evidence on point forecast accuracy and market timing ability. Section 5 concludes.

1. EMPIRICAL MODELS OF THE FEDERAL FUNDS RATE

This section describes the empirical models of the daily U.S. effective FF rate considered in this paper. Our aim is to model the daily behavior of the FF rate. However, we cannot rely on standard macroeconomic variables (such as inflation and output) that one may expect to drive monetary policy decisions and interest rate movements since these variables are not available at the daily frequency. Thus, the information set considered includes the FF rate target, other U.S. interest rates to which the FF rate is likely to be linked via no-arbitrage conditions, and FF futures rates, in addition to lagged values of the FF rate.3

1.1 Univariate Models

The first specification considered is a simple driftless random walk (RW) model:

$$\Delta t_{t}^{\text{FF}} = u_{t},$$

(1)

where Δt_{t}^{FF} is the daily change in the effective FF rate. Although several researchers have concluded that the interest rate fails to follow a random walk (e.g., Shiller, Campbell, and Schoenholtz, 1983, Campbell, 1987, Berret, Slovin, and Sushka, 1988, Lasser, 1992, Hamilton, 1996, Roberds, Runkle, and Whiteman, 1996, Balduzzi, Bertola, and Foresi, 1997, Lanne, 1999, 2000), most studies cannot reject the unit root hypothesis for interest rates (e.g., Stock and Watson, 1988, 1999a). Given the large empirical work suggesting that very persistent series with a root very close (if not equal) to unity are better approximated by $I(1)$ processes than by stationary ones (e.g., see Stock, 1997, Diebold and Kilian, 2000), it seems reasonable to consider an RW model for the FF rate as one of our specifications.

A more general model of FF rate movements is a linear ARMA(p, q) model:

$$\Delta t_{t}^{\text{FF}} = \sum_{j=1}^{p} \gamma_{j} \Delta t_{t-j}^{\text{FF}} + \varepsilon_{t} + \sum_{s=1}^{q} \phi_{s} \varepsilon_{t-s}.$$

(2)

This model generalizes the RW model to account for higher-order autoregressive dependence and for moving-average serial correlation in the residual error.

3. In each of the models of FF rate changes described below, we do not allow for a constant term since, for all models, in preliminary estimations the constant was always found to be very small in size and statistically insignificantly different from zero at conventional significance levels.
The third specification considered is a variant of the model recently proposed by Taylor (2001):

$$\Delta t_{i \text{FF}}^T = \xi (t_{i-1}^T - t_{i-1}) + \text{error term},$$ \hspace{1cm} (3)

where \((t_{i-1}^T - t_{i-1})\) is the lagged difference between the FF rate, \(t_{i-1}^T\) and the FF rate target, \(t_{i-1}^T\). Under this model, future daily changes in the FF rate are driven by current deviations of the FF rate from its target. Taylor (2001) suggests that the Desk strives to keep the FF rate close to its target level, which, since 1994, is publicly announced by the Federal Open Market Committee (FOMC). According to the literature on forward-looking interest rate rules (Clarida, Gali, and Gertler, 1998, 2000), the FF rate target is set on the basis of considerations that may be parsimoniously summarized in expected inflation and output gap. Hence, Equation (3) may be seen as the Desk’s reaction function designed to minimize deviations of the FF rate from the target, which is set by the FOMC at a level believed to deliver the desired inflation and output objectives. Taylor argues that the adjustment to departures of the FF rate from its target is partial at daily frequency, implying that \(-1 < \xi < 0.45\)

Another univariate model of the daily FF rate, first examined by Hamilton (1996), is the exponential generalized autoregressive conditional heteroskedasticity or EGARCH model. An EGARCH \((p, q)\) for the daily change in the FF rate may be written as follows:

$$\Delta t_{i \text{FF}}^T = \eta(t_{i-1}^T - t_{i-3}^T) + \sigma_t v_t,$$

$$\log(\sigma_t^2) = \omega + \sum_{j=1}^{p} \theta_j \sigma_{t-j}^2 + \sum_{s=1}^{q} \left[\rho_s \left(\frac{v_{t-s}^2}{\sigma_{t-s}} \right) - E \left(\frac{v_{t-s}^2}{\sigma_{t-s}} \right) \right] + \zeta \frac{v_{t-3}}{\sigma_{t-3}},$$ \hspace{1cm} (4)

where \((t_{i-1}^T - t_{i-3}^T)\) is the cumulative change of the FF rate over the preceding two days, and \(v_t\) denotes independently and identically distributed (i.i.d.) innovations with zero mean and unit variance. The conditional variance \(\sigma_t^2\) is modeled in the spirit of the analysis of Nelson (1990), where in order to take into account the asymmetric effect between future conditional variances and current FF rate changes, both sign and magnitude of the innovations are taken into account.

Another univariate nonlinear model we consider is a Markov-switching \(p\)-th-order autoregressive model with \(M\)-regimes, MS-AR \((M, p)\) (Hamilton, 1988, 1989, Gray, 1996):

4. It should be noted that the original formalization in Taylor (2001) considers as the dependent variable the change in the Federal supply balances which, in turn, are adjusted by the Fed in order to induce the desired change in the FF rate. However, we use the FF rate change as the left-hand-side variable in Equation (3). See also Rudebusch (1995).

5. We also investigated whether the adjustment coefficient \(\xi\) has changed over the sample by estimating Equation (3) recursively. However, recursive estimation revealed little, if any, time variation in \(\xi\), suggesting that this parameter has been fairly stable over the sample period examined.
\[\Delta_{i_t}^{FF} = \sum_{j=1}^{p} \phi_j (z_t) \Delta_{i_{t-j}}^{FF} + \sigma (z_t) \omega_t \quad z_t = 1, 2, \ldots, M . \]

Model (5) allows for the autoregressive structure, \(\sum_{j=1}^{p} \phi_j (z_t) \Delta_{i_{t-j}}^{FF} \), and the variance of the error term, \(\sigma^2 (z_t) \), to be shifting over time across regimes. In this model, the variance of the innovations \(\omega_t \) is time-varying but, unlike for the EGARCH, the dynamics is governed by an unobservable variable \(z_t \) which is assumed to follow a first-order Markov chain. Markov-switching models have often been employed to model interest rates with some degree of success. Such models are a plausible alternative to models of the ARCH family designed to capture fat-tailed disturbances (e.g., Hamilton, 1988, Hamilton and Susmel, 1994, Ait-Sahalia, 1996, Gray, 1996, Bansal and Zhou, 2002, Dai, Singleton, and Yang, 2003, Clarida et al., 2004).

1.2 Multivariate Models

Among the multivariate models we consider, we include the Momentum-Threshold Autoregressive (M-TAR) model proposed by Enders and Granger (1998):

\[\Delta y_t = \sum_{j=1}^{p-1} \Lambda_j \Delta y_{t-j} + I_t [\alpha_1 \beta y_{t-1}] + (1 - I_t) [\alpha_2 \beta y_{t-1}] + \text{error} , \]

where \(y_t = [i_t^{FF}, i_t^{TB}] ; i_t^{TB} \) is the 3-month Treasury Bill (TB) rate. This model explicitly takes into account the existence of asymmetries that may occur in the adjustment process along the short-end of the yield curve. Essentially, the adjustment parameters, \(\alpha_1, \alpha_2 \), differ depending on whether the slope of the short-end of the yield curve is positive or negative.

Another multivariate threshold model, applied to the FF rate by Hansen and Seo (2002), is the bivariate TAR or BTAR model:

\[\Delta y_t = I_t \left[\sum_{j=1}^{p-1} \Lambda_{ij} \Delta y_{t-j} + \alpha_1 \beta y_{t-1} \right] \]

\[+ (1 - I_t) \left[\sum_{j=1}^{q-1} \Lambda_{kj} \Delta y_{t-j} + \alpha_2 \beta y_{t-1} \right] + \text{error} , \]

where \(y_t = [i_t^{FF}, i_t^{TB}] \). Although both the M-TAR model (6) and the BTAR model (7) belong to the family of threshold autoregressive models, they differ in several respects. First, in the BTAR model (7) the Heaviside indicator function \(I_t \) is equal to zero or unity according to whether the value of the cointegrating residual is smaller (or larger) than a threshold \(k \), which must be estimated. In contrast, in the M-TAR model (6) the threshold is assumed to be equal to zero. Second, in the BTAR model (7) the whole set of parameters, \(\Lambda_i, \alpha_i \), is shifting over time, while in the M-TAR
model (6) only the speed of adjustment parameter, namely \(\alpha_i \) (for \(i = 1, 2 \)), is shifting over time.

The final model considered is a Markov-Switching Vector Error Correction Model or MS-VECM of the term structure of FF futures rates. This model is partly inspired by the recent work of Krueger and Kuttner (1996) and Kuttner (2001), where it is shown that FF futures rates are useful in predicting future changes in the FF rate. If the FF rate and FF futures rates are \(I(1) \) variables, it is straightforward to demonstrate that the FF rate and the FF futures rates should cointegrate with a cointegrating vector \([1, -1]\). In turn, via the Granger representation theorem (Granger, 1986), the joint dynamics of the FF rate and the FF futures rates can be described by a VECM:

\[
\Delta y_t = \sum_{j=1}^{p-1} \Gamma_j(z)\Delta y_{t-j} + \Pi(z)y_{t-1} + \Sigma^{1/2}(z)\varepsilon_t,
\]

where \(y_t = [y_{t,FF}, f_{t,1}, f_{t,2}] \), and the long-run impact matrix \(\Pi(z) = \alpha(z)\beta' \). The VECM in Equation (8) has been generalized to a Markov-switching framework where the parameters can shift to take into account the evidence that interest rate changes are heteroskedastic and that their distribution is well approximated by a mixture of normal distributions (e.g., see Hamilton, 1988, 1996, Gray, 1996, Bansal and Zhou, 2002, Dai, Singleton, and Yang, 2003, Clarida et al., 2004).

2. DATA ISSUES

The data set consists of daily observations on the effective FF rate \(i_{FF,nc}^{m} \), the 3-month T-bill \(i_{TB}^{m} \), the FF rate target \(i_{T}^{m} \), and the FF futures rate \(f_{m}^{m} \) for \(m = 1, 2 \). The FF rate is a weighted average of the rates on federal funds transactions of a group of federal funds brokers who report their transactions daily to the Federal Reserve Bank of New York. Federal funds are deposit balances at Federal Reserve banks that institutions (primarily depositories, e.g., banks and thrifts) lend overnight to each other. These deposit balances are used to satisfy reserve requirements of the Federal Reserve System. Because reserve requirements are binding at the end of the reserve maintenance period, called settlement Wednesday, the FF rate tends to be more volatile on settlement Wednesdays. The FF rate time series was adjusted in order to eliminate the effect of the increased volatility on settlement days, as

6. Empirically, the \([1, -1]\) restriction is often rejected in studies of the Expectations Hypothesis of the term structure of interest rates using U.S. data (e.g., Hall, Anderson, and Granger, 1992, Hall, Martin, and Pagan, 1996). One exception is Hansen (2003), who argues that the rejection may be due to non-constant parameters.

7. An alternative model to consider in future work is that of Rahbek and Shephard (2002); in that model, the error correction is either active or inactive, where the probability of the error correction being active increases with the deviation from equilibrium.

8. Since February 1984 the reserve maintenance period has been two weeks for all institutions. Before 1984 it was one week for most large institutions. For a more detailed discussion of the Federal Reserve’s reserve requirements and the microstructure of the federal funds market, see, for example, Taylor (2001).
done, for example, in Sarno and Thornton (2003). Precisely, the adjusted time series for the FF rate is the ordinary-least-squares residual from the regression of the FF rate on a dummy variable that equals zero on non-settlement days and unity on settlement days. This yielded the time series for the corrected FF rate, \(\hat{r}_{t}^{FF} \), which is the time series we employ in our empirical work. Note that, since the corrected FF rate series was obtained using the whole sample to estimate the coefficient on the dummy variable, essentially the study of its properties is not purely out of sample. However, the qualitative impact of this correction on our results is likely to be very small because settlement days are publicly known in advance. Moreover, we check whether our results are robust to the inclusion of settlement days in our forecasting exercise below, and find that the forecasting results are qualitatively identical when settlement days are excluded from the analysis (see Section 4.2).

\(f_{t}^{m} \) is the rate on an FF futures contract with maturity \(m \), traded on the Chicago Board of Trade (CBT). Futures contracts are designed to hedge against or speculate on the FF rate. The CBT offers FF futures contracts at several maturities; however, the most active contracts are for the current month and a few months into the future. The contracts are marked to market on each trading day, and final cash settlement occurs on the first business day following the last day of the contract month. The FF rate \(i_{t}^{FF} \) and the 3-month T-Bill rate \(i_{t}^{TB} \) were obtained from the Federal Reserve Bank of St. Louis database, Federal Reserve Economic Data (FRED). The FF rate target, \(i_{t}^{T} \), was taken from Thornton and Wheelock (2000). The FF futures rates \(f_{t}^{m} \) were obtained from the CBT.

The sample period spans from January 1, 1990 through December 31, 2000, yielding a total of 2869 observations. This sample period was chosen for two reasons. First, while the Fed has never explicitly stated when it began targeting the FF rate in implementing monetary policy, an emerging consensus view is that the Fed has been explicitly targeting the FF rate since at least the late 1980s (e.g., see Meulendyke, 1998, Hamilton and Jordá, 2001, Poole, Rasche, and Thornton, 2002). Second, while the FF futures market has existed since October 1988, trading activity in this market was initially small (Krueger and Kuttner, 1996, p. 867). To insure against the possibility that the empirical analysis would be affected by the thinness of the FF futures market during the early years of its operation, we decided to begin the sample in January 1990.

Since we are interested in the predictive power of alternative time-series models, we initially estimate each model over the period January 1, 1990 through December 31, 1996. Forecasts over the remaining four years of data are generated using a recursive forecasting procedure, described in Section 4.1.

3. EMPIRICAL RESULTS

3.1 Preliminary Data Analysis and Unit Root Tests

Table 1 presents summary statistics for the series of interest, both in levels (Panel A) and first difference (Panel B). These summary statistics show that all rates—the (non-corrected and corrected) FF rate, the TB rate, the FF futures rates, and the FF
rate target—display similar values for the mean, variance, skewness and kurtosis. It is, however, clear that the correction for settlement Wednesdays discussed in the previous section make the mean of the FF rate closer to the mean of the FF rate target; indeed, after this correction the mean difference between the FF rate and the FF rate target, \((i^\text{FF} - i^\text{T})\), is only 0.025 and statistically insignificantly different from zero when one takes into consideration its standard deviation. Also, an examination of the third and fourth moments indicates the existence of both excess skewness and kurtosis, suggesting that the underlying distribution of each of these time series may be non-normal. This is confirmed by the rejections of the Jarque–Bera test for normality reported in the last row of Panels A and B in Table 1.9

3.2 Estimation Results and In-Sample Performance

We estimate each model described in Section 1 over the sample period January 1, 1990 and December 31, 1996. Although the core of our empirical work relates to the out-of-sample performance of these models, this section provides details on the ability of each model to explain the FF rate in sample.10

Let us begin with the estimation results for the univariate models of the FF rate. For Model (2) we found an ARMA(2,1) specification to be satisfactory in that no

9. Before proceeding to estimating the models described in Section 1, we carried out preliminary unit root tests for each of \(i^\text{FF}, i^\text{T}, f, f^\text{f}, f^\text{f}, f^\text{f}\) (available upon request). Using standard augmented Dickey–Fuller tests we found evidence that the interest rate time series are I(1), consistent with much previous research (e.g., Stock and Watson, 1988, 1999a). Although it is unlikely that interest rates are strictly I(1), it seems useful to treat them as such for forecasting purposes, also because the least squares estimator of a root near unity is downwards biased and, therefore, it may be better to impose unity rather than estimating it.

10. The full estimation results are not reported to conserve space but they are available upon request.
serial correlation was left in the residuals. Estimation of Model (3), namely the Desk’s reaction function, suggests very fast, albeit partial, adjustment of the FF rate toward the FF rate target. The speed of reversion parameter ξ is consistent with over 70% of the daily difference between the FF rate and the target being dissipated the following day. The EGARCH model (4) was estimated following the specification procedure adopted in Hamilton (1996).11

The univariate Markov-switching model (5) was specified and estimated by employing the 'bottom-up' procedure suggested by Krolzig (1997, chap. 6). This procedure is designed to detect Markovian shifts in order to select the most adequate characterization of an M-regime pth-order MS-AR for $\Delta^{p}_{t}\text{FF}$. The bottom-up procedure suggested in each case that two regimes were sufficient to characterize the dynamics of FF rate changes, confirming previous results reported in the literature on modeling short-term interest rates (e.g., Gray, 1996, Ang and Bekaert, 2002). Further, a specification which allows the autoregressive structure and the variance to shift over time (Markov-Switching-Autoregressive-Heteroskedastic-AR, or MSAH-AR) was selected since a regime-shifting intercept was found to be insignificant at conventional statistical levels.

Turning to the multivariate models, the M-TAR (6) and the BTAR (7) were estimated following the procedures described in Enders and Granger (1998) and Hansen and Seo (2002), respectively. In particular, both Models (6) and (7) were estimated by imposing the cointegrating vector $\beta' = [1, -1]$. With respect to the BTAR model (7), the threshold parameter was estimated, as in Hansen and Seo (2002), using 300 gridpoints, and the trimming parameter was set to 0.05. Finally, the MS-VECM (8) was estimated according to the conventional procedure suggested by Krolzig (1997) and employed, for example, by Clarida et al. (2003, 2004), designed to jointly select the appropriate lag length and the number of regimes characterizing the dynamics of the FF rate and the FF futures rates. The VARMA representations of the series suggested in each case that there are between two and three regimes. We adopted a specification which allows the whole set of parameters—i.e., intercept, autoregressive structure, cointegrating matrix and variance–covariance matrix—to shift over time (Markov-Switching-Intercept-Autoregressive-Heteroskedastic-VECM or MSAH-VECM) with the number of regimes $M = 3$, which was found to adequately characterize the joint dynamics of the FF rate and FF futures rates.

The estimation yields fairly plausible estimates of the coefficients for all the specifications considered. Further, for any of the regime-shifting Models (5)–(8) the null hypothesis of linearity is rejected in all cases with very low p-values, suggesting that nonlinearities and asymmetries of the kind modeled here may be important ingredients for characterizing in sample the dynamics of the effective FF rate. Statistics measuring the in-sample performance of the estimated Models (2)–(8)

11. However, differently from Hamilton (1996), the distribution of the innovations is assumed to be Gaussian for simplicity. Under this specification $E|v_{t-1}/\sigma_{t-1}| = \sqrt{2\pi} \forall s$ in Equation (4).
are given in Table 2, where the R^2 and conventional information criteria (namely, AIC, BIC, and HQ) are reported. The goodness of fit of the models is satisfactory and all the R^2 are larger than 0.11, which is a satisfactory R^2 if one considers that we are modeling a daily interest rate time series in first difference. Five models out of eight exhibit an $R^2 > 0.20$ and two of them, namely Taylor’s (2001) Desk reaction function and the MSIAH-VECM, display an $R^2 > 0.30$. Inspection of the information criteria tells us that, although the MSIAH-VECM has the highest R^2 recorded, this model may be overparameterized. In fact, within the group of multivariate models, the MSIAH-VECM is outperformed by the two competing TAR models and it is also outperformed by the Taylor’s (2001) Desk reaction function, which displays the second highest R^2 and the lowest information criteria within the set of competing models.

4. OUT-OF-SAMPLE FORECASTING RESULTS

4.1 Methodological Issues

In order to evaluate the forecasting performance of the empirical models of the FF rate considered, dynamic out-of-sample forecasts of the FF rate were constructed using each of the models estimated in the previous section. In particular, we calculated one-step-ahead (one-day-ahead) forecasts over the period January 1, 1997 to December 31, 2000. The out-of-sample forecasts are constructed according to a recursive procedure that is conditional only upon information available up to the date of the forecasts and with successive re-estimation as the date on which forecasts are conditioned moves through the data set.

We assess the forecasting performance of each of the eight individual models examined and then consider combinations of forecasts (models) using the forecast pooling approach proposed by Stock and Watson (1999b, 2003). For each time series we choose two separate periods: (1) a start-up period over which forecasts are produced using the eight individual competing models but not the pooling procedures, and (2) the simulated real-time forecast period over which recursive forecasts are produced using all individual models as well as the pooling procedures.

TABLE 2	In-Sample Performance			
RW	R^2	AIC	SIC	HQ
ARMA(2,1)	0.282	0.077	0.079	0.078
Taylor (2001)	0.355	0.069	0.069	0.069
EGARCH(1,1)	0.115	0.099	0.111	0.103
MSAH-AR(2,1)	0.117	0.100	0.102	0.100
M-TAR	0.256	0.081	0.085	0.083
BTAR	0.244	0.083	0.088	0.085
MSIAH-VECM(3,1)	0.402	0.094	0.119	0.103

Notes: The definitions of the models are given in Section 1. All models are estimated over the sample period from January 1, 1990 to December 31, 1996. AIC, BIC and HQ denote the Akaike, Schwartz, and Hannan-Quinn information criteria, respectively.
Let T_0 be the date of the first observation used in this study (namely January 1, 1990) and T_1 be the first observation for the forecast period (namely January 1, 1997). Then the start-up period ends at $T_2 = T_1 + 261$ (until the end of 1997) and the forecast period goes from T_2 to T_3, where T_3 is the date of the final observation in our data set (December 31, 2000). All the forecasting results reported in the following sub-sections refer to the simulated real-time forecast period T_2 to T_3 (inclusive).

4.2 Forecasting Results: 'Primitive' Models

In Table 3 we report the forecasting results obtained using the models described in Section 1 and estimated in Section 3, which we term 'primitive' models. In Panel A) of Table 3 we report the mean absolute error (MAE) and the root mean square error (RMSE) for each of the estimated models. Using the random walk (RW) model as a benchmark in assessing the relative forecasting performance of the primitive models, we then report the p-values of tests for the null hypothesis of equal point forecast accuracy based on both the MAE and the RMSE.\(^\text{12}\)

We use the RW model as a benchmark since it is the benchmark used in the analysis of much research on the properties of the FF rate, cited in Section 1.1, and

<table>
<thead>
<tr>
<th>TABLE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-Sample Performance: Primitive Models</td>
</tr>
</tbody>
</table>

A. Point Forecast Evaluation

<table>
<thead>
<tr>
<th></th>
<th>MAE</th>
<th>p-Value</th>
<th>RMSE</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>0.124</td>
<td>—</td>
<td>0.196</td>
<td>—</td>
</tr>
<tr>
<td>ARMA(2,1)</td>
<td>0.114</td>
<td>0.773</td>
<td>0.176</td>
<td>0.796</td>
</tr>
<tr>
<td>Taylor (2001)</td>
<td>0.105</td>
<td>0.497</td>
<td>0.167</td>
<td>0.672</td>
</tr>
<tr>
<td>M-TAR</td>
<td>0.121</td>
<td>0.931</td>
<td>0.189</td>
<td>0.943</td>
</tr>
<tr>
<td>EGARCH(1,1)</td>
<td>0.119</td>
<td>0.887</td>
<td>0.186</td>
<td>0.918</td>
</tr>
<tr>
<td>MSAH-AR(2,1)</td>
<td>0.126</td>
<td>0.967</td>
<td>0.194</td>
<td>0.986</td>
</tr>
<tr>
<td>BTAR</td>
<td>0.139</td>
<td>0.616</td>
<td>0.202</td>
<td>0.923</td>
</tr>
<tr>
<td>MSHI-VECM(3,1)</td>
<td>0.138</td>
<td>0.656</td>
<td>0.216</td>
<td>0.791</td>
</tr>
</tbody>
</table>

B. Regression-based Test for Market Timing

<table>
<thead>
<tr>
<th></th>
<th>HR</th>
<th>HM</th>
<th>Efficiency test</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>0.634</td>
<td>0</td>
<td>0.914 (0.09)</td>
</tr>
<tr>
<td>ARMA(2,1)</td>
<td>0.664</td>
<td>0</td>
<td>0.980 (0.07)</td>
</tr>
<tr>
<td>Taylor (2001)</td>
<td>0.577</td>
<td>0</td>
<td>0.823 (0.11)</td>
</tr>
<tr>
<td>EGARCH(1,1)</td>
<td>0.615</td>
<td>0</td>
<td>1.197 (0.13)</td>
</tr>
<tr>
<td>MSAH-AR(2,1)</td>
<td>0.508</td>
<td>0.122</td>
<td>0.671 (0.27)</td>
</tr>
<tr>
<td>BTAR</td>
<td>0.474</td>
<td>0.055</td>
<td>0.621 (0.22)</td>
</tr>
<tr>
<td>MSHI-VECM(3,1)</td>
<td>0.519</td>
<td>0.104</td>
<td>0.505 (0.29)</td>
</tr>
</tbody>
</table>

Notes: The definitions of the models are given in Section 1. The forecast period goes from January 1, 1998 to December 31, 2000. Panel A): MAE and RMSE denote the mean absolute error and the root mean square error, respectively. p-Value is the p-value from executing test statistics for the null hypothesis that the model considered has equal point forecast accuracy as the random walk (RW), calculated by bootstrap using the procedure described in Appendix A. Panel B): HR is the hit ratio calculated as the proportion of correctly predicted signs. HM and Efficiency test are the Henriksson and Merton (1981) and the 'efficiency test' calculated as in West and McCracken (1998), using the Auxiliary regressions (10) and (12), respectively (see Section 4.2). HM and the Efficiency test are calculated using the Newey-West (1987) autocorrelation- and heteroskedasticity-consistent covariance matrix. For the HM test statistics only p-values are reported; 0 denotes p-values lower than 10^{-4}. Values in parentheses are estimated standard errors.

\(^{12}\) This would be the test proposed by Diebold and Mariano (1995) under certain circumstances, and specifically if we had models with no estimated parameters.
in particular the theoretical benchmark considered by Hamilton (1996). Moreover, the RW model is often used as a benchmark in forecasting studies on financial variables, such as, for example, exchange rates (Meese and Rogoff 1983). An alternative benchmark we might have chosen is the ARMA model in Equation (2) (e.g., Nelson 1972). However, the exercise carried out in this paper is the first comprehensive out-of-sample forecast comparison of FF rate models. Out-of-sample forecast comparisons are popular in applied economic and finance largely because some landmark papers (e.g., Nelson, 1972, Meese and Rogoff, 1983) found that simple benchmarks do as well as theory-based models.

Our calculations appear to suggest that the Taylor (2001) Desk reaction function (3) exhibits the best out-of-sample performance: the MAE and the RMSE obtained for the Desk reaction function are the lowest obtained across all models. However, the p-values for the null of equal predictive accuracy, calculated by bootstrap,\(^{13}\) indicate that the null hypothesis is not rejected in each case. Hence, the differences in terms of MAEs and RMSEs reported in Panel A) of Table 3 are not statistically significant and do not enable us to discriminate among the models examined. Nevertheless, this result should be taken with caution as the non-rejection of the null of equal point forecast accuracy may be due to the low power of the relevant test statistic (e.g., see Kilian and Taylor, 2003).\(^{14}\) Clark and West (2004) recently investigated out-of-sample mean squared prediction errors (MSPEs) to evaluate the null that a given series follows a zero-mean martingale difference against the alternative that it is linearly predictable. Despite the fact that under the null of no predictability the population MSPE of the null model is equal to the MSPE of the linear alternative, Clark and West show that the alternative model’s sample MSPE is greater than the null’s, which is what we find in our results in Panel A) of Table 3. Clark and West’s simulations suggest that the test power is about 50% in their setup. This led us to consider additional tests.

Formal comparisons of the predicted and actual FF rate changes can be obtained in a variety of ways. We consider a set of tests for market timing ability of the competing models, including the ‘hit’ ratio (HR), calculated as the proportion of times the sign of the future FF rate change is correctly predicted over the whole forecast period, as well as two other test statistics. We employ the test statistic proposed by Henriksson and Merton (1981), which is based on the idea that there is evidence of market timing if the sum of the estimated conditional probabilities of correct forecasts (that is the probability of correct forecast sign either when the

\(^{13}\) The finite-sample distribution of the test statistic for equal point forecast accuracy may deviate from normality; this problem is particularly severe in the presence of estimated parameters (see West, 1996, West and McCracken, 1998, McCracken, 2000, Gilbert, 2001). The p-values reported in this paper were calculated by bootstrap (see Mark, 1995, Kilian, 1999), and a description of the procedure employed is given in Appendix A. Note that in this bootstrap procedure we do not allow for conditional heteroskedasticity in the data generating process or for serial correlation in the denominator of the test statistics. West (1996) proves that allowance for serial correlation may not be necessary in RMSE comparisons, but it may be necessary for MAE comparisons. Hence, we judge the RMSE results as more informative, although the results reported below for RMSE and MAE comparisons are qualitatively identical.

\(^{14}\) Although Kilian and Taylor (2003) document the low power of this class of test statistics in finite samples, admittedly they are working with a smaller sample than the one used in this paper.
FF rate is rising or falling) exceeds unity. The Henriksson–Merton, hereafter HM, test statistic is given by:

\[
HM = \frac{n_{11} - n_{01} n_{10}}{\sqrt{n_{01} n_{10} n_{20} n_{02}}} \sim N(0,1),
\]

(9)

where \(n_{11}\) is the number of correct forecasts when the FF rate is rising; \(n_{01}\), \(n_{10}\) are the number of positive FF rate changes and forecasts of positive FF rate changes, respectively, while \(n_{02}\) and \(n_{20}\) denote the number of negative FF rate changes and forecasts of negative FF rate changes, respectively. The total number of evaluation periods is denoted by \(n\). The HM test is asymptotically equivalent to a one-tailed test on the significance of the slope coefficient in the following regression:

\[
I_{\{\Delta i_{t+1}^{FF} > 0\}} = \beta_{0}^{HM} + \beta_{1}^{HM} \sim \Delta i_{t+1}^{FF} + \text{error term},
\]

(10)

where \(\Delta i_{t+1}^{FF}\) and \(\Delta i_{t+1}^{FF}\) denote the realized and forecast first difference of the FF rate, respectively, and \(I\) is the indicator function equal to unity when its argument is true and zero otherwise.

The other test employed is the ‘efficiency test’ introduced by Mincer and Zarnowitz (1969) and studied by West and McCracken (1998). This test extends the HM test to take into account not only the sign of the realized returns, but also their magnitude. Consider the auxiliary regression:

\[
\Delta i_{t+1} - \sim \Delta i_{t+1} = \phi_{0}^{MZ} + \phi_{1}^{MZ} \Delta i_{t+1} + \text{error term},
\]

(11)

or alternatively

\[
\Delta i_{t+1} = \phi_{0}^{MZ} + \phi_{1}^{MZ} \Delta i_{t+1} + \text{error term},
\]

(12)

where \(\phi_{0}^{MZ} = \phi_{0}^{MZ}\) and \(\phi_{1}^{MZ} = (1 + \phi_{1}^{MZ})\). The null hypothesis of market timing ability is that the slope coefficient \(\phi_{1}^{MZ}\) is equal to unity (or alternatively the slope coefficient \(\phi_{1}^{MZ}\) is equal to zero).

The results from calculating the hit ratio and executing the HM and efficiency tests are reported in Panel B of Table 3. A fairly clear-cut result emerges from these tests. The analysis of the hit ratio statistics shows that most of the models (with the exception of the BTAR) exhibit evidence of market timing—i.e., the hit ratio is above 50%. This finding is corroborated by the results of the regression-based market timing tests, which provide evidence that the primitive models have market timing ability. However, the evidence of market timing ability is clearly stronger for the more parsimonious univariate models than for the richer nonlinear multivariate models, as evidenced by the fact that the \(p\)-values for the null of no market timing are drastically lower for the univariate models. This result is in line with the general finding that nonlinear models do not substantively outperform linear models in out-of-sample forecasting (e.g., see Clements and Krolzig, 1998,
Stock and Watson, 1999b). It seems reasonable to conclude that, while all models examined display evidence of market timing ability, univariate models perform better than multivariate models. Moreover, the Taylor (2001) Desk reaction function exhibits the best performance in terms of hit ratios and market timing, displaying \(p \)-values much lower than the ones recorded by the alternative models.

Several caveats are in order. We have selected the best performing model on the basis of comparisons of the hit ratios and the \(p \)-values from carrying out market timing tests, essentially selecting the best performing model as the one for which the rejection of the null hypothesis of no market timing is strongest. We did not directly test a model against another in terms of market timing, however, since a test for equal market timing ability between competing models is not available to date.

Also, one may be concerned about the importance of the settlement days in our forecasting exercise even if we corrected the FF rate time series to eliminate the effect of settlement Wednesdays prior to beginning the empirical work. Hence, we checked the robustness of a fraction of the results in Table 3 by comparing the forecasting performance of the simplest models—the RW model, the ARMA model, and Taylor Desk reaction function—when the final day of the settlement period is taken out of the calculations in constructing the forecasts errors used in the forecasting comparison of the models. The results, reported in Table B1 in Appendix B, suggest that excluding settlement days does not affect our results reported in Table 3 in that there is no qualitative difference and only small quantitative differences between the results in Table 3 and in Appendix B.

4.3 Combinations of Forecasts

In this section, we investigate whether there may be gains from combining forecasts from the primitive models. Following Stock and Watson (1999b, 2003), we employ five combinations of forecasts: simple combination forecasts; regression-based combination forecasts; median combination forecasts; discounted MSFE forecasts; and shrinkage forecasts. These methods differ in the way they use historical information to compute the combination forecast and in the extent to which the weight given to a primitive model’s forecast is allowed to change over time.\(^{15}\)

Let \(\Delta t_{j+1}^{\text{FF}} \) be the one-step-ahead forecast of the FF rate change at time \(t \) implied by the primitive model \(j = 1, \ldots, N \). Most of the combination forecasts are weighted averages of the primitive models’ forecasts, i.e., \(\Delta t_{j+1}^{\text{FF},c} = \sum_{j=1}^{N} w_{t,j} \Delta t_{j+1}^{\text{FF}} \) where \(w_{t,j} \) is the weight associated at time \(t \) with model \(j \). In general, the weights \(\{ w_{t,j} \} \) depend on the historical performance of the individual forecast from model \(j \). As discussed in Section 4.1, in order to obtain the first estimates of the weights \(w_{t,j} \), we ‘train’ the individual models during the start-up period (i.e., 1997) and then we apply the following combination schemes.

The simple combination forecasts scheme computes the weights based on the relative forecasting performance, measured by the MSFE, of the primitive models.

15. A further extension of our work may involve considering nonlinear combination schemes (Deutsch, Granger, and Terasvirta, 1994, Elliott and Timmermann, 2002a, 2002b).
This relative performance is controlled by a parameter ω, which is set to zero in the simplest scheme that would place equal weight on all the forecasts. As ω increases, more importance is given to the model that has been performing better, in terms of MSFEs, in the past. In our empirical work we consider $\omega = 0, 1, 5$.

The regression-based combination forecasts scheme computes the weights applied to the combination forecast as the result of estimating a regression of $\Delta r_{t+1}^{\text{FF}}$ on the one-step-ahead forecast of the FF rate change at time t implied by each primitive model and an intercept term (Granger and Ramanathan, 1984, Diebold, 2001).

If forecast errors are non-normal, then linear combinations are no longer optimal. The median combination forecasts scheme takes this into account and computes the combination forecasts as the median from a group of models. This scheme avoids placing too big a weight on forecasts that are strongly biased upwards or downwards for reasons such as parameter breaks or parameters which have been estimated by achieving local (rather than global) optima.

The discounted MSFE forecasts scheme (Diebold and Pauly, 1990, Diebold, 2001) computes the combination forecast as a weighted average of the primitive forecasts, where the weights depend inversely on the historical performance of each individual forecast according to a discount factor, d, which we set equal to 0.95 and 0.90 in our calculations.

Finally, the shrinkage forecasts scheme computes the weights as an average of the recursive Granger–Ramanathan regression-based estimates of the weights and equal weighting.

The results of the combination forecast exercises are reported in Table 4. Panel A) of Table 4 shows the mean absolute error (MAE) and the root mean square error (RMSE) for each combination forecast and the best performing primitive model—i.e., the Taylor (2001) Desk reaction function. The results suggest that the performance of the best primitive model is difficult to match even by using sophisticated pooling forecast techniques. The results of the test for equal point forecast accuracy indicate that we are not able to reject the null of equal predictive accuracy in each case. Hence, the differences in MAEs and RMSEs reported in Table 4 are not statistically significant. This conclusion is of course subject to the caveat that the test statistic for the null of equal point forecast accuracy may have low power in this context.

Tests for market timing ability are reported in Panel B) of Table 4. Using this metric, we find clear evidence of market timing for all of the forecasts examined. This finding is corroborated by the values of the hit ratios and the results of the tests of market timing (HM and efficiency tests). On the basis of the p-values (smaller p-values indicate stronger market timing ability), the best performing primitive model displays stronger market timing ability than most of the combination forecasts. The exceptions, which appear to have stronger market timing ability than Taylor’s (2001) Desk reaction function, are the discounted MSFE forecast scheme and, marginally, the shrinkage forecasts scheme.
TABLE 4

Out-of-sample Performance: Combinations of Forecasts

<table>
<thead>
<tr>
<th>A. Point Forecast Evaluation</th>
<th>MAE</th>
<th>p-Value</th>
<th>RMSE</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor (2001)</td>
<td>0.105</td>
<td>—</td>
<td>0.167</td>
<td>—</td>
</tr>
<tr>
<td>LCF, $\omega = 0$</td>
<td>0.114</td>
<td>0.752</td>
<td>0.179</td>
<td>0.848</td>
</tr>
<tr>
<td>LCF, $\omega = 1$</td>
<td>0.113</td>
<td>0.791</td>
<td>0.177</td>
<td>0.869</td>
</tr>
<tr>
<td>LCF, $\omega = 5$</td>
<td>0.108</td>
<td>0.936</td>
<td>0.170</td>
<td>0.952</td>
</tr>
<tr>
<td>RCF</td>
<td>0.110</td>
<td>0.891</td>
<td>0.174</td>
<td>0.949</td>
</tr>
<tr>
<td>Median</td>
<td>0.115</td>
<td>0.700</td>
<td>0.179</td>
<td>0.828</td>
</tr>
<tr>
<td>DCF, $d = 0.95$</td>
<td>0.110</td>
<td>0.906</td>
<td>0.159</td>
<td>0.915</td>
</tr>
<tr>
<td>DCF, $d = 0.90$</td>
<td>0.102</td>
<td>0.906</td>
<td>0.159</td>
<td>0.915</td>
</tr>
<tr>
<td>SCF, $\kappa = 0.25$</td>
<td>0.117</td>
<td>0.754</td>
<td>0.189</td>
<td>0.845</td>
</tr>
<tr>
<td>SCF, $\kappa = 0.50$</td>
<td>0.116</td>
<td>0.768</td>
<td>0.188</td>
<td>0.851</td>
</tr>
<tr>
<td>SCF, $\kappa = 1.00$</td>
<td>0.115</td>
<td>0.791</td>
<td>0.187</td>
<td>0.862</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Regression-based Test for Market Timing</th>
<th>HR</th>
<th>HM</th>
<th>Efficiency test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor (2001)</td>
<td>0.664</td>
<td>0</td>
<td>1.006 (0.06)</td>
</tr>
<tr>
<td>LCF, $\omega = 0$</td>
<td>0.621</td>
<td>0</td>
<td>1.072 (0.09)</td>
</tr>
<tr>
<td>LCF, $\omega = 1$</td>
<td>0.634</td>
<td>0</td>
<td>1.077 (0.09)</td>
</tr>
<tr>
<td>LCF, $\omega = 5$</td>
<td>0.677</td>
<td>0</td>
<td>1.089 (0.09)</td>
</tr>
<tr>
<td>RCF</td>
<td>0.655</td>
<td>0</td>
<td>1.052 (0.07)</td>
</tr>
<tr>
<td>Median</td>
<td>0.606</td>
<td>0</td>
<td>1.093 (0.10)</td>
</tr>
<tr>
<td>DCF, $d = 0.95$</td>
<td>0.782</td>
<td>0</td>
<td>1.005 (0.06)</td>
</tr>
<tr>
<td>DCF, $d = 0.90$</td>
<td>0.783</td>
<td>0</td>
<td>1.004 (0.05)</td>
</tr>
<tr>
<td>SCF, $\kappa = 0.25$</td>
<td>0.666</td>
<td>0</td>
<td>1.006 (0.06)</td>
</tr>
<tr>
<td>SCF, $\kappa = 0.50$</td>
<td>0.669</td>
<td>0</td>
<td>1.005 (0.06)</td>
</tr>
<tr>
<td>SCF, $\kappa = 1.00$</td>
<td>0.669</td>
<td>0</td>
<td>1.004 (0.06)</td>
</tr>
</tbody>
</table>

Notes: See Notes to Table 3. The full forecast period goes January 1, 1997 to December 31, 2000, while the start-up period spans from January 1, 1997 and December 31, 1997. LCF denotes the combination of forecasts where the weights assigned to each primitive model’s forecasts are calculated by using the simple combination forecasts scheme described in Section 4.3, and $\omega = 0, 1, 5$ is a parameter controlling the relative weight of the best performing model within the panel. RCF denotes the combination of forecasts where the weights assigned to each primitive model’s forecasts are calculated using the regression-based method of Granger and Ramanathan (1984). Median is the combination of forecasts calculated as the median of the forecasts from the primitive models. DCF denotes the combination of forecasts calculated according to the discounted forecasts scheme, and the discount factor $d = 0.95, 0.90$. SCF is the combination of forecasts where the weights assigned to each primitive model’s forecasts are calculated as an average of the recursive ordinary-least-squares estimator and equal weighting, with a degree of shrinkage $\kappa = 0.25, 0.5, 1.0$.

4.4 Interpreting the Forecasting Results

The forecasting results reported in this section provide several insights. First, we confirm that, in general, most of the models and predictor variables considered produce satisfactory one-day-ahead forecasts of the FF rate. Second, the best forecasting model is a simple and very parsimonious univariate model where the future FF rate is forecast using the current difference between the funds rate and its target. Third, combining the forecasts from various models may improve on the best performing model, but the improvements are generally modest.

These results may be seen as consistent with the growing empirical evidence uncovering that the Fed’s policy is well described as targeting the FF rate according to a forward-looking version of Taylor’s (1993) interest rate rule. For example, if the Fed implements monetary policy on the basis of expectations of future inflation and output gap, then the FF rate target set by the Fed will presumably contain information about future inflation and output gaps, which *a priori* one would expect to be important in predicting future interest rates (Clarida, Gali, and Gertler, 1998, 2000).
Further, our results are also consistent with the Fed's description of its monetary policy operating procedure and its understanding by the economics profession. Indeed, there seems to be general agreement that the Fed has explicitly targeted the funds rate at least since the late 1980s and, therefore, throughout the sample period under investigation in this paper (see Meulendyke, 1998, Hamilton and Jordá, 2001). Also, since 1994—hence throughout the forecast period examined—the Fed has announced target changes immediately upon making them. Before 1994, target changes were not announced: the market had to infer the Fed's actions by observing open market operations and the FF rate (e.g., Cook and Hahn, 1989, Rudebusch, 1995, Taylor, 2001, Thornton, 2004). If one believes that the FF rate does in fact display reversion toward the FF rate target, then clearly this procedure would make it easier for the market to forecast the next-day FF rate by publicly announcing what the Fed's desired FF rate is.

Our results support the view that reversion to the target is a prominent feature of FF rate behavior during the sample examined and it is a crucial feature in forecasting out of sample the FF rate at the daily frequency. Although the mechanism linking the FF rate to the FF rate target is one of partial, not full, adjustment at the daily frequency, we found it very hard to improve on the simple Desk reaction function linking the FF rate and the target by using much more sophisticated multivariate or nonlinear models and alternative predictor variables. At the very least, our results suggest that the simple univariate Desk reaction function model suggested by Taylor (2001) is a very good first approximation to the FF rate behavior and represents a difficult benchmark to beat in one-day-ahead forecasting of the FF rate.

5. CONCLUSION

In this paper, we reported what we believe to be the first broad-based analysis of a variety of empirical models of the daily FF rate and examined their performance in forecasting out-of-sample the one-day-ahead FF rate. Our research was inspired by encouraging results previously reported in the literature on the predictability of the FF rate using linear and nonlinear models and on the explanatory power of variables such as the FF futures rates, the FF rate target and other U.S. interest rates to which the FF rate is likely to be linked via no-arbitrage conditions.

Using daily data over the period from January 1, 1990 through December 31, 1996, we confirmed that the predictor variables suggested by the literature have substantial explanatory power on the FF rate in sample and that accounting for nonlinearity in the unknown true data generating process governing the FF rate may yield satisfactory characterizations of the time-series properties of the FF rate. We then used a wide range of univariate and multivariate, linear and nonlinear models to forecast out of sample over the period January 1, 1997 through to December 31, 2000, using both conventional measures of point forecast accuracy based on mean absolute errors and root mean squared errors as well as hit ratios and market timing
tests designed to evaluate the ability of the models to forecast both the direction and the magnitude of future FF rate changes. The forecasting results were interesting. Using conventional measures of point forecast accuracy we found that the reaction function proposed by Taylor (2001), where the gap between the FF rate and its target is used to predict the next-day FF rate, produces the lowest mean absolute errors and root mean square errors. However, general tests for equal point forecast accuracy did not enable us to distinguish among the competing models, possibly because of the low power of these tests in this context.

Using hit ratios and market timing tests, we found that the simple univariate reaction function emerges as the best performing model, forecasting correctly over 66% of the times the direction of the next-day FF rate and showing satisfactory market timing ability. Combining the forecasts from various models may improve on the best performing model, but the improvements are generally modest in size.

In turn, these results have a natural interpretation and may be seen as consistent with the growing empirical evidence suggesting that the Federal Reserve’s policy may be characterized as a forward-looking interest rate rule. Our results support the view that reversion to the target is a key ingredient in models designed for characterizing in sample and forecasting out of sample the FF rate at the daily frequency. The simple univariate Desk reaction function suggested by Taylor (2001) is a very good first approximation to the FF rate behavior and represents a difficult benchmark to beat in one-day-ahead forecasting of the FF rate.

APPENDIX A. BOOTSTRAP PROCEDURE FOR THE \(p \)-VALUE OF THE TEST OF EQUAL POINT FORECAST ACCURACY

The bootstrap algorithm used to determine the \(p \)-values of the test statistic of equal point forecast accuracy consists of the following steps:

1. Given the sequence of observations \(\{x_t\} \) where \(x_t = (\Delta t_{iFF}, z_t)' \) and \(z_t \) denotes the explanatory variables, estimate each of the Models (2)–(8) in Section 1 and construct the test statistic of interest, \(\hat{\theta} \) (i.e., test statistic for the null hypothesis, \(H_0 \), of equal point forecast accuracy).
2. Postulate a data generating process (DGP) for each of the Models (2)–(8) given in Section 1, where the FF rate is assumed to follow a driftless random walk under \(H_0 \) and the innovations are assumed to be i.i.d. More precisely, the FF rate is assumed to be a random walk with respect to the additional variables (e.g., FF rate target, Treasury bill rate, FF futures rate) for the multivariate Models (6)–(8).
3. Based on the model specified in step 2), generate a sequence of pseudo observations \(\{x^*_t\} \) of the same length as the original data series \(\{x_t\} \) and discard the first 1000 transient. The pseudo innovation terms are random and drawn with replacement from the set of observed residuals. Repeat this step 5000 times.
4. For each of the 5000 bootstrap replications \(\{ x_t^* \} \), estimate each of the Models (2)–(8) and construct the test statistic of interest, \(\hat{\theta}^* \).

5. Use the empirical distribution of the 5000 replications of the bootstrap test statistic, \(\hat{\theta}^* \) to determine the p-value of the test statistic \(\hat{\theta} \).

APPENDIX B. ROBUSTNESS RESULT

| TABLE B1 |
|-----------------|-----------------|-----------------|-----------------|
| **OUT-OF-SAMPLE PERFORMANCE OF THREE PRIMITIVE MODELS WITHOUT USING THE FORECASTS OF SETTLEMENT DAYS** |

A. Point Forecast Evaluation

<table>
<thead>
<tr>
<th>Model</th>
<th>MAE</th>
<th>p-Value</th>
<th>RMSE</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>0.123</td>
<td>—</td>
<td>0.197</td>
<td>—</td>
</tr>
<tr>
<td>ARMA(2,1)</td>
<td>0.112</td>
<td>0.751</td>
<td>0.174</td>
<td>0.771</td>
</tr>
<tr>
<td>Taylor (2001)</td>
<td>0.103</td>
<td>0.503</td>
<td>0.165</td>
<td>0.648</td>
</tr>
</tbody>
</table>

B. Regression-based Test for Market Timing

<table>
<thead>
<tr>
<th>Model</th>
<th>HR</th>
<th>HM</th>
<th>Efficiency test</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ARMA(2,1)</td>
<td>0.596</td>
<td>0</td>
<td>1.023 (0.09)</td>
</tr>
<tr>
<td>Taylor (2001)</td>
<td>0.618</td>
<td>0</td>
<td>1.073 (0.08)</td>
</tr>
</tbody>
</table>

NOTES: The definitions of the models are given in Section 1. The forecast period goes from January 1, 1998 to December 31, 2000. Panel A: MAE and RMSE denote the mean absolute error and the root mean square error, respectively. p-Value are p-values from executing test statistics for the null hypothesis that the model considered has equal point forecast accuracy as the random walk (RW), calculated by bootstrap using the procedure described in Appendix A. Panel B): HR is the hit ratio calculated as the proportion of correctly predicted signs. HM and Efficiency test are the Henriksson and Merton (1981) and the ‘efficiency test’ as in West and McCracken (1998) calculated using the Auxiliary regressions (10) and (12), respectively (see Section 4.2). HM and Efficiency test are calculated using the Newey-West (1987) autocorrelation and heteroskedasticity consistent covariance matrix. For the HM test statistics only p-values are reported; 0 denotes p-values lower than 10^-4. Values in parentheses are estimated standard errors.

LITERATURE CITED

