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Abstract

This article reports the results of fitting unobserved components (struc-

tural) time series models to data on real income per capita in eight regions of

the United States. The aim is to establish stylised facts about cycles and con-

vergence. It appears that while the cycles are highly correlated, the two richest

regions have been diverging from the others in recent years. A new model is

developed in order to characterize the converging behaviour of the six poorest

regions. The model combines convergence components with a common trend

and cycles. These convergence components are formulated as a second-order

error correction mechanism which allows temporary divergence while imposing

eventual convergence. After fitting the model the implications for forecast-

ing are examined. Finally, the use of unit root tests for testing convergence

is critically assessed in the light of the stylised facts obtained from the fitted

models.

KEYWORDS: Balanced growth, error correction mechanism, Kalman filter,

signal extraction, unobserved components.

JEL classification: C32, O40.

1 Introduction

The revival of growth theory in the mid-eighties has led to a substantial empirical

research effort. The analysis of regional growth dynamics has proved to be an par-

1



ticularly fertile ground for this literature: to the extent that common membership

of a nation tends to assure factor mobility and to eliminate technological, preference

and institutional differences, the basic assumptions of the neoclassical growth model

are likely to be met, thus rendering regional data sets the ideal testbed for assessing

the absolute convergence implications of the theory. And yet, much disagreement

remains. The plethora of contradictory results stems mainly from the use of different

econometric methods, developed or applied over the last two decades. The result is

a growing dissatisfaction with the current state of growth econometrics.

In view of the above dissatisfaction, Durlauf (2001, p68) calls for econometrics

to ‘clarify how empirical workers should elucidate data patterns and draw inferences

concerning growth’. This article is a response to this challenge. We first show how

fitting multivariate unobserved components (structural) time series models to data

on real income per capita can help to establish stylised facts about cycles and con-

vergence. Rather than simply using unit root tests to decide whether convergence is

taking place, we explore different scenarios concerning the extent to which conver-

gence is taking place and which regions - if any- are converging. A new unobserved

components model is then developed and its dynamic properties contrasted with those

of a corresponding autoregressive formulation. Its principal feature is the introduc-

tion of what we call convergence components. These are combined with a common

trend and then incorporated into a model with cycles and irregular components. The

convergence components are formulated as a second-order error correction mechanism

which allows temporary divergence while imposing eventual convergence. Fitting the

model provides a description of the movements of the series in the past and enables

coherent forecasts to be made.

In the light of what we find, it is apparent that tests - even when applied correctly

- are at best of limited value, while at worst they are completely misleading. In

any case we believe a statistical description of what is happening coupled with a

forecasting mechanism is of more value. This is the case in many areas of economics.

For example in the context of unit root testing and purchasing power parity (PPP),

Maddala and Kim (1998, p138) state: ‘A more important issue is not a test of the

validity of PPP but an estimate of the time it takes for deviations from the PPP to

correct themselves’.
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1.1 Contradictory evidence on US regional convergence

A brief review of applied work on US regional growth serves not only to set the

scene for our own empirical work but also to highlight the uncertainty in the liter-

ature. Looking at the results accumulated over the last two decades, one can find

competing studies concluding in favour of absolute convergence, relative (conditional)

convergence and divergence, depending on the approach taken.

Using cross-sectional data, Barro and Sala-i-Martin (1992) showed that a negative

correlation between initial income per capita and growth was the norm for US regions.

As in cross-country comparisons, they found a slow speed of convergence; see Sala-i-

Martin (1996, p 1326). Unlike in cross-country studies this convergence was taken to

be absolute: decreasing returns to scale should bring about a tendency for equalisation

of income per capita across regions so that in the long run regions only display short

run fluctuations around a common trend.

The validity of inferences drawn from the cross-sectional approach was questioned

Quah (1993) who showed that the ‘beta convergence’ of the cross-sectional studies

resulted from a weighted average and a negative value correlation between initial

income per capita and growth meant only that the output differences between some

pairs of countries had declined over the sample. It shed no light on heterogeneities

or convergence clubs. Furthermore, Evans and Karras (1996) argued that the usual

cross-sectional approach was only valid under incredible conditions. Durlauf and

Quah (1999) provide a recent review of these issues.

These debates have led to an increasing interest in panel data methods for testing

whether convergence is taking place and measuring the speed of convergence. Allow-

ing for unobservable region-specific heterogeneity (individual effects) this literature

has produced a very different picture of the regional convergence process in the US,

characterized by rapid convergence to different steady states, that is relative conver-

gence; see Evans and Karras (1996) and Evans (2000). However these findings are

problematic. Such high speed of convergence are difficult to rationalise, even in tradi-

tional neoclassical growth models with a narrow view of capital. Econometrically, the

typical dynamic panel formulation used is known to be subject to strong upward bias

in short samples, as a result of correlation between lagged dependent variables and

unobserved residuals; see Durlauf and Quah (1999). Moreover, in these short pan-

els, fluctuations at the business cycle horizon and other high frequency movements

introduce further bias, thus contributing to a systematic overestimation of the rate
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of convergence; again see Durlauf and Quah (1999).

Finally, there is the evidence from unit roots applied to univariate time series.

Carlino and Mills (1993) find no convergence in time series of US regional per capita

income, while Carlino and Mills (1993), Loewy and Papell (1996) and Tomljanovich

and Vogelsang (2001) try to reconcile these results with the aforementioned evidence

for convergence by allowing for trend breaks.

1.2 Outline

In section 2, we review structural time series models (STMs), as implemented in

the STAMP package of Koopman et al (2000), and show how they apply to series

exhibiting balanced growth. Section 3 then employs these models to capture the

stylised facts surrounding the movements in income per head in US regions. The

slowly changing trends show the long-run movements from which we can infer any

tendencies towards convergence. We differ from researchers such as Bernard and

Durlauf (1996) in defining convergence in terms of the underlying trend rather than

the observations.

Distinguishing trends from cyclical movements is essential to an effective study of

convergence. However, the information on cycles is of considerable interest in itself.

The recent paper by Carlino and Sill (2001) uses the methodology of Vahid and

Engle (1993) to decompose the series on US regions into common trends and common

cycles. We do not find the resulting cycles particularly plausible - for example they

are rarely below zero. By contrast our cycles, which are based on an UC model and

calculated by a state space smoothing algorithm, are effectively based on two sided

filters rather than one-sided filters, and their movements are much closer to NBER

dating of expansions and recessions.

A multivariate model of growth and convergence is developed in Section 4 and

applied in Section 5. The convergence mechanism is based on an error correction

model. This can be incorporated into an unobserved components (UC) model that

effectively decomposes trends into a common balanced growth path component and a

set of convergence components. A key feature of the model is that the error correction

mechanism is extended so as to produce smooth convergence components that can

display temporary divergence, thereby rendering the notion of a simple measure of

the speed of convergence open to question. However, definition 2 of Bernard and
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Durlauf (1996) is satisfied in that forecast function for the difference between any

pair of regions converges to a constant. Furthermore, because the cross-section is

relatively small, proper account is taking of the cross-correlations across regions.

Section 6 investigates unit root tests for convergence. In doing so we distinguish

carefully between the notion of economies which have converged and those which are

in the process of converging. We present the results of pairwise unit root tests and

discuss the extent to which they are helpful in determining which regions can be

grouped together in a convergence model. The conclusions are set out in section 7.

2 Structural Time SeriesModels and BalancedGrowth

2.1 Univariate models

The local linear trend model for a set of observations, yt, t = 1, .., T, consists of

stochastic trend and irregular components, that is

yt = µt + εt, t = 1, ..., T, (1)

The trend,µt, receives shocks to both its level and slope so

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2η),

βt = βt−1 + ζt, ζt ∼ NID(0, σ2ζ),
(2)

where the irregular, level and slope disturbances, εt,ηt and ζt, respectively, are mutu-

ally independent and the notation NID (0, σ2) denotes normally and independently

distributed with mean zero and variance σ2. If both variances σ2η and σ
2
ζ are zero, the

trend is deterministic. When only σ2ζ is zero, the slope is fixed and the trend reduces

to a random walk with drift, β. Allowing σ2ζ to be positive, but setting σ
2
η to zero

gives an integrated random walk trend, which when estimated tends to be relatively

smooth. The model is often referred to as the ‘smooth trend ’ model.

The statistical treatment of unobserved component models, as in the STAMP

package of Koopman et al (2000), is based on the state space form (SSF). Once a

model has been put in SSF, the Kalman filter yields estimators of the components

based on current and past observations. Signal extraction refers to estimation of

components based on all the information in the sample. Signal extraction is based

on smoothing recursions which run backwards from the last observation. Predictions
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are made by extending the Kalman filter forward. Root mean square errors (RMSEs)

can be computed for all estimators and prediction or confidence intervals constructed.

The unknown variance parameters are estimated by constructing a likelihood function

from the one-step ahead prediction errors, or innovations, produced by the Kalman

filter and maximizing it by an iterative procedure.

Distinguishing a long-term trend and from short-term movements is important.

Short-term movements may be captured by adding a serially correlated stationary

component, ψt, to the model. Thus

yt = µt + ψt + εt, t = 1, ..., T (3)

An autoregressive process is often used for ψt. Another possibility is the stochastic

cycle



ψt

ψ∗t


 = ρ



cos λc sinλc

− sinλc cosλc





ψt−1

ψ∗t−1


+



κt

κ∗t


 , t = 1, ..., T, (4)

where λc is frequency in radians and κt and κ
∗
t are two mutually independent white

noise disturbances with zero means and common variance σ2κ. Given the initial con-

ditions that the vector (ψ0, ψ
∗
0)
′ has zero mean and covariance matrix σ2ψI, it can be

shown that for 0 ≤ ρ < 1, the process ψt is stationary and indeterministic with zero

mean, variance σ2ψ = σ2κ/(1− ρ2) and autocorrelation function

ρ(τ) = ρτ cosλcτ, τ = 0, 1, 2, ... (5)

For 0 < λc < π, the spectrum of ψt displays a peak, centered around λc, which

becomes sharper as ρ moves closer to one; see Harvey (1989, p 60). The period

corresponding to λc is 2π/λc. In the limiting cases when λc = 0 or π, ψt collapses to

first-order autoregressive processes with coefficients ρ and minus ρ respectively. More

generally the reduced form is an ARMA(2, 1) process in which the autoregressive

part has complex roots. The complex root restriction can be very helpful in fitting a

model, particularly if there is reason to include more than one cycle.

Imposing the smooth trend restriction, that is setting σ2η to zero, often allows a

clearer separation into trend and cycle.
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2.2 Convergence models

Long-run movements often have a tendency to converge to an equilibrium level. In

an autoregressive framework this is captured by an error correction model (ECM).

The UC approach is to add cycle and irregular components to an ECM so as to avoid

confounding the transitional dynamics of convergence with short-term steady-state

dynamics. Thus

yt = α+ µt + ψt + εt, t = 1, ..., T (6)

with

µt = φµt−1 + ηt, or ∆µt = (φ− 1)µt−1 + ηt,

Smoother transitional dynamics, and hence a better separation into convergence and

short-term components, can be achieved by specifying µt in (6) as

µt = φµt−1 + βt−1, t = 1, ..., T, (7)

βt = φβt−1 + ζt,

where 0 ≤ φ ≤ 1; the smooth trend model is obtained when φ = 1. This second-order

ECM can be expressed as

∆µt = −(1− φ)2µt−1 + φ2∆µt−1 + ζt

showing that the underlying change depends not only on the gap but also on the

change in the previous time period. The variance and ACF can be obtained from the

properties of an AR(2) process or by noting that the model is a special case of the

second order cycle with λc = 0.

For the smooth convergence mechanism, the ℓ−step ahead forecast function, stan-

dardised by dividing by the current value of the gap, is (1+ cℓ)φℓ, ℓ = 0, 1, 2, .. where

c is a constant that depends on the ratio, ω, of the gap in the current time period

to the previous one, that is ω = µ̃T |T/µ̃T−1|T . Since the one-step ahead forecast is

2φ− φ2/ω, it follows that c = 1− φ/ω, so

µ̃T+ℓ|T = (1 + (1− φ/ω)ℓ)φℓµ̃T , ℓ = 0, 1, 2, ..

If ω = φ, the expected convergence path is the same as in the first order model.

The lower line in figure ?? shows the forecast function in this case with φ = 0.9.

Convergence in the second-order model is typically much slower as shown by the next
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line up where ω = 1. Indeed if the convergence process stalls sufficiently, the gap can

be expected to widen in the short run as shown in the top line where ω = 1.05. In

the first-order model with φ = 0.9, only 4% of the gap is left after 30 time periods.

By contrast, setting ω = 1 leaves nearly 17% of the gap.

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50x

Expected path of second-order error correction model

2.3 Multivariate models

Suppose we have N time series. Define the vector yt = (y1t, .., yNt)
′ and similarly for

µt,ψt and εt. Then a multivariate UC model may be set up as

yt= µt+ψt+εt, εt ∼ NID(0,Σε), t = 1, ..., T, (8)

where Σε is an N ×N positive semi-definite matrix. The trend is

µt = µt−1+βt−1+ηt, ηt ∼ NID(0,Ση) (9)

βt = βt−1+ζt, ζt ∼ NID(0,Σζ),
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With Ση = 0, we get the smooth trend model. With Σζ = 0, we get the random

walk plus drift.

The similar cycle model, introduced by Harvey and Koopman (1997) is



ψt

ψ∗t


 =


ρ




cosλc sinλc

− sinλc cosλc


⊗ IN





ψt−1

ψ∗t−1


+



κt

κ∗t


 , t = 1, ..., T, (10)

where ψt and ψ
∗
t areN×1 vectors and κt and κ

∗
t areN×1 vectors of the disturbances

such that

E(κtκ
′
t) = E(κ∗tκ

∗′

t ) = Σκ, E(κtκ
∗′

t ) = 0, (11)

where Σκ is an N ×N covariance matrix. The model allows the disturbances to be

correlated across the series. Because the damping factor and the frequency, ρ and

λc, are the same in all series, the cycles in the different series have similar properties;

in particular their movements are centred around the same period. This seems emi-

nently reasonable if the cyclical movements all arise from a similar source such as an

underlying business cycle. Furthermore, the restriction means that it is often easier

to separate out trend and cycle movements when several series are jointly estimated.

2.4 Stability and balanced growth

The balanced growth UC model is a special case of (8):

yt = iµt+α+ψt+εt, , t = 1, ..., T, (12)

where µt is a univariate local linear trend as in (2, i is a vector of ones, and α is an

N × 1 vector of constants. If µt is initialised with a diffuse prior, then α must be

subject to a constraint so it contains only N − 1 free parameters, for example there

may be one zero entry. Alternatively, µ0 may be set to zero. Note that although the

levels may be different, the slopes are the same, irrespective of whether they are fixed

or stochastic.

A balanced growth model implies that the series have a stable relationship over

time. This means that there is a full rank (N−1)×N matrix,D, with no null columns

and the property that Di = 0, thereby rendering Dyt jointly stationary. The rows

of D may be termed balanced growth co-integrating vectors. Typically each row will

contain a one, a minus one and zeroes elsewhere. For example, one country may be
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used as a benchmark or numeraire. The multivariate stationarity test described in

Nyblom and Harvey (2000) and Hobijn and Franses (2000) may be used to test the

null hypothesis1 of balanced growth; the test statistic is invariant to the choice of D.

If the series are stationary in first differences, balanced growth may be incorpo-

rated in a vector error correction model (VECM) by writing

∆yt = δ + ΓDyt−1 +

p∑

r=1

Φ∗r∆yt−r + ξt, V ar(ξt) = Σξ (13)

where the Φ∗′r s are N×N matrices, D is as defined in the previous paragraph and the

matrix Γ isN×(N−1). The system has a single unit root, guaranteed by the fact that

Di = 0. The constants in δ contain information on the common slope, β, and on the

differences in the levels of the series, as contained in the vector α. These differences

might be parameterised with respect to the contrasts inDyt−1. For example ifDyt has

elements yit−yi+1,t, i = 1, .., N−1, then αi, the i−th element of the (N−1)×1 vector

α, is the gap between yi and yi+1. In any case, δ =β(I−
∑p

j=1Φ
∗
j)i− Γα. Estimation

by OLS applied to each equation in turn is fully efficient since each equation contains

the same explanatory variables.

A UC balanced growth model in which the common trend is a random walk plus

drift may be approximated by (13). This can be useful as a baseline for forecasting

and for giving initial estimates of some parameters. However, the VECM does not

provide the description that can be obtained by extracting unobserved components.

2.5 Similar and common cycles

In the similar cycle model the extent to which the cycles move together depends on

the correlations between the disturbances driving them since

Σψ = (1− ρ2)−1Σκ.

Using principal components analysis we can decompose Σκ as EDE
′ where D is a

diagonal matrix of eigenvalues and E is the corresponding matrix of eigenvectors.

The principal components themselves are contained in the series in the N × 1 vector

1Hobijn and Franses (2000) actually say that they are testing whether the countries “are con-

verging”. In fact stationarity tests are not useful in this context since initial values some way from

the equilibrium will cause them to reject.

10



ψ
†
t = E′ψt, while the variances of the disturbances driving the j − th principal

component is dj, the j− th diagonal element of D. These principal component cycles

can be entered into the model (8) by writing

yt = µt +Eψ
†
t + εt. (14)

The proportion of the variance of the i− th cycle accounted for by the j− th principal

component is e2ijdj/σ
2
ψi; note that σ

2
ψi = Σj e

2
ijdj.

We can create a set of N standardised principal component cycles as ψ∗t =

D−1/2E′ψt with Σκ∗= I. The factor loadings are then Θ = ED1/2 and (14) becomes

yt = µt +Θψ
∗
t + εt,

This formulation is useful as a starting point for factor rotations.

If Σψ is less than full rank, there are common cycles. A model can be estimated

with a given rank as described in Koopman et al (2000). If the rank of Σψ is one,

there is a single common cycle and the model can be written

yit = µit + θiψ
†
t + εit, i = 1, ..., N (15)

where ψ†t is a scalar cycle and the θ
′
is allow the common cycle to appear in each series

with a different amplitude. One of the θ′is is set equal to unity and there is no need

for a constant as in (12). A single common cycle is a common feature in the sense of

Engle and Kozicki (1993) in that it may be removed by a linear combination, θ, of the

observations with the property that θ
′
θ =0, where the N × 1 vector θ = (θ1, ..., θN)

′.

Testing the null hypothesis of a single common cycle is not straightforward. How-

ever, for the case of N = 2, the distribution of the LR statistic is an even mixture of

χ20 and χ
2
1; see Harvey (1989, p236). Thus the 5% critical value is 2.71.

3 Stylised facts: trends and cycles

In this section we analyse trend and cyclical dynamics in the logarithms of real per

capita incomes in US census regions: New England (NE), Mid East (ME), Great

Lakes (GL), Plains (PL), South East (SE), South West (SW), Rocky Mountains

(RM) and Far West (FW). The data were obtained from the Bureau of Economic

Analysis and deflated by the US implicit price deflator (1996=100). Figure 1 shows
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annual observations for the eight US census regions from 1950 to 1999. Carlino and

Mills (1993) use annual data from 1929 (to 1990). However, because the fluctuations

in the 1930s and 1940s are so much bigger than the cycles after 1950 it is difficult to

model the whole series satisfactorily. The introduction of a trend break, as in Carlino

and Mills (1993) and Loewy and Papell (1996), does not really address this problem.

A corresonding analysis of quarterly seasonally adjusted observations for the same

regions from 1969:1 to 1999:4 can be found in Carvalho and Harvey (2002). The

conclusions are very similar.

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

8.75

9

9.25

9.5

9.75

10

10.25
LNew_England LMideast
LGreat_Lakes LPlains
LSoutheast LSouthwest_[
LRocky_Mount LFar_West

Figure 1: Annual income per capita in eight US census regions.

We report the results of fitting unrestricted multivariate structural time series

models of the form (8) with smooth trends in order to obtain some idea of stylised

facts. Estimation of this and all other models below was done using program routines2

written in the OX 3.0 language (Doornik, 1999) with use being made of the SsfPack

package for state space algorithms of Koopman, Shephard and Doornik (1999).

All parameters were estimated by maximum likelihood as described in sub-section

2.1 and variances are reported multiplied by 107. The estimated covariance matrices
2The current version of STAMP has difficulty coping with a cross-section of size eight.
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are reported by showing the variances on the main diagonal while the entries above

contain the cross-correlations. All graphs show the estimated components as extracted

by the state-space smoothing algorithm.

3.1 Cycles

The smoothed cyclical components, ψ̃it|T , for the eight annual regional series are

shown in Figure 3. The recessions of 1954, 1961, 1970, 1975, 1980, 1982 and 1991

all show up with a high degree of coherence across regions, unlike in Carlino and Sill

(2001). The period of the cycle is 5.3 years with a damping factor, ρ, of 0.80. The

period for the quarterly series is 4.25 years with a damping factor of 0.85.

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

-.03

-.02

-.01

0

.01

.02

.03

.04

.05
Cycle_NE Cycle_ME
Cycle_GL Cycle_PL
Cycle_SE Cycle_SW
Cycle_RM Cycle_FW

Figure 2: Cyclical components for annual data.

The matrix of variances and cross-correlations obtained from Σ̃κ is shown below.

There are considerable differences in volatility, with the variance of the disturbances

in PL being almost six times as great as that of ME. These findings are similar to those

reported by Carlino and Sill (2001, p 452) for Beveridge-Nelson cycles. However, our

ordering of the regions in terms of volatility differs from theirs. Furthermore, we find
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that the richest regions (NE, ME and FW) are those with the least volatile cyclical

components.
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There are high, positive correlations between the cyclical disturbances in all re-

gions. The first principal component of Σ̃κ accounts for 91% of the total variance

while the second accounts for a further 5%. Table 1 shows the weights applied to each

of the first two principal component cycles to obtain the regional cycle and the per-

centage variance in each regional cycle contributed by the first two components; see

(14) and the text below it. The e′ijs not only show the weight given to each principal

component in forming the cycle for each region, but they are also the weights given

to the regional cycles in constructing the principal components. The first principal

component is a composite of the regional cycles in which the weights are all positive

and of a similar order of magnitude. The second principal component contrasts the

regional cycles.

Table 1 Weights assigned to the first two principal components in cycles

for each series

Region Weight, ei1 Weight, ei2 Proportion, 1 Proportion, 2

NE 0.29 0.29 0.89 0.05

ME 0.20 -0.23 0.92 0.07

GL 0.40 -0.18 0.99 0.01

PL 0.49 -0.38 0.94 0.03

SE 0.36 -0.01 0.99 0.0003

SW 0.28 -0.45 0.73 0.10

RM 0.44 0.68 0.88 0.11

FW 0.27 0.17 0.88 0.02
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By standardising the weights, ei1, for the first principal component so that they

sum to one, it is possible to construct a first principal component cycle3 from the

individual regional cycles. For annual data this principal component is shown in figure

4, where it is contrasted with the smoothed cyclical component series extracted from

the univariate US annual series. The two cycles are very close. This again illustrates

the point that the main source of regional cyclical volatility is a component closely

related to the national business cycle.

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

-.02

-.01

0

.01

.02

.03

Cyc1_LUS FirstPrincipalComponentCycle

Figure 3: Cycle given by first principal component and US aggregate cycle.

Since the first principal component is so dominant we decided to see what happens

when the model is estimated with a single common cycle. The results were not

particularly useful, in that the cycle obtained bore no relation to the cycles shown

in figure 3. This is perhaps an indication that the common cycle restriction is too

strong.

The other stationary component is the irregular, the variances and cross-correlations

of which are shown below. It is dominated by the cycle (remember that the distur-

3Specifically, this is the first element of E′ψ̃t|T and so the (unstandardised) weights are as in the

first column of E and it is this that is reproduced under the heading ei1.
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bance variance needs to be divided by 1 − ρ2 to give the cycle variance), but never-

theless plays a useful role. There are no general conclusions to be drawn from the

pattern of correlations.
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3.2 Trends

The smooth trends, µ̃it|T , extracted from the annual series by the state space smooth-

ing algorithm are shown in figure 4. A first glance seems to indicate that cross-

sectional dispersion has declined, thus indicating convergence. However, closer in-

spection reveals otherwise. In particular, note how the trend dynamics of NE and

ME, the two wealthiest regions at the end of the sample, differ from the remaining

six regions. Thus, while other relatively rich regions in the 1950’s such as the Far

West and Great Lakes seem to be converging to the levels of lower income regions,

New England and MidEast, particularly from the late 1970’s onwards, show no clear

tendency to converge to some kind of common national trend.
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Figure 4: Smooth trends for annual data.
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Figure 5: Cross-sectional standard deviation.
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The above conclusions are confirmed by the plot of the cross-sectional standard

deviation of the smoothed trend component, SD( µ̃it|T ), in figure 5. Overall cross-

sectional dispersion, which was clearly declining until the early eighties, has since

reversed its tendency so that, by the end of the sample, the situation is much the

same as in the late sixties. In other words, across all regions, divergence rather than

convergence seems to have been the rule since the early eighties. Excluding the two

richest regions alters this conclusion. For the remaining six regions (the poorest as

defined at the end of the sample) the fall in trend dispersion seems to have been

continuing throughout the last two decades. Hence, there appears to be convergence

of all regions apart from the two richest which are diverging from the other six regions

as well as from each other.

The estimated the variances and cross-correlations of the slope disturbances are

reproduced below. As in the cyclical component, considerable regional differences are

evident in trend volatility. For example, the variance of the trend component in NE is

almost three times as great as that of SW. This is reflected in the larger fluctuations

observed in the smoothed NE trend.




1310.1 0.969 0.717 0.640 0.840 0.414 −0.154 0.849

665.2 0.716 0.771 0.891 0.422 0.005 0.859

1183.7 0.725 0.822 0.352 −0.189 0.816

412.8 0.819 0.569 0.473 0.861

546.5 0.603 0.068 0.799

579.5 0.554 0.557

437.8 0.162

935.6




NE

ME

GL

PL

SE

SW

RM

FW

The cross-correlations between the trend disturbances show considerably more

variation than those for the cycles. While the disturbances in the two wealthiest re-

gions are highly correlated, some of the other disturbances actually display a negative

correlation.
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4 Multivariate convergence models

The multivariate STM has provided an idea of possible convergence patterns. We

now proceed to develop a model to capture these movements.

The basic multivariate convergence model, allowing for relative convergence and

a common time trend, is

yit = αi + βt+ µit, i = 1, ...,N

with

µit =
N∑

j=1

φijµj,t−1 + ηit, i = 1, ..., N (16)

with
∑N

j=1 φij = 1 for i = 1, ..., N. This restriction can be conveniently imposed

by setting φii = 1 −
∑

j �=i φij. As will be shown shortly, it ensures that the system

contains a unit root. As the model stands there are N(N − 1) parameters governing

convergence. Re-formulating it as

∆µit =
∑

j �=i

φij(µj,t−1 − µi,t−1) + ηit, i = 1, ...,N, (17)

shows how the growth of the i − th economy depends on the gap between it and

each of the other N − 1 economies. In the bivariate case, the model implies that the

difference between the two economies, yt = y1t − y2t, satisfies

∆yt = (φ− 1)(yt−1 − α) + ηt = δ + (φ− 1)yt−1 + ηt, t = 2, ..., T, (18)

where ηt = η1t − η2t, α = α1 − α2, φ = 1 − φ12 − φ21 and δ = α(1 − φ). This can

be interpreted as saying that, for data in logarithms, the expected growth rate in

the current period is a negative fraction of the gap between the two economies after

allowing for the permanent difference, α. Writing the model in this form accords with

the notion of convergence in the cross-sectional literature, as expounded by Barro and

Sala-i-Martin (1992) and others, except that there the growth rate is taken to be a

linear function of the initial value, giving a model which is internally inconsistent over

time; see Evans and Karras (1996, p 253). Further discussion of the bivariate model

can be found in Harvey (2002).

In matrix form

yt = α+βit+ µt,
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with

µt = Φµt−1 + ηt, V ar(ηt) = Ση (20)

or, in error correction form,

∆µt = (Φ− I)µt−1 + ηt, V ar(ηt) = Ση (21)

Since each row of Φ sums to unity, Φi = i. Thus setting λ to one in (Φ − λI)i = 0,

shows that Φ has an eigenvalue of one with a corresponding eigenvector consisting of

ones. The other roots of Φ are obtained by solving |Φ− λI| = 0 ; they should have

modulus less than one for convergence.

If we write

φ
′
∆µt = φ

′
(Φ− I)µt−1 + φ

′
ηt (22)

it is clear that the N × 1 vector of weights, φ, which gives a random walk must be

such that φ
′
(Φ− I) = 0′. Since the roots of Φ′ are the same as those of Φ, it follows

from writing (Φ′−I)φ = 0 that φ is the eigenvector of Φ′ corresponding to its unit

root. This random walk, µφt = φ
′
µt, is a common trend in the sense that it yields

the common growth path to which all the economies converge4. The inclusion of a

time trend in the model means that the overall common trend is a random walk with

drift, β, and if α is defined such that α′φ = 0, each element of α is a deviation from

the common trend.

Unobserved components models The model in (16) may be extended so as

to include cycle and irregular components. Thus

yit = αi + βt+ µit + ψit + εit, i = 1, ...,N (23)

In matrix terms, using the notation of (8),

yt = α+βit+ µt+ψt+εt, (24)

with µt as in (20). The model with a smooth convergence mechanism is written as:

yt = α+ µt+ψt+εt,

µt = Φµt−1 + βt−1

βt = Φβt−1 + ζt,

4This is because limj→∞Φ
j = iφ

′
; the proof follows along the same lines as that for a well-known

result on ergodic Markov chains as given, for example, in Hamilton (1994, p681).
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so that µt is driven by an N×1 vector of slopes, βt, that evolve over time because of a

disturbance vector, ζt, with covariance matrix,Σζ.WhenΦ = I, the µt vector reduces

to a set of smooth trend components, as in the model applied in the previous section.

As with the first-order model, (20), the forecasts from the secon-order model converge

to paths parallel to that of the common trend, µφt. Thus the forecast convergence

condition of Bernard and Durlauf (1996, definition 2) is satisfied.

VECM Convergence may be captured by the common trend VECM of (13). The

matrix Γ contains N(N − 1) free parameters and these may be estimated by OLS

applied to each equation in turn. The Φ matrix of (16) may then be estimated5 as it

is given by ΓD+ I. However, there is no guarantee that the estimate of Γ will be such

that N − 1 of the roots of Φ have modulus less than one. If the vector of gaps, α, is

parameterised with respect to the contrasts inDyt−1, then δ =β(I−
∑p

j=1Φ
∗
j)i− Γα.

4.1 Deviation and benchmark restrictions

As it stands the UC model is difficult to estimate because Φ contains N(N − 1)

parameters. One way to impose restrictions is to specify a model in terms of deviations

from a weighted average. This happens naturally if deviations (of per capita income)

in regions from a national average are to be considered. Typically some regions will

be bigger than others and so will receive more weight in constructing the average.

However, in a more general situation we might consider the weights as giving some

indication of influence. Let

µw,t =
N∑

i=1

wiµit,
N∑

i=1

wi = 1

and set

φii = πi + 1− πiwi = πi(1−wi) + 1 and φij = −πiwj, i �= j. (25)

Substituting in (17) yields

∆µit = πi
∑

j �=i

wj(µi,t−1 − µj,t−1) + ηit

= πi(µi,t−1 − µw,t−1) + ηit, i = 1, ..., N. (26)
5We can also directly adopt the parameterisation implicit in the Φ matrix. Although this implies

a different set of explanatory variables in each equation, all satisfy the co-integrating constraints

and so OLS is efficient for each equation in turn.
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Thus∆µit depends on the gap between its own level and that of the weighted average.

If πi = 0, then µit is a random walk.

If µw,t is to be a random walk, then the weights must be such that w′Φ = w′,

that is
∑

i φijwi = wj, j = 1, .., N. The weights will only satisfy this condition if, for

i = 1, .., N, πi = π for wi �= 0. This being the case we have w =φ and so µw,t = µφ,t
In the homogeneous model, when all weights are non-zero and πi = π for i =

1, ..,N , we are able to express the model in deviation form,

∆(µit − µφ,t) = π(µi,t−1 − µφ,t−1) + ηit − ηφ,t, i = 1, ..., N, (27)

and any N − 1 of these equations may be combined with the equation for µφ,t to give

a complete system. The stability condition6 is −2 < π < 0.

There are a number of ways to proceed. If both π′is and w′js are treated as

parameters, the model has 2N − 1 parameters for N > 2. For moderate size N this

parameterisation is relatively parsimonious. However, it is more appealing to focus

attention on either the π′is or the w
′
js. If we let the π

′
is be the same, we can estimate

the w′js as φ
′

js. Including π, this makes N free parameters in all. The convergence

process is therefore parameterised as φij = −πφj, i �= j, and φii = π + 1 − πφi.

Alternatively, we may decide to pre-assign values to the w′js and estimate the N π′is.

For the case N = 2, these two options are equivalent. When the π′is are different, we

can always calculate the implied weights, φi, for the common trend.

The two approaches are mixed if we set wi = 0 for some i′s, and let the corre-

sponding π′is be free. If n are set to zero, we then, for n < N −1, have N −n− 1 free

w′is to estimate, together with n π′is and one π. When n = N − 1, the benchmark

model is obtained. In these cases, wj = φj and the µ
′
its may be put in deviation form.

Deviations from the mean If we set wi = 1/N , then yw,t is the simple mean.

The implied weights may be found from the π′is since, provided πj < 0 for all j,

φi = (1/πi)/
∑

j(1/πj) as is easily seen
7 from (26). If we regard it reasonable to have

0 ≤ φi ≤ 1, then the π
′
is must be less than or equal to zero. If a πi = 0, then we get

6The matrix iw′ is idempotent (though not symmetric) as its rows are identical and sum to one.

Since its trace is one, it has one root of unity, while the rest are zero. The matrix Φ = (1+π)I−πiw′

also has a single unit root while the rest are 1 + π.
7In matrix terms, Φ = I+ΠD−πi

′
, where ΠD is a diagonal matrix with the elements of π on

its diagonal. We want to find φ such that Φ′φ= (I+ΠD−iπ
′)φ = φ. This can be done by making

the i− th element of φ proportional to the inverse of the i− th element of π.We need to standardise

so that the elements sum to one.
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a benchmark model, as φii → 1 as πi → 0.Within the context of (26) a test of πi = 0

can be based on standard distribution theory as πi = 0 does not, in itself, imply a

unit root.

Benchmark model Take (without loss of generality) the Nth country as the

benchmark to which all the countries converge. Then

∆µit = πi(µi,t−1 − µN,t−1) + ηit, i = 1, ...,N − 1,

∆µNt = ηNt,

where the roots of the transition matrix are one and πi + 1, i = 1, .., N − 1 so −2 <

πi < 0, i = 1, .., N − 1 for convergence. Note that this model is a special case of

(26) obtained by setting all the weights apart from wN equal to zero. Since µNt is a

random walk, we have

∆(µit − µNt) = πi(µi,t−1 − µN,t−1) + ηit − ηNt, i = 1, ...,N − 1. (28)

A further complication with the deviation model is that if logarithms have been

taken to get the y′its, then yw,t will not be the same as the logarithm of the weighted

sum of the original observations. Working in logarithms has no implications for the

benchmark model.

4.2 Autoregressive models

The deviation and benchmark constraints can be incorporated into an autoregressive

model because yi,t−1 − yw,t−1, i = 1, ..,N are all co-integrating vectors. If one is

dropped it can be reconstructed as a linear combination of the others. Thus the Γ

and D matrices in (13) can be formed with suitable constraints. However, it is more

convenient to set up the model as

∆yit = δi + πi(yi,t−1 − yw,t−1) +
N∑

j=1

p∑

r=1

φ∗ijr∆yj,t−r + ηit, i = 1, ..., N, (29)

The parameters may be efficiently8 estimated by SURE, although little is likely to

be lost from simply doing OLS and this may be preferable if N is large. From the

8If the general model, (13), can be estimated, a LR test of the constraints implied by (29) can

be carried out.
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estimates of the δ́
′

is we can solve to get β and a set of α
′
is for relative convergence

since

δi=β

[
1−

N∑

j=1

p∑

r=1

φ∗ij

]
−πiαi, i = 1, ..., N. (30)

In a benchmark model with πN = 0, there are N − 1 gaps represented by αi, i =

1, ...,N−1.More generally if we want them to be in terms of deviations from the level

of the common trend, they must satisfy
∑

i φiαi = 0. Recall that with a simple mean,

φi is proportional to 1/πi, if all π
′
is are negative, so that the equation

∑
i αi/πi = 0

can be added to those in (30).

As N becomes large, the above AR model runs into difficulties because of the

potentially large number of φ∗ijr parameters, N
2p in all. It may well be the case that

little explanatory power is lost by only including lagged differences of yit and it would

be interesting to explore the implications for forecasting.

4.3 Unobserved components model

In the autoregressive framework, the natural way to proceed when the restrictions in

(25) are imposed is to estimate π′is for a given set of pre-assigned w
′
is. An unobserved

components formulation, however, requires nonlinear optimisation with respect to the

elements of Φ (as well as the other parameters, such as variances of disturbances).

Since it is unclear what constraints should be imposed on the π′is, it is relatively

more attractive to assume a homogeneous model in which πi = π, i = 1, ..., N and

to estimate the φi parameters constraining them to lie between zero and one and to

sum to one; these constraints can be imposed by employing a logistic transformation

and maximizing with respect to N − 1 unconstrained parameters, ξi, i = 1, .., N − 1,

defined by φi = φ
∗

i exp(ξi)/(1+ exp(ξi)), where φ
∗

i = 1−
∑i−1

j=1 φj, j = 2, ...,N − 1 and

φ
∗

1 = 1. It is further assumed that the convergence parameter, φ = 1+π, is such that

0 ≤ φ ≤ 1, with φ = 1 indicating no convergence. The statistical treatment of the

model is based on the state space form, with the µt vector initialised with a diffuse

prior.

The model can be rewritten so as to consist of convergence components, µ†it, i =

1, ...,N, which are deviations from the common trend, µφ,t. Then

yit = αi + µφ,t + µ†it + ψit + εit, i = 1, ..., N, (31)
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where µ†it = µit − µφ,t, with

µ†it = φµ†i,t−1 + η†it, i = 1, ..., N − 1, |φ| < 1 (32)

and

µφ,t = µφ,t−1 + β + ηφ,t.

If the state vector is defined in terms of the common trend and convergence compo-

nents only N − 1 of the latter need be included as
∑N

i=1 φiµ
†
it = 0.

The extension to the smooth convergence processes is straightforward: the equa-

tions in (32) are replaced by

µ†it = φµ†i,t−1 + β†i,t−1, i = 1, ...,N − 1, |φ| < 1 (33)

β†it = φβ†i,t−1 + ζ†it

If, say, φN = 1, then the N − th series is a benchmark and µφt is replaced by µNt;

in this case we can have different φ′is in (32) and (33).

5 Convergence and divergence in US regions

The preliminary investigation of stylised facts reported in section 4 indicates that the

two richest regions, NE and ME, follow growth paths which, especially for the last

two decades, seem to be diverging from the growth paths of the other regions. Hence

we only fit a convergence model to the six poorer regions. The results reported are

for the homogeneous model, (31), with smooth convergence as in (33) and absolute

convergence, that is αi = 0, i = 1, ..., N.

The similar cycle damping factor was estimated to be 0.79 while the period was

8.0 years. The estimated the variances and cross-correlations of Σκ are


1795.3 0.867 0.976 0.877 0.553 0.914

1373.7 0.938 0.763 0.854 0.842

1163.4 0.914 0.720 0.956

1166.5 0.662 0.990

1296.5 0.721

872.8
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while for the irregular
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834.5 −0.357 0.716 0.534 0.810 0.675

774.7 −0.706 −0.518 −0.433 −0.515

215.1 0.773 0.787 0.821

0.5 0.918 0.984

138.9 0.972

308.1
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The convergence parameter, φ, was estimated as 0.889, the estimates of the

common trend weights, φi, were

φGL φPL φSE φSW φRM φFW
0.640 0.298 0.006 0.0004 0.056 0.00003
and the estimated variances and cross-correlations of Σζ are


354.9 0.946 0.573 −0.463 0.074 0.809

205.2 0.696 −0.170 0.269 0.759

246.3 −0.052 −0.071 0.399

237.5 0.552 −0.270

92.9 −0.193

576.3




GL

PL

SE

SW

RM

FW

Recall that this specification not only allows us to separate trends and cycles but

also separates out the long-run balanced growth path from the transitional regional

dynamics, thus permitting a characterisation of convergence stylised facts. We will

focus on this feature of the model, since the cycle is of secondary interest here and

there is little information beyond what was presented in section 4. Figure 6 shows

the smoothed estimates of the convergence components, µ†it, for the six regions, while

figure 7 displays the estimated common trend, µφ,t, together with the estimated trends

for each region. The plot of the cross-sectional standard deviation computed from

the smoothed trends is similar to that shown in figure 5.
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Figure 6: Convergence component for six poorest regions.

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

8.75

9

9.25

9.5

9.75

10

10.25
Trend_SW Trend_RM
Trend_FW Trend_SE
Trend_GL Trend_PL
Common_Trend

Figure 7: Common trend and growth paths for six poorest regions.
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The convergence process is such that the common trend is essentially constructed

by weighting Great Lakes two-thirds and Plains one third. This suggests that we

could proceed further by constructing a benchmark from the Great Lakes and Plains,

thereby allowing the assumption of a single rate of convergence to be relaxed9; see

the discussion in the middle of sub-section 4.1.

Although the convergence is clear, substantial heterogeneity is evident with the

convergence components being neither monotonic over time nor homogeneous across

regions. Thus while Great Lakes and Plains display smooth dynamics with most of

the convergence towards the common trend taking place from 1950 to 1980, Rocky

Mountains and South West display stronger convergence dynamics but only from the

mid sixties onwards. Moreover, for the latter group, the 1980’s are actually a period

of strong divergence that is only reversed in the last decade of the sample. This type

of process is also evident in the Far West region where, following a period of (slow)

convergence up until the early seventies, diverging dynamics dominate from the mid

seventies up until the late eighties when convergence (now stronger) resumes. Finally,

the high average rate of growth of the South East region translates into the strong

catching-up process displayed up until the late eighties. However, during the nineties

this process appears to have slowed down, or even reversed.

The estimation of the convergence model leads to slight changes in the analysis of

trend variability and cross-regional correlations. The trend volatility for all regions,

indicated by Σ̃ζ , is now lower than in the model fitted in section 4, while there are

more negative cross-correlations.

Multi-step forecasts enable us to analyse further the convergence dynamics implied

by the estimates. Figure 8 shows the forecasts of the convergence components for the

six regional series over a twenty year horizon (2000-2019), while figure 9 contrasts the

different paths. The striking feature of figures 8 and 9 is not the eventual convergence,

but rather the prediction of divergence in the short run. Thus, although Plains and

Great Lakes converge rapidly to the growth path of the common trend, which is

hardly surprising given the composition of the common trend, the Far West, Rocky

Mountains, South East and South West are all expected to widen their income gap,

relative to the common trend, during the first five years of the forecast period. Only

then do they resume their convergence towards the common trend and even then with

9To be more specific we could set φi to zero for all regions -apart from GL and PL- and let the

corresponding φi be specific to each region. GL and PL have the same φi.
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noticeable differences in dynamics. Thus, by 2019 (2009), while the Great Lakes are

expected to have removed 95% (50%) of the 1999 gap, the remaining six regions will

have removed only between 51% (17%) -for the SW - and 60% (28%) - for RM- of their

respective gaps. This temporary divergence is a feature of the smooth convergence

model. The second-order error correction specification not only admits slower changes

but also, when the convergence process stalls, allows for divergence in the short run.

This is because the expected convergence path for these type of models depends

not only on the convergence parameter, but also on the direction of the convergence

component at the end of the sample.
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Figure 8: Forecasts for convergence component.
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Figure 9: Forecasts of convergence components standardised by setting to one in

1999.

Finally we contrast the behaviour of the two richest regions with that of the

six poorest. To this end we fitted a bivariate model, (8), without a convergence

component, to NE and ME and extracted the trends. Figure 10 shows the differences

between each of these trends and the common trend for the six remaining regions.

The divergence is clear with the gap increasing markedly in the 1980s.
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Figure 10: Contrast of trends for NE and ME with common trend of the six poorest

regions.

6 Testing Convergence

The aim of convergence tests is to determine whether regions are in the process of

converging. Some unit root tests are sensitive to initial conditions, rendering them of

limited value for this purpose. Harvey and Bates (2003) examine a number of tests

and conclude that the ADF t-test is the most satisfactory one as it is robust to initial

values different from zero. Indeed, when there is no constant, its power increases

the further the initial conditions are from equilibrium. Note that many researchers

seem to be concerned with testing whether convergence has actually taken place.

For example, Bernard and Durlauf (1996 p 171) write that ‘In time series tests, one

assumes that the data are generated by economies near their limiting distributions

and convergence is interpreted to mean that initial conditions have no (statistically
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significant) effect on the expected value of output differences.’ If this really were the

case then stationarity tests, rather than unit root tests, would be appropriate.

The Monte Carlo experiments in Harvey and Bates (2003) also highlight the con-

siderable advantages of tests without the constant when absolute convergence is the

hypothesis of interest. Many studies, for example Carlino and Mills (1993), carry out

ADF t−tests with a time trend as well as a constant. However, the inclusion of a

time trend is not only inconsistent with a convergence model but it also effectively

ensures that the tests have very low power.

The usual approach to testing convergence is based on fitting models of the form10

∆(yi,t − yw,t) = δi + πi(yi,t−1 − yw,t−1) +

p∑

r=1

φir∆(yi,t−1 − yw,t−1) + ηit, i = 1, ..., N,

(34)

and carrying out ADF unit root tests. In the present application, case yw,t would

usually be the US figure, rather than a simple weighted of the individual figures in

logarithms. An overall test of convergence is often carried out by combining the in-

formation in the individual ADF statistics as in11 Evans and Karras (1996a) or Levin,

Lin and Lu (2002). However, these tests do not take account of the cross-correlation

between the series, thereby rendering them invalid in the present application; see the

simulation evidence in O’Connell (1998). More generally there is the issue of how

useful an overall test is in the first place. As we have seen for the US, some regions

may converge while others do not. Thus individual tests may be more informative.

Unfortunately basing such tests on the equations in (34) in an attempt to determine

which regions converge to the overall mean is obviously invalid since if one region

does not converge but all the others do, then yi,t − yw,t will be nonstationary for all

N and the tests tell us nothing12. Our preference is therefore to use pairwise ADF

tests13 to try to determine which regions are converging to each other.

Tables 2 and 3 show the results of the ADF tests, with p set to four, applied to the

differences between all the series. The results for the test with no constant show some

10This equation does not follow from the model of section 4 except in the homogenous case when

all the π′is are the same; see subsection 4.2.
11The fact that the information in one of the equations is redundant is rarely mentioned.
12Nevertheless a vast number of papers report the results of this fruitless exercise.
13Hobijn and Franses (2000) propose using pairwise stationarity tests, but as already argued

stationarity tests are of little value if the regions are in the process of converging.
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support for convergence within the six poorest regions, though only six out of fifteen

of the test statistics are statistically significant at the 5% level. However, five of these

involve SE. If a constant is included, only one t-statistic is statistically significant at

the 10% level and this is betweenME and RM ! Overall, the tests appear to contain

little useful information as to which regions can be grouped into convergence clusters.

Table 2 ADF τ test with 4 lags and no constant

NE ME GL PL SE SW RM

ME

GL

PL

SE

SW

RM

FW




−1.091

0.061 −0.099

−0.046 −0.421 −1.833∗

−0.838 −1.511 −2.526∗∗ −2.462∗∗

−0.132 −0.489 −1.144 −1.114 −2.381∗∗

−0.167 −0.687 −1.300 −1.398 −1.967∗∗ −0.924

−1.176 −1.526 −0.748 −1.454 −2.417∗∗ −1.069 −1.181




From DF tables:
∗ means significant at 10% level (50 observations), critical value =-1.61
∗∗ means significant at 5% level (50 observations), critical value =-1.95

Table 3 ADF τ test with 4 lags and constant

NE ME GL PL SE SW RM

ME

GL

PL

SE

SW

RM

FW




−0.381

−0.757 −1.341

−1.681 −1.792 −1.361

−1.796 −1.785 −1.876 −1.819

−2.169 −2.356 −1.258 −2.439 −2.265

−1.689 −2.753∗ −1.850 −1.653 −1.446 −1.195

−0.685 −1.299 −2.110 −0.416 −1.213 −0.954 −1.112




From DF tables:
∗ means significant at 10% (50 observations), critical value =-2.60
∗∗ means significant at 5% (50 observations), critical value =-2.93
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7 Conclusions

Fitting a multivariate structural time series model to the eight US regions provides

considerable insight into convergence, or lack of it, by focussing attention on the ex-

traction of smooth trends. Based on these trends, a plausible working hypothesis is

that all but the two richest regions, NE and ME, have displayed (absolute) conver-

gence over the last fifty years. There are sound economic reasons why regional per

capita incomes should tend to equalise. For example, in the case of the US, the re-

cent paper by Caselli and Coleman (2001) highlights the declining role of agriculture

in bringing about convergence. Explaining the underlying reasons for the recently

observed divergence of the NE and ME presents a more interesting challenge.

A secondary aim of the study was to characterise the cyclical movements in US

regions. This was done by fitting a similar cycle component and the result is indi-

vidual regional cycles that appear entirely plausible. The first principal component

of the estimated covariance matrix of the cycles accounts for the bulk of the regional

movements and tracks the national cycle quite closely. Attempts to impose a single

common cycle on the regional series indicated that this model is too restrictive.

The main theoretical contribution of the paper is the development of a conver-

gence model which is then fitted to the six poorest regions. A key feature of the model

is that it embodies convergence components that are able to display temporary di-

vergence before converging to a common trend. This temporary divergence seems to

be a feature of the US regions. The model not only characterises it over the period

in question, but also displays it when predictions are made. These findings have im-

portant implictions for the ‘speed of convergence debate’, prevalent in most empirical

studies of convergence: if second-order convergence components best characterise the

series, no single parameter captures the speed of convergence and a simple notion of

a half-life is inappropriate.

Finally we note that unit root tests, as usually applied in the literature, are of

limited value in determining which regions are converging. Building a model that

provides a statistical description of the underlying movements in the economy is far

more fruitful.
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