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Abstract

Realised bipower variation consistently estimates the quadratic variation of the contin-
uous component of prices. In this paper we generalise this concept to realised bipower
covariation, study its properties, illustrate its use, derive its asymptotic distribution and use
it to test for jumps in multivariate price processes. We also introduce a new concept called
cojumping, where individual assets all have jumps, but it is possible to construct portfolios
which have continous sample paths.
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1 Introduction

In the theory of financial economics the variation of asset prices is measured by looking at sums

of outer products of returns calculated over very small time periods. The mathematics of this is

based on the quadratic variation (QV) process (e.g. Protter (2004)). Asset pricing theory links

the dynamics of increments of the QV process to the increments of the risk premium process (e.g.

Chamberlain (1988) and Back (1991)). There has been considerable recent econometric work

on this topic, estimating QV using equally spaced discrete returns. Such an estimator is called

the realised QV process, while the increments of this process are called realised covariations in

the multivariate case and realised variances or volatilities in the univariate case. A time series

of realised covariations was studied in the context of the methodology of volatility forecasting

by Andersen, Bollerslev, Diebold, and Labys (2001) and Andersen, Bollerslev, Diebold, and

Labys (2003), while central limit theories for the realised QV process and realised covariations

were developed by Jacod (1994), Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen and

Shephard (2004a) and Mykland and Zhang (2005). See Andersen, Bollerslev, and Diebold (2004)

for an incisive survey of this area and references to related work.
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In this paper we will measure the contribution of the continuous component of prices to their

covariation and form robust tests for the presence of jumps on individual days in financial mar-

kets. This will be based on what we call realised bipower covariation, which we will outline in a

moment. Being able to distinquish between jumps and continuous sample path price movements

is important as it has implications for risk management and asset allocation. Further, one of the

properties of price processes which survive the change to equivilent martingale measures is the

presence or absense of jumps. This means that we can test for jumps either using option data

or using time series of underlying assets. A stream of recent papers in financial econometrics

has addressed this issue using low frequency return data (e.g. the parametric models of Eraker,

Johannes, and Polson (2003), Andersen, Benzoni, and Lund (2002), Chernov, Gallant, Ghysels,

and Tauchen (2003) and the Markovian, non-parametric analysis of Aı̈t-Sahalia (2002), Johannes

(2004) and Bandi and Nguyen (2003)) and options data (e.g. Bates (1996), Carr and Wu (2004)

and the review by Garcia, Ghysels, and Renault (2004)). Our approach will be non-parametric

and exploit high frequency multivariate data.

In two recent papers Barndorff-Nielsen and Shephard (2004b) and Barndorff-Nielsen and

Shephard (2003) introduced a partial generalisation of the univariate QV process called the

bipower variation (BPV) process. They showed that in some cases relevant to financial economics

the BPV equals the QV of the continuous component of a single price process. This means we

can, in theory, split up the individual components of the univariate QV into that due to the

continuous part of prices and that due to jumps. In turn the bipower variation process can be

consistently estimated using an equally spaced discretisation of financial data. This estimator

is called the realised BPV process. Following the introduction of bipower variation, Andersen,

Bollerslev, and Diebold (2003) have used daily increments to realised BPV as an input into new

reduced form forecasting devices for modelling future values of daily realised variances (which

in turn proxies the variability of future prices). This follows the influential line of thinking of

Andersen, Bollerslev, Diebold, and Labys (2003) who modelled realised variances in terms of

lags of previous realised variances. Huang and Tauchen (2003) have reported extensive Monte

Carlo experiments on the performance of the central limit theory for realised BPV developed

by Barndorff-Nielsen and Shephard (2003). Their results suggest the theory performs well when

carried out over short periods of time. Theoretical guidance for using the asymptotic theory

over longer time intervals is provided by Corradi and Distaso (2004).

In this paper we introduce a multivariate definition of the BPV process. This equals the QV

process of the continuous component of a vector of prices, which means we can use it to split up

the multivariate QV into that due to the continuous and jump components of prices. We use
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these ideas to define a new concept of dependence called cojumping. We illustrate the use of the

multivariate BPV process in financial economics. We then derive the asymptotic distribution

of the estimator of this, the multivariate realised BPV process. We then use this distribution

theory to test for jumps in multivariate exchange rate data.

Finally, we should note that in this paper we will ignore the effect of market microstructure

effects. Potentially this is an important omission and it would be good to overcome this weakness.

In the case of realised QV quite a lot of interesting work has been carried out in this area.

Zhang, Mykland, and Aı̈t-Sahalia (2003) address the noise problem and propose a subsampling

procedure for estimating the integrated volatility of the log price process. Such subsampling

ideas may be able to be applied to reduce the impact of noise on BPV, but some new theoretical

tools will have to be developed before we can do this from a theoretical viewpoint and we are not

in a position to discuss them as yet. Hansen and Lunde (2004) have initiated a study of how the

realised quadratic variation may be bias corrected to alleviate the noise effect. See also the work

of Bandi and Russell (2003). The latter line of investigation is continued in joint ongoing work

by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004). That work considers a general class

of kernel estimators of the QV and relates it to subsampling. The main thrust of the Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2004) work consists in determining, from optimality

criteria, another type of kernel estimator that has turned out to yield very accurate estimates

for almost all lags. Zhang (2004) has shown that subsampling can be generalised, yielding an

estimator with the same rate of convergence as the modified kernel of Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2004).

The outline of the paper is as follows. In Section 2 we introduce the notation of a semi-

martingale, and recall the definitions of the QV process. We also introduce the multivariate

BPV process and the idea of cojumping. In Section 3 we study consistent estimators of the QV

and BPV processes, which we call the realised QV and realised BPV processes, respectively.

In Section 4 we discuss the daily discretisation of the realised QV and BPCV processes. We

informally illustrate these concepts in the context of some high frequency exchange rate data in

Section 5, comparing the traditional measure of codependence using realised covariation, with

those developed out of the new realised BPV. We see that on tranquil days there is very little

difference, but when there are jumps the statistics provide very different sets of information.

In Section 6 we derive a joint asymptotic distribution theory for the realised QV and BPCV

processes. We show this can be implemented under rather weak assumptions. In Section 7 we

show how to use this distribution theory to develop multivariate tests for jumps in the vector of

prices. In Section 8 we illustrate the use of our asymptotic theory on our exchange rate data.
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In Section 9 we draw out the conclusions from our paper. We also have a lengthy Appendix.

All but one of its sections contains proofs of the main results in the paper. The last section

of the paper gives a multivariate generalisation of the Barndorff-Nielsen and Shephard (2002)

approach to preprocessing the data to remove the effects of breaks in the datafeed.

2 Definitions

2.1 Semimartingale notation

Let the prices of a p-dimensional vector of assets be written as

Yt =
(
Y(1)t, Y(2)t, ..., Y(p)t

)′
, for t ≥ 0.

Here t represents continuous time. We assume Y lives on some filtered probability space(
Ω,F , (Ft)t≥0 , P

)
. We assume Y is a semimartingale (written Y ∈ SM), which means it

can be decomposed as Y = A + M , where A is a vector process with elements of finite variation

(written A ∈ FV) paths and M is vector of local martingales (written M ∈ Mloc). For an

accessible discussion of probabilistic aspects of this see Protter (2004), while its attraction from

an economic viewpoint is discussed by Back (1991). We will often restrict various classes of

processes to those with continuous or purely discontinuous sample paths. We generically denote

this with superscripts c and d respectively, e.g. Mc
loc stands for the class of continuous local

martingales, while M c denotes the continuous component of M .

Our analysis will revolve around the Brownian semimartingale (written Y ∈ BSM)

Yt =

∫ t

0
audu +

∫ t

0
σudWu,

where the a vector process is predictable and has locally bounded sample paths, the σ matrix

process is càdlàg, while W is a vector of independent, standard Brownian motions. In the semi-

martingale notation, At =
∫ t
0 audu, while Mt =

∫ t
0 σudWu. Clearly M is a multivariate stochastic

volatility process (see the reviews in Ghysels, Harvey, and Renault (1996) and Shephard (2005,

Ch. 1)). We also define the spot covariance as

Σt = σtσ
′
t,

and assume that (for all t < ∞)

∫ t

0
Σ(ll)udu < ∞, l = 1, 2, ..., p,

where Σ(kl) is the k, l-th element of the Σ matrix. The latter is needed to ensure that M ∈ Mloc.

The structure of Y ∈ BSM means A ∈ FV c, which means that BSM ⊂ SMc. The form of A
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follows from an assumption of lack of arbitrage once M is assumed to be a SV process, while

the form of M follows from the martingale representation theorem of Doob so long as quadratic

variation of Y is absolutely continuous. This is discussed at some length in Barndorff-Nielsen

and Shephard (2004a). Thus the BSM is close to being the general class of vector continuous

sample path processes.

When we add jumps to the price process, we assume they are of finite activity. The resulting

process is called a Brownian semimartingale plus finite activity jump process (written Y ∈
BSMJ FA). This has

Yt =

∫ t

0
audu +

∫ t

0
σudWu +

Nt∑

j=1

Cj . (1)

The simple counting process N has (for all t < ∞) Nt < ∞ and we assume that (for all t < ∞)

Nt∑

j=1

C2
(l)j < ∞, l = 1, 2, ..., p.

We do not assume the c process has zero mean, so the jumps can potentially contribute both to

A and M in the semimartingale decomposition. Clearly BSMJ FA⊆ SM. The BSMJ FA has

the attractive feature that it is closed under stochastic integration which, in particular, means

that for any comformable matrix of constants B the rotated process BY ∈ BSMJ FA.

2.2 Quadratic variation

The quadratic variation process plays a leading role in this paper.

Definition 1 (e.g. Jacod and Shiryaev (1987, p. 55)) So long as it exists, the quadratic varia-

tion p × p matrix process is defined as

[Y ] = p− lim
n→∞

n∑

j=1

(
Ytj − Ytj−1

) (
Ytj − Ytj−1

)′
, (2)

for any sequence of non-stochastic partitions t0 = 0 < t1 < ... < tn = t with supj{tj − tj−1} → 0

for n → ∞. Here p-lim denotes convergence is locally uniform in time and in probability.

It is well known that the QV always exists if Y ∈ SM.

It is convenient to refer to the l, k-th element of QV as the l, k-th quadratic covariation

[Y ](l,k) = [Y(l), Y(k)], l, k = 1, 2, ..., p

= p− lim
n→∞

n∑

j=1

(
Y(l)tj − Y(l)tj−1

)(
Y(k)tj − Y(k)tj−1

)
.
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The conventional notation is to write [Y(l), Y(l)] = [Y(l)], the QV of Y(l). Thus

[Y ] =




[Y(1)] [Y(1), Y(2)] · · · [Y(1), Y(p)]

[Y(2), Y(1)] [Y(2)] · · · [Y(2), Y(p)]
...

...
. . .

...
[Y(p), Y(1)] [Y(p), Y(2)] · · · [Y(p)]


 .

The quadratic covariation [Y(l), Y(k)] can be calculate solely from the QV of a sequence of

univariate processes. This follows from the fact that

[Y(l) + Y(k)] = [Y(l)] + [Y(k)] + 2[Y(l), Y(k)]. (3)

Rearranging produces the so-called polarisation results (e.g. Revuz and Yor (1999, p. 125))

that

[Y(l), Y(k)] =
1

2

(
[Y(l) + Y(k)] − [Y(l)] − [Y(k)]

)
(4)

or

[Y(l), Y(k)] =
1

4

(
[Y(l) + Y(k)] − [Y(l) − Y(k)]

)
. (5)

It will be (5) which will prove to be central in this paper, rather than the more obvious (4). The

reasons for this will become clear in a moment.

It is well known that

[Y ] = [M c] +
∑

0≤s≤t

∆Ys∆Y ′
s

= [M c] + [Y d], (6)

where ∆Yt = Yt − Yt− are the jumps in the process. This means that the QV of Y aggregates

the QV of M c and the QV of Y d. In the special case where Y ∈ BSMJ FA then

[Y ]t =

∫ t

0
Σudu +

Nt∑

j=1

CjC
′
j.

2.3 Bipower variation

The definition of BPV is given in terms of equally spaced time intervals of length δ > 0 and the

corresponding vector of returns

yj = Yjδ − Y(j−1)δ, j = 1, 2, ..., bt/δc = n,

where bxc is the integer part of x. The definition is the multivariate generalisation of the

univariate case due to Barndorff-Nielsen and Shephard (2003).
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Definition 2 So long as it exists, the q-th lag bipower variation (BPV) p× p matrix process is

{Y ; q} =




{
Y(1); q

} {
Y(1), Y(2); q

}
· · ·

{
Y(1), Y(p); q

}
{
Y(2), Y(1); q

} {
Y(2); q

}
· · ·

{
Y(2), Y(p); q

}
...

...
. . .

...{
Y(p), Y(1); q

} {
Y(p), Y(2); q

}
· · ·

{
Y(p); q

}


 .

The l, l-th element of {Y ; q} is

{
Y(l); q

}
= p− lim

n→∞

n∑

j=q+1

∣∣y(l)j−q

∣∣ ∣∣y(l)j

∣∣ ,

while the l, k-th bipower covariance process, is

{
Y(l), Y(k); q

}
=

1

4

({
Y(l) + Y(k); q

}
−

{
Y(l) − Y(k); q

})
. (7)

Again, p-lim denotes convergence is locally uniform in time and in probability.

The limit in Definition 2 can be given explicitly under broad conditions.

Theorem 1 Assume Y ∈ BSMJ FA. Then

{Y ; q}t = µ2
1

∫ t

0
Σudu, l = 1, 2, ..., p, (8)

where

µ1 = E |u| =
√

2/Γ

(
1

2

)
=

√
2/
√

π ' 0.79788

and u ∼ N(0, 1).

Proof. Our proof is carried out element by element on the matrix {Y ; q}. We use the polarisa-

tion result

[Y(l), Y(k)] =
1

4

(
[Y(l) + Y(k)] − [Y(l) − Y(k)]

)
. (9)

Thus the required result would follow if we can show that

{
Y(l) + Y(k); q

}
= µ2

1[Y
c
(l) + Y c

(k)] (10)

= µ2
1

∫ t

0
Σ(ll)udu + µ2

1

∫ t

0
Σ(kk)udu + 2µ2

1

∫ t

0
Σ(lk)udu. (11)

If there are no jumps then Y(l) + Y(k) ∈ BSM which implies (10) holds immediately by the

convergence in probability result of Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shep-

hard (2004) for general Brownian semimartingales and generalised bipower measures of varia-

tion. The robustness to added finite activity jumps follows immediately by the argument in

Barndorff-Nielsen and Shephard (2003).

�
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Remark 1 (i) For simplicity of exposition it is sometimes convenient to write {Y } = {Y ; 1}.
(ii) The bipower covariance process could have been been defined as

1

2

({
Y(l) + Y(k); q

}
−

{
Y(l); q

}
−

{
Y(k); q

})
,

but it will be seen shortly that this has less virtue than using (7).

(iii) {Y ; q} must be symmetric and positive semi-definite.

(iv) Clearly

[Y ] − µ−2
1 {Y ; q} = [Y d] =

N∑

j=1

CjC
′
j . (12)

This shows that it is theoretically possible to seperately identify the continuous and discontinuous

components of the multivariate QV.

2.4 Cojumping

Suppose again that

Yt =

∫ t

0
audu +

∫ t

0
σudWu +

Nt∑

j=1

Cj

and each element of Y exhibits jumps in the time interval [0, t]. Then in general we can define

a new process

Xt =

∫ t

0
Du−dYu

=

∫ t

0
Duaudu +

∫ t

0
DuσudWu +

Nt∑

j=1

Dτ j−Cj ,

where D is a non-zero k × p matrix process whose elements are càdlàg and adapted to the

filtration generated by Y and τ 1, τ2,...,τNt
are the arrival times of the counting process N . This

type of process is important for it could represent, for example, the value of a portfolio, where

D are the investment weights.

It is clearly possible that there may exist a D process such that some of the elements of X

have continuous sample paths in the time interval [0, t] even though each of the elements of Y

have discontinuities. When this is the case we say that the Y process cojumps. Cojumping has

some similiarities to the idea of cobreaking introduced by Hendry (1995), but in some sense the

concept is more straightforward here as the notion of a continuous sample path is unambigious.

Remark 2 The assumption that D is adapted to the filtration generated by Y implies Dt− has

to be determined before we see ∆Yt = Yt − Yt−. This rules out the trivial construction

Dτ j− = Ip − Cj(C
′
jCj)

−1C ′
j ,

which would allow us to see the jumps coming and then adjust D accordingly.
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Clearly

[X]t = [Xc]t + [Xd]t

=

[∫ t

0
DudY c

u

]

t

+

[∫ t

0
Du−dY d

u

]

t

=

∫ t

0
Duσuσ′

uD′
udu +

Nt∑

j=1

Dτ j−CjC
′
jD

′
τ j−.

Thus we can see that cojumping occurs in the time interval [0, t] with respect to an adapted D

if some of the diagonal elements of

Nt∑

j=1

Dτ j−CjC
′
jD

′
τ j−

are exactly zero. If we constrain our attention to time-invariant D matrices, then the search for

cojumping amounts to asking if

[Y d]t =

Nt∑

j=1

CjC
′
j

is of reduced rank with probability one.

Example 1 Suppose

Yt =

∫ t

0
audu +

∫ t

0
σudWu + Πft,

where Π is a p× k non-stochastic matrix, f is a k × 1 dimensional process with elements which

have purely discontinuous sample paths

ft =

Nt∑

j=1

gj ,

and p > k. Then Cj = Πgj. Clearly we can, if Π′Π is full rank, construct

Π⊥ = Ip − Π(Π′Π)−1Π′,

which has the property that Π⊥Π = 0. Thus

Π⊥Yt =

∫ t

0
Π⊥audu +

∫ t

0
Π⊥σudWu,

which has a continuous sample path.

3 Realised variation

3.1 Realised QV process

The realised QV process is defined as

[Yδ] =

n∑

j=1

yjy
′
j

p→ [Y ],
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as δ ↓ 0 so long as Y ∈ SM. It is studied at some length in Andersen, Bollerslev, Diebold,

and Labys (2003) and Barndorff-Nielsen and Shephard (2004a) from the viewpoint of volatility

forecasting and asymptotic distribution theory, respectively.

Remark 3 For any conformable matrix of constants B then [BYδ] = B[Yδ]B
′. Thus [Yδ] implies

the QV matrix of BYδ. This is convenient as BYδ can be thought of as the price process for q

static portfolios based on the p asset prices Yδ. This result does not generalise to the addition of

A+ ∈ FVc for [A+ + BYδ] 6= B[Yδ]B
′, although [A+ + BYδ]

p→ B[Y ]B′.

3.2 Realised BPV process

The BPV process can be estimated using the realised BPV process.

Definition 3 The q-th lag realised bipower variation (BPV) p × p matrix process is

{Yδ; q} =




{
Y(1)δ ; q

} {
Y(1)δ , Y(2)δ ; q

}
· · ·

{
Y(1)δ , Y(p)δ; q

}
{
Y(2)δ , Y(1)δ ; q

} {
Y(2)δ; q

}
· · ·

{
Y(2)δ , Y(p)δ; q

}
...

...
. . .

...{
Y(p)δ, Y(1)δ ; q

} {
Y(p)δ, Y(2)δ ; q

}
· · ·

{
Y(p)δ; q

}


 .

The l, l-th element of {Yδ; q} is

{
Y(l); q

}
= γq,δ

n∑

j=q+1

∣∣y(l)j−q

∣∣ ∣∣y(l)j

∣∣ , γq,δ =
n

n − q
,

while the l, k-th bipower covariance process, is

{
Y(l), Y(k); q

}
=

γq,δ

4

({
Y(l) + Y(k); q

}
−

{
Y(l) − Y(k); q

})
. (13)

The constant γq,δ ↓ 1 as δ ↓ 0 and so plays no asymptotic role, but it does improve the finite

sample performance of the process. Clearly
{
Y(l)δ, Y(l)δ ; q

}
equals

{
Y(l)δ; q

}
.

If Y ∈ BSMJ FA then

{Yδ; q}
p→ µ2

1[Y
c].

This implies

µ−2
1 {Yδ; q}

p→ [Y c]

and

[Yδ] − µ−2
1 {Yδ; q}

p→ [Y d].

It is unfortunately not the case that {BYδ} equals B {Yδ}B′. This follows immediately from

the fact that for a general real b and δ > 0 so
{
bY(l)δ, Y(k)δ

}
does not equal b

{
Y(l)δ, Y(k)δ

}
.

However,
{
Y(l)δ, Y(k)δ

}
does possess some elegant properties.
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Theorem 2 Suppose the realised BPV between assets l and k exists. Then

{
Y(l)δ , Y(k)δ

}
=

{
Y(k)δ, Y(l)δ

}
, (14)

{
Y(l)δ ,−Y(k)δ

}
=

{
−Y(l)δ, Y(k)δ

}
= −

{
Y(l)δ, Y(k)δ

}
. (15)

Further, suppose b is any real numbers, then the following holds

{
bY(l)δ, bY(k)δ

}
= b2

{
Y(l)δ , Y(k)δ

}
, (16)

{
Y(l)δ , bY(l)δ

}
= b

{
Y(l)δ

}
. (17)

Proof. Given in the Appendix.

Result (14) implies {Yδ} is symmetric, but for finite δ it is not necessarily positive semi-

definite. This latter point is, in our view, the main drawback of the use of this measure. In

practice, one possible remedy for the lack of positive semi-definiteness would be to determine

the spectral decomposition BδΛδB
′
δ of {Yδ}, define Λ̃δ as the diagonal matrix obtained from

Λδ by changing all negative eigenvalues to 0, and, finally modify {Yδ} to BδΛ̃δB
′
δ. Clearly,

{Yδ} is converging to µ2
1[Y

c] which is positive semi-definite, which implies all the corresponding

eigenvalues are becoming non-negative in the limit so BδΛ̃δB
′
δ

p→ µ2
1[Y

c]. When we carry

out empirical work we will continually use this modified version of the realised BPV process.

The same goes for [Yδ] − µ−2
1 {Yδ; q} which estimates [Y d]. This is also symmetric, but is not

necessarily positive semi-definite.

3.3 Alternative bipower variation estimator

The same type of argument could have been based on the following result. Define

ξ
(
Y(l)δ, Y(k)δ

)
=

1

2

({
Y(l)δ + Y(k)δ

}
−

{
Y(l)δ

}
−

{
Y(k)δ

})
,

then if Y ∈ BSMJ FA so ξ
(
Y(l)δ , Y(k)δ

)
converges in probability to µ2

1[Y
c
(l), Y

c
(k)]. This alternative

estimator has a number of advantages, but lacks the attractive property (15) exhibited by realised

BPV. Further, work not reported here suggest that this estimator is less efficient than {Yδ; q}.
For these reasons we will favour

{
Y(l)δ, Y(k)δ ; q

}
from now on.

This type of result is reminisicent of the use of triangular arbitrage constraints to define

a covariance between exchange rates, e.g. Brandt and Diebold (2004) who then estimate co-

variances solely through the ranges on daily exchange rates. Write the log of Yen/DM rate

by D, the log of the Yen/Dollar rate as Y(l) and the log of the DM/Dollar rate as Y(k). As-

sume D = Y(l) − Y(k) holds exactly. Then [Y(l), Y(k)] equals
(
[Y(l)] + [Y(k)] − [D]

)
/2, which is

consistently estimate by
(
[Y(l)δ ] + [Y(k)δ] − [Dδ]

)
/2. Likewise [Y c

(l), Y
c
(k)] can be estimated by

({
Y(l)δ

}
+

{
Y(k)δ

}
− {Dδ}

)
/2.
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4 Time series of realised quantities

We remarked in the Introduction that considerable attention has recently been given to discreti-

sations of the realised QV process. We can define, for a fixed time interval ~ > 0, which we will

refer to as a day for concreteness, a sequence of daily realised covariations

V (Yδ)i = [Yδ]~i − [Yδ]~(i−1) , i = 1, 2, ..., T.

This can be written explicitly as

V (Yδ)i =

b~/δc∑

j=1

yj,iy
′
j,i,

where

yj,i = Yδj+~(i−1) − Yδ(j−1)+~(i−1),

the j-th high frequency return on the i-th day. Clearly

V (Yδ)i
p→ V (Y )i = [Y ]

~i − [Y ]
~(i−1) .

This was the starting point of Barndorff-Nielsen and Shephard (2004a) who derived the asymp-

totic distribution of δ−1/2 (V (Yδ)i − V (Y )i) and Andersen, Bollerslev, Diebold, and Labys (2003)

who studied forecasting future values of V (Y )i based on the history of V (Yδ)i. Here we briefly

discuss the corresponding definition and basic convergence results for the realised BPCV process.

These follow straightforwardly from our previous theoretical results.

We can define a sequence of T daily q-th lag daily realised bipower covariations as

Ṽ (Yδ; q)i = {Yδ; q}~i − {Yδ; q}~(i−1)

p→ µ2
1V (Y c)i.

The l-th diagonal elements of Ṽ (Yδ; q)i will be

ṽ(y(l))i = γ̃q,δ

b~/δc∑

j=q+1

∣∣y(l)j−q,iy(l)j,i

∣∣ , γ̃q,δ =
b~/δc

b~/δc − q
,

while the l, k-th element will be

Ṽ (Yδ; q)(lk)i =
1

4

(
ṽ(y(l) + y(k))i − ṽ(y(l) − y(k))i

)
.

5 Empirical illustration

5.1 A tranquil day

To illustrate some of the empirical features of realised covariation and realised BPCV we have

used a subset of the return data employed by Andersen, Bollerslev, Diebold, and Labys (2001),

12



although we have made slightly different adjustments to deal with some missing data. These

adjustments are described in detail in the Appendix and represent a multivariate generalisation

of the stochastic adjustment schemes introduced by Barndorff-Nielsen and Shephard (2002).

The bivariate series in question records the United States Dollar/ German Deutsche Mark and

Dollar/ Japanese Yen series. It covers the ten year period from 1st December 1986 until 30th

November 1996. The original dataset records every 5 minutes the most recent mid-quote to

appear on the Reuters screen. It has been kindly supplied to us by Olsen and Associates in

Zurich, who document their pathbreaking work in this area in Dacorogna, Gencay, Müller,

Olsen, and Pictet (2001).
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Yen 
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Figure 1: Data on 26th October 1988 for the D-Mark and Yen against the Dollar. Top line:
based on 30 minute data, bottom line based on 5 minute. Left hand side: renormalised log-price.
Right hand side: plot of returns of D-Mark against Yen. Code: bpcv.ox.

The top and bottom parts of the left hand side of Figure 1 shows the sample path of the

bivariate yδ based on δ representing 30 and 5 minutes respectively for a single, randomly choosen

day. This day was 26th October 1988 and was a relatively tranquil day on the foreign exchange

markets. On the right hand side of the Figure we plot the returns for the D-Mark against the
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Yen, computed using 30 and 5 minute data. Here we can see a broadly positive relationship

between the two sets of returns. The realised variation summary statistics are given in Table 1.

The realised BPCV is computed in this Section as the average version (??) using Q = 6. The

Table shows that the two estimates are rather similiar and that the statistics do not change very

much as δ changes.

202nd day D-Mark, y(1)δ Yen, y(2)δ Joint, y(1)δ, y(2)δ

Minutes, δ 30 5 30 5 30 5

Realised QV .528 .590 .550 .571 .413 .418
Realised BPV .590 .605 .484 .578 .440 .427

Table 1: Estimates of measures of covariation. Based on δ being 30 minutes and 5 minutes,
respectively, for 26th October 1988, which is the 202nd day in the sample. Code: bpcv.ox

Figure 2 gives a slightly broader view on some of these issues, showing corresponding results

for the first 100 days in the sample. On the top row of the Figure we plot a time series of the

daily realised variances, realised covariances and their bipower versions. These are computed

using 5 minute return data. The realised variance for the D-Mark is shown using crosses and

it is quite variable, being quite high in the first 40 days, before falling substantially. The daily

realised bipower variations are similiar, although they seem to be quite a lot lower on high

volatility days. This provides informal evidence of jumps on those days, an issue we will return

to formally later on in this paper. A similiar result holds for the Yen, although there is a second

volatility spike in this series towards the last third of this period. The daily realised covariance

of the two rates has a similiar pattern to the Yen series. The bottom row of Figure 2 returns to

the results for 26th October 1988. This repeats the results in Table 1, but now shows how these

variables change with δ, ranging from 5 minutes to 30 minutes. We can see the movements are

modest for this day.

5.2 An extreme day: a balance of payments shock

On 15th January 1988 at 8.30 Eastern Standard Time (EST) in the United States of America

a significant shock hit the foreign exchange markets. The Financial Times reported on its front

page the next day

“The dollar and share prices soared in hectic trading on world financial markets yesterday

after the release of official figures showing that the US trade deficit had fallen to $13.22 bn

in November from October’s record level of $17.63 bn. The US currency surged 4 pfennigs

and 4 yen within 10 minutes of the release of the figures and maintained the day’s highest

levels in late New York business ... .”

14



0 50 100

1

2

i

(a) Variation, D−Mark

Quadratic 
Power 

0 50 100

0.5

1.0

1.5

i

(b) Variation, Yen

0 50 100

0.00

0.25

0.50

0.75

1.00

1.25

i

(c) Covariation, D−Mark, Yen
Quadratic 
Power 

10 20 30

0.525

0.550

0.575

0.600

δ

Quadratic 
Power 

10 20 30

0.45

0.50

0.55

0.60

δ

Quadratic 
Power 

10 20 30

0.400

0.425

0.450

0.475

δ

Quadratic 
Power 

Figure 2: Top line of graphs gives typical realised variances, covariances and bipower versions for
the first 100 days from 1st December 1986. (a) Realised variance and realised bipower variation
for D-Mark against U.S. Dollar. (b) Realised variance and realised bipower variation for Yen
against U.S. Dollar. (c) Realised covariance and realised BPCV. Based on five minute return
data. Bottom line: graphs of realised covariations and realised BPCV against δ for a randomly
selected day in the sample. We have chosen the 26th October 1988. Code: bpcv.ox.

The left hand panels of Figure 3 show the movements in D-Mark and Yen against the Dollar,

with the rate imputted by the Olsen group every 30 minutes at the top of the graph and every

20 minutes at the bottom. There appears to be a important jump in the series around 8.30

EST. The right hand panels of the graph shows the cross plot of the bivariate return series.

When δ is 30 minutes we see that the two jumps appear at the same time and really dominate

the movements in the prices. This is the expected pattern, with the balance of payment shock

strengthening the U.S. Dollar both against the German and Japanese currency. However, when

we move δ down to 20 minutes something unexpected happens. We see at the bottom right of

the Figure that the jumps in the D-Mark occurs earlier than in the Yen. Why did this happen?
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Figure 3: DM and Yen against the Dollar, based on the Olsen dataset. Data is 15th January
1988. (a) recording of log-prices every 30 minutes. (b) Cross-plot of the 30-minute returns.
Y-axis records D-Mark, x-axis records Yen returns, all against the US Dollar. Bottom graphs
repeat this based on 20 minute records.

Table 2 shows the Olsen’s groups imputed returns for the D-Mark and Yen during the period

around the balance of payments announcement. Recall the Olsen’s groups data is computed off

quotes from the Reuter’s screen. We can see that the quotes for the D-Mark moved quickly, but

it took a little time for the news to impact the Reuter’s quotes on the Yen. It is clear that fully

informed traders would not be actually trading at these out-dated Yen rates.

These market microstructure effects are important, not so much because they impact the

univariate volatility measures, but because our measures of codependence can be completely

messed up by this timing issue. In particular in the calculation of realised covariance we multiply

high frequency returns, to measure codependence. Clearly if we use 30 minute returns we have

no problem, but if we exploit 20, 10 or 5 minute returns then the dependence patterns will

be destroyed. This is shown in Figure 4, which shows the cross plot of 30 and 20 minute

returns. These plots indicate remarkably different levels of correlation. Rather curiously 15
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Time (EST) Time D-Mark Yen

8.25-8.30 162 0.0811 -0.0321
8.30-8.35 163 2.0278 0.0792
8.35-8.40 164 0.1178 0.0514
8.40-8.45 165 0.0899 2.1707

Table 2: Olsen’s imputed returns based on quote data every 5 minutes for the D-Mark and Yen
against U.S. Dollar. Code: bpcv.ox

minute returns, in this example, will be robust to the measurement errors.

The top panel in Figure 4 shows the realised variance and realised BPV for the D-Mark drawn

against δ. This shows relatively stable statistics, with the realised variance being much higher

than the corresponding realised BPV. This was noted in Barndorff-Nielsen and Shephard (2003)

who show that there is statistically significant evidence that there is a jump in the price process.

The mid-panel shows a similar result for the Yen, again suggesting a jump. The most important

aspect of Figure 4 is the bottom panel which shows the realised covariance and realised BPCV.

When δ is around 30 minutes the realised covariance is around 10, when δ is 20 the covariance

is around 2.5. This is a dramatic change. The realised BPCV hardy changes with δ in this case,

giving a value which is quite small compared with some of the recorded realised covariances. We

will come back to the meaning of the stable realised BPCV in a later section.

6 Asymptotic theory for realised BPCV

6.1 General asymptotic theory

The asymptotic distribution of realised BPCV can be found by applying the general methods

developed by Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2004) in the context

of the multivariate Brownian semimartingale

Yt =

∫ t

0
audu +

∫ t

0
σudWu.

In this Section we will assume the following on the σ matrix process, although it is possible

to relax these assumptions to allow for jumps in the volatility process. We refer the interested

reader to Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2004).

Definition 4 Assumption (H0): We have

σt = σ0 +

∫ t

0
a∗udu +

∫ t

0
v∗u−dW ∗

u +

∫ t

0
σ∗

u−dWu, (18)

where W ∗ is a vector of Brownian motion independent from W and the processes a∗, v∗ and σ∗

are adapted càdlàg arrays, with a∗ also being predictable and locally bounded.
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Figure 4: Data based on 15th January 1988. (a) For the D-Mark series. Records realised variance
and average realised bipower variation. Both are graphed against δ. (b) For the Yen series, we
repeat (a). (c) Plot of the realised covariance and the average realised bipower covariation, both
plotted against δ. Code: bpcv.ox.

For simplicity of exposition we will put p = 2. We introduce the notation

Σt =

( (
σ2

1

)
t

(σ1,2)t

(σ2,1)t
(
σ2

2

)
t

)
,

and then write (
σ+

1,2

)2
= σ2

1 + σ2
2 + 2σ1,2,

(
σ−

1,2

)2
= σ2

1 + σ2
2 − 2σ1,2,

ρ+,− =

(
σ2

1 − σ2
2

)

σ+
1,2σ

−
1,2

∈ [−1, 1] ,

ϑ(ρ) = S2(ρ) + 2S(ρ) − 3.

Here

S (ρ) =
√

(1 − ρ2) + ρ arcsin ρ

= µ−2
1 E {|xy|} ,
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where x and y be two standard normal random variables with correlation coefficient ρ. Note

S(ρ) = S(−ρ). Suppose ρ ≥ 0, then

∂S(ρ)

∂ρ
= arcsin ρ +

(
ρ +

1

2

)(
1 − ρ2

)−1/2
> 0.

So S(0) = 1 and S(ρ) monotocially increases on [0, 1] to obtain its maximum S(1) = π/2. This

implies that

0 = ϑ(0) ≤ ϑ(ρ) ≤ ϑ(1) = ϑ.

Note that

ϑ = µ−4
1 + 2µ−2

1 − 3

=
(
π2/4

)
+ π − 3

' 2.609

Theorem 3 Assume Y ∈ BSM and additionally condition (H0) holds. Then as δ ↓ 0 so the

process
√

n

[{
Y(1)δ, Y(2)δ

}
t
− 4µ2

1

∫ t

0
(σ1,2)u du

]
,

converges stably in law towards a limiting process U(g, h) having the form

U(g, h)t =

∫ t

0

√
A(σu) dBu, (19)

where

A(σt) = µ4
1

[{(
σ+

1,2

)4

t
+

(
σ−

1,2

)4

t

}
ϑ(1) − 2

{(
σ+

1,2

)
t

(
σ−

1,2

)
t

}2
ϑ(ρ+,−

t )

]
.

In particular, for a single point in time t,

√
n

(
Y n(g, h)t − 4µ2

1

∫ t

0
(σ1,2)u du

)
L→ MN

(
0,

∫ t

0
A(σu, g, h)du

)
,

where MN denotes a mixed Gaussian distribution. Finally,
∫ t
0 A(σu, g, h)du can be consistently

estimated under the Brownian semimartigale assumption by constructing

sj =
∣∣y(1)j−1 + y(2)j−1

∣∣ ∣∣y(1)j + y(2)j

∣∣ −
∣∣y(1)j−1 − y(2)j−1

∣∣ ∣∣y(1)j − y(2)j

∣∣ ,

Sk = n

n∑

j=k+1

sj−ksj.

Then

S0 + 2S1 − 2S2 − S3
p→

∫ t

0
A(σu, g, h) du.
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We should note that the estimator of
∫ t
0 A(σu, g, h) du is not contained in Barndorff-Nielsen,

Graversen, Jacod, Podolskij, and Shephard (2004) and is novel. It is given for general problems

in the Appendix, before being specialised to the case we are interested in for the proof of this

theorem.

Remark 4 Obviously
(
σ+

1,2

)2

t
= σ2

1 + σ2
2 + 2σ1,2 and

(
σ−

1,2

)2

t
= σ2

1 + σ2
2 − 2σ1,2, which implies

{(
σ+

1,2

)4

t
+

(
σ−

1,2

)4

t

}
= 2

[(
σ2

1 + σ2
2

)2
+ 4σ2

1,2

]
,

while

(
σ+

1,2

)2

t

(
σ−

1,2

)2

t
=

(
σ2

1 + σ2
2 + 2σ1,2

) (
σ2

1 + σ2
2 − 2σ1,2

)

=
(
σ2

1 + σ2
2

)2 − 4σ2
1,2.

Remark 5 The corresponding realised quadratic variation result was first given in Barndorff-

Nielsen and Shephard (2004a). It has

√
n

[[
Y(1)δ , Y(2)δ

]
t
−

∫ t

0
(σ1,2)u du

]
L→ MN

(
0,

∫ t

0

(
σ2

1,uσ2
2,u + (σ1,2)

2
u

)
du

)
.

If σ2
1 = σ2

2 then ρ+,− = 0, which implies

A(σt) = µ4
1ϑ(1)

{(
σ+

1,2

)4

t
+

(
σ−

1,2

)4

t

}

= 8µ4
1ϑ(1)

{(
σ2

1,t

)2
+ (σ1,2)

2
t

}
,

as ϑ(0) = 0. Thus

√
n

[
1

4µ2
1

{
Y(1)δ , Y(2)δ

}
t
−

∫ t

0
(σ1,2)u du

]
L→ MN

(
0,

1

2
ϑ(1)

∫ t

0

(
σ4

1,u + (σ1,2)
2
u

)
du

)
.

This implies that when the variances of the two processes are roughly equal then realised bipower

variation is around 30% less efficient at estimating the integrated covariance than the realised

covariation measure when there are no jumps.

Remark 6 As the realised quadratic variation is, asymptotically, a fully efficient estimator of
∫ t
0 (σ1,2)u du when the process is a Brownian semimartingale, it follows from a Hausman (1978)

type argument that

√
n

[ [
Y(1)δ , Y(2)δ

]
t
−

∫ t
0 (σ1,2)u du

1
4µ2

1

{
Y(1)δ , Y(2)δ

}
t
−

∫ t
0 (σ1,2)u du

]

L→ MN


0,

∫ t
0

(
σ2

1,uσ2
2,u + (σ1,2)

2
u

)
du

∫ t
0

(
σ2

1,uσ2
2,u + (σ1,2)

2
u

)
du

∫ t
0

(
σ2

1,uσ2
2,u + (σ1,2)

2
u

)
du 1

16µ4

1

∫ t
0 A(σu, g, h)du


 .
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This implies that we can use a two sided Hausman-type test for jumps in the covariation process

based upon

√
n

[[
Y(1)δ , Y(2)δ

]
t
− 1

4µ2
1

{
Y(1)δ, Y(2)δ

}
t

]

L→ MN

(
0,

1

16µ4
1

∫ t

0
A(σu, g, h)du −

∫ t

0

(
σ2

1,uσ2
2,u + (σ1,2)

2
u

)
du

)
.

Example 2 To see how the asymptotic theory performs in finite samples, and to study the

relative efficiency of the realised BPCV and realised covariance, we report some results from a

simple Monte Carlo experiment. Throughout we use the bias adjusted realised BPCV. We look

at three cases where, each where σ2
1σ

2
2 = 1. We vary σ2

1, ρ and n, reporting the asymptotic

results using the case where n = ∞. Our focus is on the variability of

[
X(1)δ , X(2)δ

]
1
− σ1,2 and

1

4µ2
1

{
X(1)δ , X(2)δ

}
1
− σ1,2,

for both estimators have no discernable bias. Throughout we report n times the sampling vari-

ance. The results given in Table 3 show the expected result that the realised covariance is more

efficient that the realised BPCV. Importantly the degree of inefficiency of realised BPCV in-

creases as σ2
1 and σ2

2 become more different, while the inefficiency does not vary much with ρ.

Remark 7 Suppose X,Y is a bivariate Brownian semimartingale and we define, using an ob-

vious notation,

C(X,Y )t = µ4
1

∫ t

0
ϑ

(
ρ(x,y)

)
u

(
σ2

x

)
u

(
σ2

y

)
u
du.

Also define

c(xj , yj) = ajbj + 2ajbj−1 − 3ajbj−2

aj = |xj | |xj−1| , bj = |yj| |yj−1| ,

then

Ĉ(X,Y )t = n
n∑

j=1

c(xj , yj)
p→ C(X,Y )t.

ISSUE TO BE CLARRIFIED. It is not clear if Ĉ is robust to common jumps as terms of the

type ajbj and ajbj−1 have problems.

7 Discussion and extensions

7.1 Building reduced form models

Following Barndorff-Nielsen and Shephard (2004b), Andersen, Bollerslev, and Diebold (2003)

have used bipower variation as an input into new reduced form forecasting devices for modelling
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n ρ = 0.9 ρ = 0.5 ρ = 0

RCV RBPCV RCV RBPCV RCV RBPCV

1,1

5 1.79 2.66 1.21 1.78 0.98 1.42
10 1.81 2.49 1.23 1.70 0.99 1.35
25 1.82 2.44 1.24 1.65 0.99 1.32
100 1.81 2.39 1.25 1.63 1.00 1.31
∞ 1.81 2.36 1.25 1.62 1 1.30

3,1/3

5 1.79 2.76 1.23 2.07 .989 1.73
10 1.81 2.58 1.25 1.96 1.00 1.65
25 1.82 2.53 1.25 1.92 .996 1.60
100 1.81 2.48 1.26 1.88 1.01 1.58
∞ 1.81 2.44 1.25 1.85 1 1.56

5,1/5

5 1.79 2.78 1.23 2.20 .989 1.92
10 1.81 2.60 1.25 2.08 1.00 1.82
25 1.82 2.55 1.25 2.03 .996 1.76
100 1.81 2.50 1.26 1.99 1.01 1.73
∞ 1.81 2.47 1.25 1.96 1.00 1.71

Table 3: Finite sample behaviour of the realised covariance and the realised bipower covariation
based on bivariate Brownian motion with common variances. Based on 50, 000 simulations.
Results are n times sample variance of the realised quantities. Code: bpcv.ox

future values of realised variances (which in turn proxy the variability of future prices). This

follows the influential line of thinking of Andersen, Bollerslev, Diebold, and Labys (2003) who

modelled realised variances in terms of lags of previous realised variances. Following initial

versions of the work reported in this paper, they used the test for a jump given in result given

in Barndorff-Nielsen and Shephard (2004b) to truncate the BPV based estimator of the QV

of the jump component if the jumps are not significant. This shrinkage style estimator seems

remarkably successful in empirical work, yielding fresh insights and improved forecast accuracy.

8 Empirical illustration: the distribution theory

9 Conclusions

10 Acknowledgments

Ole E. Barndorff-Nielsen’s work is supported by CAF (www.caf.dk), which is funded by the

Danish Social Science Research Council, and by MaPhySto (www.maphysto.dk), which is funded

by the Danish National Research Foundation. Neil Shephard’s research is supported by the UK’s

ESRC through the grant “High frequency financial econometrics based upon power variation.”

22



All the calculations made in this paper are based on software written by the authors using the

Ox language of Doornik (2001). We thank Tim Bollerslev and Xin Huang for discussions on

this topic.

A Appendix

A.1 Proof of Theorem 2

Result (14) is trivial. We start with (15). Clearly

4

γ1,δ

{
Y(l)δ,−Y(k)δ

}
=

bt/δc∑

j=2

(∣∣y(l)j−1 − y(k)j−1

∣∣ ∣∣y(l)j − y(k)j

∣∣ −
∣∣y(l)j−1 + y(k)j−1

∣∣ ∣∣y(l)j + y(k)j

∣∣)

= −
bt/δc∑

j=2

(∣∣y(l)j−1 + y(k)j−1

∣∣ ∣∣y(l)j + y(k)j

∣∣ −
∣∣y(l)j−1 − y(k)j−1

∣∣ ∣∣y(l)j − y(k)j

∣∣)

= − 4

γ1,δ

{
Y(l)δ, Y(k)δ

}
,

which delivers that result. Next (16)

4

γ1,δ

{
aY(l)δ, aY(k)δ

}
=

bt/δc∑

j=2

(∣∣ay(l)j−1 + ay(k)j−1

∣∣ ∣∣ay(l)j + ay(k)j

∣∣ −
∣∣ay(l)j−1 − ay(k)j−1

∣∣ ∣∣ay(l)j − ay(k)j

∣∣)

=
4

γ1,δ

a2
{
Y(l)δ , Y(k)δ

}
.

Finally, (17) follows as

4

γ1,δ

{
Y(l)δ, aY(l)δ

}
=

bt/δc∑

j=2

(∣∣y(l)j−1 + ay(l)j−1

∣∣ ∣∣y(l)j + ay(l)j

∣∣ −
∣∣y(l)j−1 − ay(l)j−1

∣∣ ∣∣y(l)j − ay(l)j

∣∣)

=

bt/δc∑

j=2

∣∣y(l)j−1y(l)j

∣∣ {|1 + a| |1 + a| − |1 − a| |1 − a|}

=
4

γ1,δ

a
{
Y(l)δ, Y(l)δ

}
.

A.2 Proof of Theorem 3

We first recall a special case of the result of Barndorff-Nielsen, Graversen, Jacod, Podolskij, and

Shephard (2004). Let us write returns in the form

yi = Yi/n − Y(i−1)/n (20)

where n and i are positive integers. Then they studied the behaviour of processes of the form

Y n(g, h)t =
1

n

bntc∑

i=1

g(
√

n yi−1)
′h(

√
n yi), (21)
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as n → ∞. Here we simplify their results and assume g and h are d × 1 functions. They used

the following notation

ρσ(g) = EX|σ {g(X)} , where X|σ ∼ N(0, σσ′),

ρσ(gh) = EX|σ {g(X)h(X)} ,

and

Y (g, h)t =

∫ t

0
ρσu

(g)ρσu
(h)du. (22)

Theorem 4 (Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2004)) Assume

Y ∈ BSM and additionally condition (H0) holds. Then as δ ↓ 0 so the process

√
n (Y n(g, h)t − Y (g, h)t)

converges stably in law towards a limiting process U(g, h) having the form

U(g, h)t =

∫ t

0

√
A(σu, g, h) dBu, (23)

where

A(σ, g, h) =

d2∑

i=1

d2∑

j=1





ρσ

(
gigj

)
ρσ

(
hihj

)
+ ρσ

(
gi

)
ρσ

(
hj

)
ρσ

(
gjhi

)

+ρσ

(
gj

)
ρσ

(
hi

)
ρσ

(
gihj

)

−3ρσ

(
gi

)
ρσ

(
gj

)
ρσ

(
hi

)
ρσ

(
hj

)
.





Our result follows from the application of this Theorem. In particular, write

Y n(g, h)t =
1

n

n∑

i=1

(∣∣∣y(1)
i−1 + y

(2)
i−1

∣∣∣ ,−
∣∣∣y(1)

i−1 − y
(2)
i−1

∣∣∣
) (∣∣∣y(1)

i + y
(2)
i

∣∣∣ ,
∣∣∣y(1)

i − y
(2)
i

∣∣∣
)′

=
1

n

n∑

i=1

(
g
(1)
i−1, g

(2)
i−1

)(
h

(1)
i , h

(2)
i

)′

=
1

n

n∑

i=1

(
k

(1)
i−1,−k

(2)
i−1

)(
k

(1)
i , k

(2)
i

)′
,

where

k(1) =
∣∣∣y(1) + y(2)

∣∣∣ , k(2) =
∣∣∣y(1) − y(2)

∣∣∣

g(1) = h(1) = k(1), h(2) = −g(2) = k(2).

Let x and y be two standard normal random variables with correlation coefficient ρ. Then it is

known from Proposition 1, which is given in the next subsection, that

S(ρ) = µ−2
1 E {|xy|} =

√
(1 − ρ2) + ρ arcsin ρ. (24)
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Note S(ρ) = S(−ρ), so the asymptotic standard deviations in Theorem 3 are symmetric in ρ

around zero. Suppose ρ ≥ 0, then

∂S(ρ)

∂ρ
= arcsin ρ +

(
ρ +

1

2

)(
1 − ρ2

)−1/2
> 0.

So S(0) = 1 and S(ρ) monotocially increases on [0, 1] to obtain its maximum S(1) = π/2. Note

also that

0 = ϑ(0) ≤ ϑ(ρ) ≤ ϑ(1).

Let us define λ =
(
σ2

1 − σ2
2

)
/
(
σ+

1,2σ
−
1,2

)
. Then

ρσ(k(1)) = µ1σ
+
1,2, ρσ(k(2)) = µ1σ

−
1,2,

ρσ(k(1)k(1)) = σ+2
1,2, ρσ(k(2)k(2)) =

(
σ−

1,2

)2
, ρσ(k(1)k(2)) = µ2

1S(λ)σ+
1,2σ

−
1,2.

Then

A(σ, g, h) =
2∑

i=1

2∑

j=1

(−1)i+j+2
{
ρ2

σ(kikj) + 2ρσ(ki)ρσ(kj)ρσ(kjki) − 3ρ2
σ(ki)ρ2

σ(kj)
}

=
{
ρ2

σ(k1k1) + 2ρ2
σ(k1)ρσ(k1k1) − 3ρ4

σ(k1)
}

−2
{
ρ2

σ(k1k2) + 2ρσ(k1)ρσ(k2)ρσ(k1k2) − 3ρ2
σ(k1)ρ2

σ(k2)
}

+
{
ρ2

σ(k2k2) + 2ρ2
σ(k2)ρσ(k2k2) − 3ρ4

σ(k2)
}

= µ4
1

[{(
σ+

1,2

)4
+

(
σ−

1,2

)4
}

ϑ(1) − 2
(
σ+

1,2σ
−
1,2

)2
ϑ(λ)

]
.

This is the required result.

�

The remaining part of the proof requires us to estimate
∫ t
0 A(σu, g, h) du. This has not been

previously discussed in the literature. Here we give a general solution to this problem, which

may be helpful outside the scope of this paper.

Theorem 5 Suppose Y is a Brownian semimartingale and

A(σ, g, h) =

d2∑

i=1

d2∑

j=1

{
ρσ

(
gigj

)
ρσ

(
hihj

)
+ 2ρσ

(
gi

)
ρσ

(
hj

)
ρσ

(
gjhi

)

−3ρσ

(
gi

)
ρσ

(
gj

)
ρσ

(
hi

)
ρσ

(
hj

)
.

}

Define

Sk =
1

n

bntc∑

i=1

(
g′i−k−1hi−k

) (
g′i−1hi

)
.

Then

S0 + 2S1 − 2S2 − S3
p→

∫ t

0
A(σu, g, h) du.
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Proof. Clearly

S0 =
1

n

bntc∑

i=1

(gi−1hi)
2 p→

d2∑

i=1

d2∑

j=1

∫ t

0
ρσu

(
gigj

)
ρσu

(
hihj

)
du,

by applying the convergence in probability result of Barndorff-Nielsen, Graversen, Jacod, Podol-

skij, and Shephard (2004), that for generic g and h statistics (21) converge to (22), to the

components of this statistics of the form. In particular, for example,

1

n

bntc∑

i=1

(
g
(1)
i−1h

(1)
i

)2 p→
∫ t

0
ρσu

(
g1g1

)
ρσu

(
h1h1

)
du.

The higher lagged versions, used to construct the statistics S1 and S2, can be handled in the

same way using the results in Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard

(2004).

�

We now just need to specialise this result to our case, which is straightforward. This com-

pletes the Proof of Theorem 3.

A.3 Proposition 1

In our work on realised power variation we have explored taking sums of powers of absolute

values of increments. In order to develop a multivariate version of these objects we need to

understand the properties of absolute values of products of normal variables. Some results on

this are given in the following Proposition.

Proposition 1 Let x and y be two standard normal random variables with correlation coefficient

ρ. Define s and q by

q = |xy| and s =
√

x2 + y2,

then the joint density of q and s is

p(q, s; ρ) =
2

π
√

(1 − ρ2)
cosh

(
1

1 − ρ2
q

)
exp

(
−1

2

1

1 − ρ2
s2

)
s(s4 − 4q2)−1/2, (25)

for s ≥ √
2q and 0 otherwise; and the marginal law of q has density

p(q; ρ) =
2

π
√

(1 − ρ2)
cosh

(
ρ

1 − ρ2
q

)
K0

(
1

1 − ρ2
q

)
, (26)

where K0 is a modified Bessel function of the third kind. Finally

R(q) = E {|xy|} =
2

π

{√
(1 − ρ2) + ρ arcsin ρ

}
. (27)
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Proof The mapping from (x, y) to (q = |xy| , u = (|x| − |y|)2) is eight-to-one with, for

y, x > 0 ∣∣∣∣∣
∂q
∂x

∂u
∂x

∂q
∂y

∂u
∂y

∣∣∣∣∣ =

∣∣∣∣
y 2 (x − y)
x −2 (x − y)

∣∣∣∣ = 2
(
y2 − x2

)
.

The same holds for all 8 quadrants. Thus the Jacobian of the transformation is

1

2 |y2 − x2| =
1

2
√

u(u + 4q)
.

As

p(x, y; ρ) =
1

2π
√

(1 − ρ2)
exp

{
−1

2

1

1 − ρ2
(x2 + y2 − 2ρxy)

}

and u = x2 + y2 − 2q we obtain

p(q, u; ρ) =
1

2π
√

(1 − ρ2)
exp

{
−1

2

1

1 − ρ2
(u + 2q − 2ρq)

}
4

2
√

u(u + 4q)

+
1

2π
√

(1 − ρ2)
exp

{
−1

2

1

1 − ρ2
(u + 2q + 2ρq)

}
4

2
√

u(u + 4q)

=
1

π
√

(1 − ρ2)
exp

{
−1

2

1

1 − ρ2
(u + 2q)

}
1√

u(u + 4q)

×
{

exp

(
ρ

1 − ρ2
q

)
+ exp

(
− ρ

1 − ρ2
q

)}

=
1

π
√

(1 − ρ2)
exp

{
−1

2

1

1 − ρ2
(u + 2q)

}
1√

u(u + 4q)
cosh

(
ρ

1 − ρ2
q

)
. (28)

This is the required result for (q, u) ∈ R
2
+.

A well-known Bessel function identity states that
∫ ∞

0
{x(x + a)}−1/2e−θxdx = eaθ/2K0

(
aθ

2

)

(cf. Gradshteyn and Ryzhik (1965, 3.364.3). The expression (26) now follows by integration of

(28) with respect to u. �

The mean value of qr, for positive real r, enters our subsequent considerations. An explicit

expression for E{qr} does not seem to exist in general, but for integer r simple formulae are

available. Below we derive the formula for r = 1 from (26). For r integer and greater than 1 a

similar approach works.1 However, our interest is mainly in the values of r ∈
[

1
2 , 2

)
, particularly

r = 1/2 and r = 1.

The relation saying that (26) integrates to 1 is a special case of the formula (Gradshteyn

and Ryzhik (1965, 6.661.2))
∫ ∞

0
cosh(ax)K0(bx)dx =

π

2
(b2 − a2)−1/2 (29)

1The resulting expressions have in fact be derived a long time ago, in the Thirties, by Kamat and Nabeya by
a different approach that more generally yields expressions for E{|x|r |y|s} for positive integer r and s in terms of
the hypergeometric functions, see Johnson and Kotz (1972, pp. 91-92).
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which holds for |a| < b. With the same restriction on a and b we have ( Gradshteyn and Ryzhik

(1965, 6.661.1)) ∫ ∞

0
sinh(ax)K0(bx)dx = arcsin(a/b)(b2 − a2)−1/2. (30)

From the identity sin(arcsin y) = y and the fact that cos(arcsin y) = (1 − y2)1/2 we have

arcsin′ y = (1 − y2)−1/2. It follows, by differentiation of (30), that

∫ ∞

0
x cosh(ax)K0(bx)dx = b−1(1 − a2/b2)−1/2(b2 − a2)−1/2 + a(b2 − a2)−3/2 arcsin(a/b)

= (b2 − a2)−1 + a arcsin(a/b)(b2 − a2)−3/2. (31)

Hence

E{q} =
2

π
√

(1 − ρ2)

{
1 − ρ2 +

ρ

1 − ρ2
(1 − ρ2)3/2 arcsin ρ

}

=
2

π

{√
(1 − ρ2) + ρ arcsin ρ

}
. (32)

We shall use the shorthand R(ρ) for the resulting expression, i.e.

R(ρ) = E {|xy|} =
2

π

{√
(1 − ρ2) + ρ arcsin ρ

}
.

A.4 Multivariate interpolation

A.4.1 The algorithm

The Olsen group have kindly made available to us an exchange rate dataset which records every

five minutes the most recent quote to appear on the Reuters screen from 1st December 1986

until 30th November 1996. When prices are missing they have interpolated them. Details of this

processing are given in Dacorogna, Gencay, Müller, Olsen, and Pictet (2001). The same dataset

was analysed by Andersen, Bollerslev, Diebold, and Labys (2001). We follow the extensive work

of Torben Andersen and Tim Bollerslev on this dataset, who remove much of the times when

the market is basically closed. This includes almost all of the weekend, while they have taken

out most US holidays. The result is what we will regard as a single time series of length 705,313

observations. Although many of the breaks in the series have been removed, sometimes there

are sequences of very small price changes caused by, for example, unmodelled non-US holidays

or data feed breakdowns. This is problematic for high frequency volatility modelling, for it will

result in periods with artifically extremely low aggregate volatility measures. Barndorff-Nielsen

and Shephard (2002) have addressed this issue by replacing missing data in each price process

by samples from independent Brownian bridges, with rather modest variances. This produces

sensible volatility measures, but the inherent univariate nature of the analysis means that the
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Figure 5: Top line of graphs are the raw and interpolated data using a Brownian bridge in-
terpolator. Bottom line of graphs is the corresponding returns. The x-axes are marked off in
days.

imputation ignores dependence between asset prices. To deal with this we need a more flexible

approach.

We deal with this by using a calibrated statistical model

yi = αi + Diεi, αi+1 = αi + ηi, εi
i.i.d.∼ N(0,∞I), ηi

i.i.d.∼ N(0, cΥ), εi ⊥⊥ ηj ,

where yi is the vector of Olsen prices recorded every 5 minutes at time i. We regard αi as the

“true” rate if the data was not missing. Here Di is diagonal, with binary elements. Value 1

occurs if the rate is missing, 0 if not. Hence we can have situations with 0, 1, 2, 3, ... up to p

rates being missing. If the l-th rate is observed at time l then trivially y(l)i = α(l)i. Throughout

we will calibrate this model by taking

Υ =
1

bt/δc

bt/δc∑

i=1

yiy
′
i,

the long-run 5 minute covariance between the rates. We preselected c = 0.1, thus the extraction

devices always produce modestly valued missing returns. Interpolation can, in principle, be

carried out deterministically or stochastically. We can report either E (α|y) or simulate from

α|y. We favour the latter as it gives more realistic price processes from the viewpoint of volatility
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modelling. This sampling can be carried out using the simulation smoother of de Jong and

Shephard (1995), which is available in the software Ox using the package SsfPack, documented

in Koopman, Shephard, and Doornik (1999). Carrying out the simulation efficiently is important

in our context, as our sample size is over a half of a million. Having said that, the stochastic

interpolation algorithm we use takes only a handful of seconds on a Pc.

In practice we have taken prices as being missing if the corresponding absolute return is

below 0.01%. By using this simulation procedure we are not affecting the long run trajectory

of prices, while the impact on realised covariation is usually very small indeed unless the vast

majority of observations on a specific day is missing. The procedure is illustrated in Figure 5,

which shows the first 200 observations in the Dollar/DM and Dollar/Yen series we have used

in this paper. Please note that this is a very extreme case of many missing data points. Later

stretches of the data have much fewer breaks in them, but this graph illustrates the effects of our

intervention. Clearly our approach is ad hoc. However, a proper statistical modelling of these

breaks is very complicated due to their many causes and the fact that our dataset is enormous.

A.4.2 Summary statistics

In this subsection we give average values of the different codependence measures. We start with

the empirical covariance of daily returns over the entire sample period, which is

(
.503 .658
.328 .495

)
,

where the number in italics is the corresponding correlation. We can compute corresponding

realised quantities by calculating them each day and then averaging the results over the entire

sample. The corresponding 30 minute returns based realised covariance and average realised

bipower covariation (based on Q = 6) are, respectively,

(
.470 .616
.288 .465

)
and

(
.383 .621
.236 .380

)
.

We can see the realised covariation numbers are broadly higher than the corresponding bipower

versions, although the correlation between assets is estimated to be similiar. The corresponding

results based on 5 minute returns yield

(
.505 .573
.291 .510

)
and

(
.459 .592
.272 .463

)
.

These have higher average levels of volatility, but somewhat lower levels of dependence.

We can compare the results with those generated when we do not use the stochastic adjust-

ment scheme. In the case of 5 minute returns, the results would be

30



(
.528 .455
.243 .538

)
and

(
.446 .464
.208 .449

)
.

This shows the interpolation method has a big impact on the measurement of codependence,

although much less on measuring volatility. Finally, we should note that when we use 30 minute

returns the impact of using stochastic interpolation is much more modest.
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