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Introduction

@ Non-stationarity in variance analysis that accounts for the presence of
structural breaks has devoted a great interest in time series analysis

© Misspecification of deterministic function of the auxiliary regression
that is used for either testing the null hypothesis of unit root or variance
stationarity can lead to conclude in favour of variance non-stationarity

@ This implied the design of test statistics that can accommodate the
presence of structural breaks

© Earlier proposals were designed to account for one structural break,
which could affect either the level and/or the slope of the deterministic
time trend
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Introduction

Allowance of one structural break would not be enough in all situations,
and there are extensions in the literature to consider more than one break:

@ Two structural breaks

@ Garcia and Perron (1996) propose a pseudo F statistic that accounts
for two structural breaks

@ Lee (1996), and Lumsdaine and Papell (1997) — trending variables —
and Carrion-i-Silvestre et al. (2004) — non-trending variables —
generalize the approach in Zivot and Andrews (1992) to consider two
structural breaks

© Clemente et al. (1998) extend the test in Perron and Vogelsang
(1992): — non-trending variables allowing for two structural breaks

@ Lee and Strazicich (2003) extend the statistic in Schmidt and Phillips
(1992) to allow for two structural breaks both under the null and the
alternative hypotheses, which can affect only the level, or both the level
and the slope

Carrion-i-Silvestre, Kim and Perron () Unit root tests with multiple breaks London, December 2006 3/36



Introduction

o Multiple structural breaks

@ Ohara (1999) and Kapetanios (2005) generalize the approach in Zivot
and Andrews (1992) through the consideration of multiple structural
breaks using the DF statistic

@ Gadea et al. (2004) design a pseudo F statistic to account for multiple
level shifts for non-trending variables

© Bai and Carrion-i-Silvestre (2004) consider the square of the MSB
statistic with multiple breaks affecting either the level and the slope of
the time series
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Introduction

@ None of these papers use GLS detrending procedures to estimate the
parameters of the model

© However, it has been shown that this estimation technique leads to test
statistics with better properties — see Elliott et al. (1996) and Ng and
Perron (2001)

@ In this paper we extend the approach in Perron and Rodriguez (2003)
for the case of multiple structural breaks that affect the slope of the
time trend
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The model

Let y; be the stochastic process generated according to

ye = di+u (1)
ug = QOUr_1 + V¢, tZO,..., T, (2)

where {u;} is an unobserved stationary mean-zero process, uy = 0.
We consider three models:

@ Model 0 ("“level shift” or “crash”’)

@ Model | (“slope change” or “changing growth”)
© Model Il (“mixed change")
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The model

The deterministic component in (1) d; = 9/'z:(A%) is given by

di = z{(T9)pg + 2/ (T, + - -+ Z(TR)P,, = 2 (A)p  (3)

where

z(A%) = [z/(T3), ... /(T3] and ¥ = (g, ... ¢))
z(Tg) = (1,1),
with 9o = (pg, By)’ and, for 1 < j < m,

DUt(TjO), in Model 0
z(T)) = DT;(T?), in Model |
(DU(T?), DT;(TP)), in Model II

with Y= in Model 0, ¥ = /Sj in Model I, and ¥ = (yj,ﬁj)’ in Model
Il.
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We also consider the case where the magnitude of level shifts get large as
the sample size grow

(Pyseoon ) = TV (ky, o k) >0

Call the models with this additional assumption as Models Ob and Ilb
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Some remarks:

@ In Models 0 and Il, the level shifts belong to the class of “slowly
evolving trend” defined by Elliott et al. (1996)

@ Hence, ignoring these deterministic components in the unit root
procedure has no effect on the asymptotic size and power of the tests...

@ However this will clearly worsen the finite sample properties of the
associated tests, especially when the magnitude of the shifts are
non-negligible

© This typically implies that the derived asymptotic distribution is a bad
approximation to the finite sample distribution

@ In Models Ob and llb, the level shifts do not belong to the class of
“slowly evolving trend” and should not be ignored
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The model

GLS detrended unit root test statistics are based on the use of the
transformed data y® and z%(A%), where

i = (b (1—&Ll)y)
ZEA) = (A%, (1—-aLl)z(A%), t=1,..., T,
with
a=1+¢/T

and C the non-centrality parameter to be defined below.
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The model

The deterministic parameters 1 can be estimated through the
minimization of the following objective function

]
S (p, & A%) = Y. (vE— 92 (A))°. 4)

t=1

The minimum of this function is denoted as S (&, )\0).
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Feasible point optimal test with multiple structural breaks

The definition of the non-centrality parameter C is based on the point
optimal statistic used in Elliott et al. (1996)

Hy: a=1
Hi: a=a

The feasible point optimal statistic is given by
PP (c,eA%) = {S (&,A%) —aS (1,A%) } /s*(A7), (5)

where S (&,A%) and S (1,A%) are the sum of squared residuals (SSR)
from a GLS regression with « = & and a = 1, respectively, and s2(A%) is
the autoregressive estimate of the spectral density at frequency zero of v;.
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Feasible point optimal test with multiple structural breaks

Let y; be the stochastic process generated according to (1) and (2) with
a=1+c/T. Let P7G-LS (c, c, AO) be the statistic defined by (5) with the
data obtained from local GLS detrending (y;) at& =1+4¢/T. Also, let
s%(A%) be a consistent estimate of 2. Then,

(i) Models 0 and 0b is given by

1
PSLS (c,2,A%) = 52/ V2, (r)dr + (1 — ) V2,(1)
0

(ii) Models 1, Il, and 1lb is given by

615 (c,2,1%) = M(c,O,AO)—M(c,E,AO)—za/Ol W, (r) dW (r)
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Feasible point optimal test with multiple structural breaks

Remarks:

@ The limiting distribution in (i) is the same as that of the linear time
trend model with no break, which can be found in Elliott et al. (1996)

© Because the timing of breaks are known in the current cases, the test

statistic, P%LS (c, c, AO> is exactly invariant to the break parameters

@ There is no distinction between Models 0 and 0b, and between
Models Il and llb

@ The limiting distribution of the test statistic for Models I, Il, and Ilb
depends both on the number of structural breaks and on the break
fraction vector
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Feasible point optimal test with multiple structural breaks

@ Power envelope

© From this limiting distribution we can obtain the Gaussian power
envelope for different values of ¢, and select the ¢ parameter so that
the asymptotic local power of the test is tangent to the power envelope
at 50% power

© For Models 0 and Ob the ¢ parameter can be found in Elliott et al.
(1996)

© For Models I, 11, and Ilb the ¢ parameter varies both with the number
of structural breaks and with their position
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Feasible point optimal test with multiple structural breaks

We have approximated the asymptotic ¢ parameter for up to m =5

structural break points for all possible combinations of break fraction
!/

vectors A% = (A9, A%), A? ={0.1,02,---,0.9}

The information is summarized through the estimation of one response
surface:

¢ (A ) Boo + ). iﬂ,,/(f\?,k)’ +3,
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Feasible point optimal test with multiple structural breaks

Using the definition of the ¢ parameter we can compute the M-class tests
in Ng and Perron (2001) allowing for multiple structural breaks:

MZ2ts (A%)

/N

-1
T5% s (A%)) <2T zzyt 1) (7)
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Feasible point optimal test with multiple structural breaks

Let y; be the stochastic process generated according to (1) and (2) with
a=1+c/T. Let MZES(A®), MSBCLS(A%) and MZELS (A°) be the
statistics defined by (7)-(9) with the data obtained from local GLS

detrending (y;) ata = 1+¢/T. Also, let s*(A°) be a consistent estimate
of 2. Then,
(i) Models 0 and 0b

MZES (M%) = 0.5 (V. e(1)? (/ Vee(r ) h

MSBOLS (A%) = (/ Vee(r )
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Feasible point optimal test with multiple structural breaks

(continues)
(i) Models I, Il and 11b

1 -1
MZEES(A%) = 0.5 (Vee(1,A%)2 —1) (/ VC,E(r,A°)2dr)
0
1 1/2
MSBSLS (%) = </ Vc,a(r,)to)zdr)
0

(iii) The limiting distribution of MZCt> (AO) in all models can be obtained
in view of the fact that MZEL> (A%) = MZCLS (A°) - MSBCLS (), which
is the same limiting distribution as that for the ADF¢LS (AO) test.
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Feasible point optimal test with multiple structural breaks

Remarks:
@ Again, the limiting distribution in (i) is the same as that of the linear
time trend model with no break given in Ng and Perron (2001)

© Note, thus, that the invariance to the break parameters holds for all
test statistics for Models 0 and 0b

@ This is not the case for Models I, I, and llb, where their limiting
distribution depends on the number and location of the break points
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Feasible point optimal test with multiple structural breaks

@ As above, we have summarized the 1, 2.5, 5 and 10% percentiles of
the previous statistics using response surfaces:

2 m
v (Ag) = Poot ; ; 5/,;(/\?,k)l

@ The estimates of the coefficients of the response surfaces are reported
in the paper for up to m =5 structural breaks
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Unknown break points

For a given number of structural breaks m > 0, we propose to estimate
the position of the break points through global minimization of the SSR of
the GLS-detrended model:

S@ A) =min jepe)S (7, A), (10)

where the infimum is taken on all possible break fraction vectors defined
on the set A(e), with € being the amount of trimming

Therefore, the estimated vector of break fraction parameters are obtained
as

~

A =argmin jcp)S (&, A).
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Unknown break points

Proposition: Let {yt}thl be the stochastic process generated according
to (1) and (2) with « = 1. Let us assume that m > 0 and ¢,
j=1,...,m, so that there are structural breaks affecting y; under the null

hypothesis. Then, as T — oo :

(i) in Models | and I,

a~

A_/\OH =0p (T_l)'

(i) in Models Ob and Ilb,

A2 = gy (T

where A = arg min Aen(e)S (&, A).
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Unknown break points

Proposition: Let {yt}thl be the stochastic process generated according
to (1) and (2) with @ = 1. Let us assume that m > 0 and ¢,

j=1,---,m. Then, provided that s(A) is a consistent estimate for o,

(i) Models Ob and Ilb, P$:5(c, &, A) has the same limiting distribution as
PSS (c, e, A%).

(ii) Models Ob, 1, II, and Ilb: each of MZSLS(A), MSBCLS(A) and
MZELS (A) has the same limiting distribution as MZSL5 (A9),
MSBCLS (A%) and MZELS (), respectively.
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Estimation of the break points: Dynamic algorithm

o Estimation of the multiple structural breaks is quite demanding
especially when m > 2
@ We have proposed a dynamic algorithm that minimizes the global

Restricted SSR based on the approach in Bai and Perron (1998) and
Perron and Qu (2005)
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Estimation of the break points: Dynamic algorithm

@ Details of the algorithm:

1. Compute initial estimated break dates, A = (}Atl, .. ,}A\m) and the
associated coefficients, § = (g, P}, ..., ¥, )" by OLS using the dynamic
algorithm in Bai and Perron (1998, 2003) applied to (1)

2. From the given break dates, get an initial value for (‘:()AL) using (6)

3. Let T*(¢,r,n) = (Ty (¢, r,n),..., T} (¢, r, n)) be the vector of the
optimal r break dates in the first n observations for a given vector of
coefficients, ¥ and RSSR(T*(i, r, n)) be the associated restricted sum of
squared residuals. Then, compute the restricted sum of squared residuals
RSSR(T*(,1,n)) for 2h < n < T — (m — 1)h. Then store the estimated
break dates and update ¢(A) accordingly.

4. Repeat steps 2 and 3 until convergence.
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Finite sample performance: one structural break

Features of the Monte Carlo experiment:

@ The analysis is conducted with and without pre-testing as proposed in
Perron and Yabu (2005)

© Allows us to test whether structural breaks are present regardless of
whether the time series is 1(0) or 1(1)
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Finite sample performance: one structural break

e Empirical size (x = 1) and power (« = &) is investigated using the

following DGP:
ye = di+u (11)
de = p,DU(TY) + B, DT (TY) (12)
Ug = KUp—1 1+ Vg, (13)

© The magnitude of the level shift Up = {O, 0.5, 1,5}

@ j, ranging from -4 to 4 in increments of 0.2

© Three different values of the fraction A = {0.3,0.5,0.7}
@ The sample size is set at T = {100, 200, 300}

Q@ v: ~iid N(0,1), ug = 0.
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Finite sample performance: one structural break

Graphs for the empirical size of the statistics with A° = 0.5
(no pre-testing)
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Figure 8: Empirical size for the Pr test, A = 0.5

PT statalic, p=00 d=05

(=1
-9 =3 -2 -1 ] 1 1 k| +
)
BT statiahie, p=1. d=0.5

I

=]

a

[N

=1

ul

=]

2t §

a ‘} ‘.

R .,

.-—.g--ﬂr Lt
g-—l-u.--q.-"-"-"....a‘ '\-""ﬂﬂ,ﬂ—===—
(=1
g -3 -2 -1 a 1 1 k| +

FT glolislic, g=0,5. »=0.3

A
(=]
o
al
=
ul
ot
"D_ :1 .'.-
3 AT
S %.

- h|
m#-q‘—-*hﬁll hf\.\ n""},———n—_——
g N i
= — \"""'-\_.—...._,_._._
(=1
3 .

g -2 -1 u] 1 1 ] +
i

PT etatialic, p=5 24=05

EH

(=1

o

[ N3

=1

ul

a9

=

ot
-

G R T e e e = =

| e sl

(=1

g .

a_q -2 -1 u] 1 1 k| +
&



v

Figure 9: Empirical size for the M Pr test, A = 0.5
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Figure 10: Empirical size for the ADF test, A = 0.5
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Figure 11: Empirical size for the ZA test, A = 0.5
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Figure 12: Empirical size for the M Z A test, A = 0.5
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Figure 13: Empirical size for the M SB test, A = 0.5

W3B ztohghic, p=0. =05 SR slolizglic, p=0.5, =03

025
0213

020G
0.2

015
015

Q.10

.05
|
I
|
I
i
o A
/,
£
3
i
H
|
]

&.o0

.00

WSH stohighic, p=1. 3=0F WSH stalighc, pu=5. 4=0F

025
03

0.2
0,25

015
015

.10
2
it

.10

|
{

|

.00

.00




9¥

Figure 14: Empirical size for the M ZT test, A = 0.5
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Finite sample performance: one structural break

Graphs for the empirical size of the statistics with A° = 0.5
(pre-testing)
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Figure 1: Empirical size for the Pr test (with pretesting), A = 0.5
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Figure 2: Empirical size for the M Pr test (with pretesting), A = 0.5
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Figure 3: Empirical size for the ADF test (with pretesting), A = 0.5
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Figure 4: Empirical size for the ZA test (with pretesting), A = 0.5
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Figure 5: Empirical size for the M Z A test (with pretesting), A = 0.5
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Figure 6: Empirical size for the M SB test (with pretesting), A = 0.5
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Figure 7: Empirical size for the M ZT test (with pretesting), A = 0.5
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Finite sample performance: one structural break

Graphs for the empirical power of the statistics with A\° = 0.5
(no pre-testing)
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Figure 29: Empirical power for the Pr test, A = 0.5
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Figure 30: Empirical power for

w=d, k=0.5
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Figure 31: Empirical power for the ADFE test, A = 0.5
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Figure 32: Empirical power for the ZA test, A = 0.5

oA stollstic, u=0, =015

— 1 1
— w00
mrmrmr el

n s P Er ey e s oy, g Rt L e T, P, O e
-1 -3 -2 -1 a 1 1 ] +

LA stollztic, u=1, =015

—
— 1m0

mrmrmrn T3

ST T B - BY S n-.: f %t—'—l__-lmmmf-_'f_
—
-4 -2 -2 -1 a 1 1 k] +

01s 930 045 DEd 475

.00

015 930 Q.45 D80 oS DED

.00

24 stabistic, =0 5, h=0.5

e
mimimre Te300

T P Pl B By BY o MY A-_‘..‘. P Wy W ey g e et
b
e — e —

A stollstic, u=5%, =05

— ] 1

— w00

mrmrmre T30




Figure 33: Empirical power for the M Z A test, A = 0.5
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Figure 34: Empirical power for the M SB test, A = 0.5
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Figure 35: Empirical power for the M ZT test, A = 0.5
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Finite sample performance: one structural break

@ For the Py and MPy statistics, the size distortions are not large,
although the theoretical derivations indicates that, unless there is a
large level shift, A = argmin ycp (o) S (&, A) does not converge at a
fast enough ratio to warrant that the statistics have the same limiting
distribution as for the known break case

@ The ADF and ZA statistics show an over-rejection tendency

@ The MZA and MSB statistics have the right size as T increases

@ The tests have good power

Carrion-i-Silvestre, Kim and Perron () Unit root tests with multiple breaks London, December 2006



Finite sample performance: two structural breaks

Features of the Monte Carlo experiment:

e Empirical size (x = 1) and power (« = &) is investigated using the

following DGP
yi = di+u;
di = V1DUt(T{))+131DT:(T{))+V2DUt(T1C’)+ﬁ2DT:(T2O)
up = waUi—1+ vy,

@ The magnitude of the level shifts y; = p, =, = {0,0.5,1,5}

@ B, ranging from -4 to 4 in increments of 0.2

© J, ranging from -5 to 5 in increments of 0.25

@ Three vectors of break fractions A% = (0.3,0.5), (0.3,0.7), and
(0.5,0.7)

© The sample size is set at T = {100, 200, 300}

Q vi ~iid N(0,1), up = 0.
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Finite sample performance: two structural breaks

Graphs for the empirical size of the statistics
with A3 = 0.5 and A3 = 0.5
(no pre-testing)
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Figure 44: Empirical size for the M Pr test, Ay = 0.3 and Ay = 0.5
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Figure 45: Empirical size for the ADF test, Ay = 0.3 and Ay = 0.5
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Figure 46: Empirical size for the ZA test, Ay = 0.3 and \s = 0.5
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Figure 47: Empirical size for the M Z A test, Ay = 0.3 and Ay = 0.5
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Figure 48: Empirical size for the M SB test, A\ = 0.3 and Ay = 0.5
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Figure 49: Empirical size for the M ZT test, A\ = 0.3 and Ay = 0.5
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Conclusions

@ In this paper we have proposed up to seven test statistics to test the
null hypothesis of unit root allowing for the presence of multiple
structural breaks

@ The structural breaks can affect either the level and/or the slope

@ Minimization of the GLS-detrended-based sum of the squared
residuals produces consistent estimates of the break fraction vector

© For the Pt and MPy statistics the rate of convergence of these
estimates is not fast enough to warrant that the statistics have the
same limiting distribution as for the known break case

@ For the other statistics, the use of these estimated break fractions leads
to test statistics with the same limiting distribution as for the known
breaks case
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Conclusions

@ Response surfaces have been estimated to approximate, for up to
m =5 breaks:

© the parameter that is used in the GLS estimation (&)
@ the asymptotic critical values

@ An efficient dynamic algorithm is designed to obtain the estimates
when there are more than one structural break (less time consuming)

@ Monte Carlo simulations indicate that the statistics, when combined
with pre-testing, has good statistical properties in terms of empirical
size and power

@ Pre-testing using the approach in Perron and Yabu (2005) is highly
recommended to avoid size distortions when testing the order of
integration
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