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Introduction

Non-stationarity in variance analysis that accounts for the presence of
structural breaks has devoted a great interest in time series analysis

1 Misspeci�cation of deterministic function of the auxiliary regression
that is used for either testing the null hypothesis of unit root or variance
stationarity can lead to conclude in favour of variance non-stationarity

2 This implied the design of test statistics that can accommodate the
presence of structural breaks

3 Earlier proposals were designed to account for one structural break,
which could a¤ect either the level and/or the slope of the deterministic
time trend
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Introduction

Allowance of one structural break would not be enough in all situations,
and there are extensions in the literature to consider more than one break:

Two structural breaks
1 Garcia and Perron (1996) propose a pseudo F statistic that accounts
for two structural breaks

2 Lee (1996), and Lumsdaine and Papell (1997) � trending variables �
and Carrion-i-Silvestre et al. (2004) �non-trending variables �
generalize the approach in Zivot and Andrews (1992) to consider two
structural breaks

3 Clemente et al. (1998) extend the test in Perron and Vogelsang
(1992): �non-trending variables allowing for two structural breaks

4 Lee and Strazicich (2003) extend the statistic in Schmidt and Phillips
(1992) to allow for two structural breaks both under the null and the
alternative hypotheses, which can a¤ect only the level, or both the level
and the slope
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Introduction

Multiple structural breaks
1 Ohara (1999) and Kapetanios (2005) generalize the approach in Zivot
and Andrews (1992) through the consideration of multiple structural
breaks using the DF statistic

2 Gadea et al. (2004) design a pseudo F statistic to account for multiple
level shifts for non-trending variables

3 Bai and Carrion-i-Silvestre (2004) consider the square of the MSB
statistic with multiple breaks a¤ecting either the level and the slope of
the time series

Carrion-i-Silvestre, Kim and Perron () Unit root tests with multiple breaks London, December 2006 4 / 36



Introduction

None of these papers use GLS detrending procedures to estimate the
parameters of the model

1 However, it has been shown that this estimation technique leads to test
statistics with better properties � see Elliott et al. (1996) and Ng and
Perron (2001)

2 In this paper we extend the approach in Perron and Rodríguez (2003)
for the case of multiple structural breaks that a¤ect the slope of the
time trend
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The model

Let yt be the stochastic process generated according to

yt = dt + ut (1)

ut = αut�1 + vt , t = 0, . . . ,T , (2)

where futg is an unobserved stationary mean-zero process, u0 = 0.
We consider three models:

1 Model 0 (�level shift� or �crash��)
2 Model I (�slope change�or �changing growth�)
3 Model II (�mixed change�)
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The model

The deterministic component in (1) dt = ψ0zt (λ
0) is given by

dt = z 0t (T
0
0 )ψ0 + z

0
t (T

0
1 )ψ1 + � � �+ z 0t (T 0m)ψm = z 0t (λ

0)ψ (3)

where

zt (λ
0) = [z 0t (T

0
0 ), . . . , z 0t (T

0
m)]

0 and ψ = (ψ00, . . . ,ψ0m)
0

zt (T 00 ) = (1, t),

with ψ0 = (µ0, β0)
0 and, for 1 � j � m,

zt (T 0j ) =

8<:
DUt (T 0j ),
DT �t (T

0
j ),

(DUt (T 0j ),DT
�
t (T

0
j ))

0,

in Model 0
in Model I
in Model II

with ψj = µj in Model 0, ψj = βj in Model I, and ψj = (µj , βj )
0 in Model

II.
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The model

We also consider the case where the magnitude of level shifts get large as
the sample size grow

(µ1, . . . , µm) = T
1/2+η(κ1, . . . , κm); η > 0

Call the models with this additional assumption as Models 0b and IIb
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The model

Some remarks:

In Models 0 and II, the level shifts belong to the class of �slowly
evolving trend�de�ned by Elliott et al. (1996)

1 Hence, ignoring these deterministic components in the unit root
procedure has no e¤ect on the asymptotic size and power of the tests...

2 However this will clearly worsen the �nite sample properties of the
associated tests, especially when the magnitude of the shifts are
non-negligible

3 This typically implies that the derived asymptotic distribution is a bad
approximation to the �nite sample distribution

In Models 0b and IIb, the level shifts do not belong to the class of
�slowly evolving trend�and should not be ignored
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The model

GLS detrended unit root test statistics are based on the use of the
transformed data y ᾱ

t and z
ᾱ
t (λ

0), where

y ᾱ
t = (y1, (1� ᾱL) yt )

z ᾱ
t (λ

0) =
�
z1(λ

0), (1� ᾱL) zt (λ
0)
�
, t = 1, . . . ,T ,

with
ᾱ = 1+ c̄/T

and c̄ the non-centrality parameter to be de�ned below.
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The model

The deterministic parameters ψ can be estimated through the
minimization of the following objective function

S�
�
ψ, ᾱ,λ0

�
=

T

∑
t=1

�
y ᾱ
t � ψ0z ᾱ

t (λ
0)
�2
. (4)

The minimum of this function is denoted as S
�
ᾱ,λ0

�
.
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Feasible point optimal test with multiple structural breaks

The de�nition of the non-centrality parameter c̄ is based on the point
optimal statistic used in Elliott et al. (1996)�

H0 : α = 1
H1 : α = ᾱ

.

The feasible point optimal statistic is given by

PGLST

�
c , c̄ ,λ0

�
=
�
S
�
ᾱ,λ0

�
� ᾱS

�
1,λ0

�	
/s2(λ0), (5)

where S
�
ᾱ,λ0

�
and S

�
1,λ0

�
are the sum of squared residuals (SSR)

from a GLS regression with α = ᾱ and α = 1, respectively, and s2(λ0) is
the autoregressive estimate of the spectral density at frequency zero of vt .
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Feasible point optimal test with multiple structural breaks

Theorem
Let yt be the stochastic process generated according to (1) and (2) with
α = 1+ c/T. Let PGLST

�
c , c̄ ,λ0

�
be the statistic de�ned by (5) with the

data obtained from local GLS detrending (ỹt ) at ᾱ = 1+ c̄/T. Also, let
s2(λ0) be a consistent estimate of σ2. Then,
(i) Models 0 and 0b is given by

PGLST

�
c , c̄ ,λ0

�
) c̄2

Z 1

0
V 2c ,c̄ (r)dr + (1� c̄)V 2c ,c̄ (1)

(ii) Models I, II, and IIb is given by

PGLST

�
c , c̄ ,λ0

�
) M

�
c , 0,λ0

�
�M

�
c , c̄ ,λ0

�
� 2c̄

Z 1

0
Wc (r) dW (r)

+
�
c̄2 � 2c̄c

� Z 1

0
Wc (r)

2 dr � c̄
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Feasible point optimal test with multiple structural breaks

Remarks:

The limiting distribution in (i) is the same as that of the linear time
trend model with no break, which can be found in Elliott et al. (1996)

1 Because the timing of breaks are known in the current cases, the test

statistic, PGLST

�
c , c̄ ,λ0

�
is exactly invariant to the break parameters

There is no distinction between Models 0 and 0b, and between
Models II and IIb

The limiting distribution of the test statistic for Models I, II, and IIb
depends both on the number of structural breaks and on the break
fraction vector
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Feasible point optimal test with multiple structural breaks

Power envelope
1 From this limiting distribution we can obtain the Gaussian power
envelope for di¤erent values of c̄ , and select the c̄ parameter so that
the asymptotic local power of the test is tangent to the power envelope
at 50% power

2 For Models 0 and 0b the c̄ parameter can be found in Elliott et al.
(1996)

3 For Models I, II, and IIb the c̄ parameter varies both with the number
of structural breaks and with their position

Carrion-i-Silvestre, Kim and Perron () Unit root tests with multiple breaks London, December 2006 15 / 36



Feasible point optimal test with multiple structural breaks

We have approximated the asymptotic c̄ parameter for up to m = 5
structural break points for all possible combinations of break fraction
vectors λ0 =

�
λ01, � � � ,λ0m

�0
, λ0i = f0.1, 0.2, � � � , 0.9g

The information is summarized through the estimation of one response
surface:

c̄
�
λ0k
�
= β0,0 +

4

∑
l=1

m

∑
i=1

βi ,l (λ
0
i ,k )

l +
4

∑
l=1

m�1
∑
i=1

m

∑
j=i+1

γi ,j ,l
��λ0i ,k � λ0j ,k

��l + εk ,

(6)
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Feasible point optimal test with multiple structural breaks

Using the de�nition of the c̄ parameter we can compute the M-class tests
in Ng and Perron (2001) allowing for multiple structural breaks:

MZGLSα

�
λ0
�
=

�
T�1ỹ2T � s

�
λ0
�2� 

2T�2
T

∑
t=1
ỹ2t�1

!�1
(7)

MSBGLS
�
λ0
�
=

 
s
�
λ0
��2

T�2
T

∑
t=1
ỹ2t�1

!1/2

(8)

MZGLSt

�
λ0
�
=

�
T�1ỹ2T � s

�
λ0
�2� 

4s
�
λ0
�2
T�2

T

∑
t=1
ỹ2t�1

!�1/2

(9)
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Feasible point optimal test with multiple structural breaks

Theorem

Let yt be the stochastic process generated according to (1) and (2) with
α = 1+ c/T. Let MZGLSα (λ0), MSBGLS (λ0) and MZGLSt (λ0) be the
statistics de�ned by (7)-(9) with the data obtained from local GLS
detrending (ỹt ) at ᾱ = 1+ c̄/T. Also, let s2(λ0) be a consistent estimate
of σ2. Then,
(i) Models 0 and 0b

MZGLSα (λ0) ) 0.5
�
Vc ,c̄ (1)2 � 1

� �Z 1

0
Vc ,c̄ (r)2dr

��1
MSBGLS (λ0) )

�Z 1

0
Vc ,c̄ (r)2dr

�1/2
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Feasible point optimal test with multiple structural breaks

Theorem
(continues)
(ii) Models I, II and IIb

MZGLSα (λ0) ) 0.5
�
Vc ,c̄ (1,λ

0)2 � 1
� �Z 1

0
Vc ,c̄ (r ,λ

0)2dr
��1

MSBGLS (λ0) )
�Z 1

0
Vc ,c̄ (r ,λ

0)2dr
�1/2

(iii) The limiting distribution of MZGLSt

�
λ0
�
in all models can be obtained

in view of the fact that MZGLSt (λ0) = MZGLSα (λ0) �MSBGLS (λ0), which
is the same limiting distribution as that for the ADFGLS

�
λ0
�
test.
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Feasible point optimal test with multiple structural breaks

Remarks:

Again, the limiting distribution in (i) is the same as that of the linear
time trend model with no break given in Ng and Perron (2001)

1 Note, thus, that the invariance to the break parameters holds for all
test statistics for Models 0 and 0b

This is not the case for Models I, II, and IIb, where their limiting
distribution depends on the number and location of the break points
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Feasible point optimal test with multiple structural breaks

As above, we have summarized the 1, 2.5, 5 and 10% percentiles of
the previous statistics using response surfaces:

cv
�
λ0k
�
= β0,0 +

2

∑
l=1

m

∑
i=1

βl ,i (λ
0
i ,k )

l

+
2

∑
l=1

 
γl ,0 +

m

∑
i=1

γl ,iλ
0
i ,k

!
c̄
�
λ0k
�l

+
4

∑
l=1

m�1
∑
i=1

m

∑
j=i+1

δi ,j ,l
��λ0i ,k � λ0j ,k

��l c̄ �λ0k �+ εk ,

The estimates of the coe¢ cients of the response surfaces are reported
in the paper for up to m = 5 structural breaks
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Unknown break points

For a given number of structural breaks m > 0, we propose to estimate
the position of the break points through global minimization of the SSR of
the GLS-detrended model:

S(ᾱ, λ̂) = min λ2Λ(ε)S (ᾱ,λ) , (10)

where the in�mum is taken on all possible break fraction vectors de�ned
on the set Λ(ε), with ε being the amount of trimming

Therefore, the estimated vector of break fraction parameters are obtained
as

λ̂ = argmin λ2Λ(ε)S (ᾱ,λ) .
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Unknown break points

Proposition: Let fytgTt=1 be the stochastic process generated according
to (1) and (2) with α = 1. Let us assume that m > 0 and ψj ,
j = 1, . . . ,m, so that there are structural breaks a¤ecting yt under the null
hypothesis. Then, as T ! ∞ :

(i) in Models I and II, 

λ̂� λ0


 = Op �T�1� ,

(ii) in Models 0b and IIb, 

λ̂� λ0


 = op �T�1�

where λ̂ = argmin λ2Λ(ε)S (ᾱ,λ).
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Unknown break points

Proposition: Let fytgTt=1 be the stochastic process generated according
to (1) and (2) with α = 1. Let us assume that m > 0 and ψj ,

j = 1, � � � ,m. Then, provided that s(λ̂) is a consistent estimate for σ,

(i) Models 0b and IIb, PGLST (c , c̄ , λ̂) has the same limiting distribution as
PGLST (c , c̄ ,λ0).

(ii) Models 0b, I, II, and IIb: each of MZGLSα (λ̂), MSBGLS (λ̂) and
MZGLSt (λ̂) has the same limiting distribution as MZGLSα (λ0),
MSBGLS (λ0) and MZGLSt (λ0), respectively.
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Estimation of the break points: Dynamic algorithm

Estimation of the multiple structural breaks is quite demanding
especially when m > 2

We have proposed a dynamic algorithm that minimizes the global
Restricted SSR based on the approach in Bai and Perron (1998) and
Perron and Qu (2005)
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Estimation of the break points: Dynamic algorithm

Details of the algorithm:

1. Compute initial estimated break dates, λ̂ = (λ̂1, . . . , λ̂m) and the
associated coe¢ cients, ψ̂ = (ψ̂

0
0, ψ̂

0
1, . . . , ψ̂0m)

0 by OLS using the dynamic
algorithm in Bai and Perron (1998, 2003) applied to (1)

2. From the given break dates, get an initial value for c̄(λ̂) using (6)

3. Let T �(ψ, r , n) = (T �1 (ψ, r , n), . . . ,T �r (ψ, r , n)) be the vector of the
optimal r break dates in the �rst n observations for a given vector of
coe¢ cients, ψ and RSSR(T �(ψ, r , n)) be the associated restricted sum of
squared residuals. Then, compute the restricted sum of squared residuals
RSSR(T �(ψ, 1, n)) for 2h � n � T � (m� 1)h. Then store the estimated
break dates and update c̄(λ̂) accordingly.

4. Repeat steps 2 and 3 until convergence.
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Finite sample performance: one structural break

Features of the Monte Carlo experiment:

The analysis is conducted with and without pre-testing as proposed in
Perron and Yabu (2005)

1 Allows us to test whether structural breaks are present regardless of
whether the time series is I(0) or I(1)
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Finite sample performance: one structural break

Empirical size (α = 1) and power (α = ᾱ) is investigated using the
following DGP:

yt = dt + ut (11)

dt = µbDUt (T
0
1 ) + βbDT

�
t (T

0
1 ) (12)

ut = αut�1 + vt , (13)

1 The magnitude of the level shift µb = f0, 0.5, 1, 5g
2 βb ranging from -4 to 4 in increments of 0.2
3 Three di¤erent values of the fraction λ0 = f0.3, 0.5, 0.7g
4 The sample size is set at T = f100, 200, 300g
5 vt � iid N (0, 1), u0 = 0.
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Finite sample performance: one structural break

Graphs for the empirical size of the statistics with λ0 = 0.5
(no pre-testing)
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Figure 8: Empirical size for the PT test, � = 0:5
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Figure 9: Empirical size for the MPT test, � = 0:5
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Figure 10: Empirical size for the ADF test, � = 0:5
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Figure 11: Empirical size for the ZA test, � = 0:5
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Figure 12: Empirical size for the MZA test, � = 0:5
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Figure 13: Empirical size for the MSB test, � = 0:5
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Figure 14: Empirical size for the MZT test, � = 0:5
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Finite sample performance: one structural break

Graphs for the empirical size of the statistics with λ0 = 0.5
(pre-testing)
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Figure 1: Empirical size for the PT test (with pretesting), � = 0:5
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Figure 2: Empirical size for the MPT test (with pretesting), � = 0:5

3



Figure 3: Empirical size for the ADF test (with pretesting), � = 0:5
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Figure 4: Empirical size for the ZA test (with pretesting), � = 0:5
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Figure 5: Empirical size for the MZA test (with pretesting), � = 0:5
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Figure 6: Empirical size for the MSB test (with pretesting), � = 0:5
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Figure 7: Empirical size for the MZT test (with pretesting), � = 0:5
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Finite sample performance: one structural break

Graphs for the empirical power of the statistics with λ0 = 0.5
(no pre-testing)

Carrion-i-Silvestre, Kim and Perron () Unit root tests with multiple breaks London, December 2006 31 / 36



Figure 29: Empirical power for the PT test, � = 0:5
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Figure 30: Empirical power for the MPT test, � = 0:5
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Figure 31: Empirical power for the ADF test, � = 0:5
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Figure 32: Empirical power for the ZA test, � = 0:5
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Figure 33: Empirical power for the MZA test, � = 0:5
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Figure 34: Empirical power for the MSB test, � = 0:5
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Figure 35: Empirical power for the MZT test, � = 0:5
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Finite sample performance: one structural break

For the PT and MPT statistics, the size distortions are not large,
although the theoretical derivations indicates that, unless there is a
large level shift, λ̂ = argmin λ2Λ(ε)S (ᾱ,λ) does not converge at a
fast enough ratio to warrant that the statistics have the same limiting
distribution as for the known break case

The ADF and ZA statistics show an over-rejection tendency

The MZA and MSB statistics have the right size as T increases

The tests have good power
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Finite sample performance: two structural breaks

Features of the Monte Carlo experiment:

Empirical size (α = 1) and power (α = ᾱ) is investigated using the
following DGP

yt = dt + ut
dt = µ1DUt (T

0
1 ) + β1DT

�
t (T

0
1 ) + µ2DUt (T

0
1 ) + β2DT

�
t (T

0
2 )

ut = αut�1 + vt ,

1 The magnitude of the level shifts µ1 = µ2 = µb = f0, 0.5, 1, 5g
2 β1 ranging from -4 to 4 in increments of 0.2
3 β2 ranging from -5 to 5 in increments of 0.25
4 Three vectors of break fractions λ0 = (0.3, 0.5), (0.3, 0.7), and
(0.5, 0.7)

5 The sample size is set at T = f100, 200, 300g
6 vt � iid N (0, 1), u0 = 0.
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Finite sample performance: two structural breaks

Graphs for the empirical size of the statistics
with λ03 = 0.5 and λ02 = 0.5

(no pre-testing)
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Figure 43: Empirical size for the PT test, �1 = 0:3 and �2 = 0:5
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Figure 44: Empirical size for the MPT test, �1 = 0:3 and �2 = 0:5
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Figure 45: Empirical size for the ADF test, �1 = 0:3 and �2 = 0:5
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Figure 46: Empirical size for the ZA test, �1 = 0:3 and �2 = 0:5
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Figure 47: Empirical size for the MZA test, �1 = 0:3 and �2 = 0:5
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Figure 48: Empirical size for the MSB test, �1 = 0:3 and �2 = 0:5
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Figure 49: Empirical size for the MZT test, �1 = 0:3 and �2 = 0:5
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Conclusions

In this paper we have proposed up to seven test statistics to test the
null hypothesis of unit root allowing for the presence of multiple
structural breaks

The structural breaks can a¤ect either the level and/or the slope

Minimization of the GLS-detrended-based sum of the squared
residuals produces consistent estimates of the break fraction vector

1 For the PT and MPT statistics the rate of convergence of these
estimates is not fast enough to warrant that the statistics have the
same limiting distribution as for the known break case

2 For the other statistics, the use of these estimated break fractions leads
to test statistics with the same limiting distribution as for the known
breaks case
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Conclusions

Response surfaces have been estimated to approximate, for up to
m = 5 breaks:

1 the parameter that is used in the GLS estimation (c̄)
2 the asymptotic critical values

An e¢ cient dynamic algorithm is designed to obtain the estimates
when there are more than one structural break (less time consuming)

Monte Carlo simulations indicate that the statistics, when combined
with pre-testing, has good statistical properties in terms of empirical
size and power

1 Pre-testing using the approach in Perron and Yabu (2005) is highly
recommended to avoid size distortions when testing the order of
integration
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