Local-Stochastic Volatility for Vanilla Modelling: a Tractable and Arbitrage Free Approach

Dominique Bang

Bank of America Merrill Lynch, London

Cass University, 30th of January 2019

Outline

- Smile Modeling with Focus on Vanilla
 - Requirements
 - Local-Stochastic Volatility Models
 - Other examples
- LSV: breaking down the Model
 - Lamperti transform
 - Modified dynamics
 - Option pricing
- Application: SABR LV
 - Normal SABR: a revisit.
 - Combining with a tailor-made LV.
 - Model calibration to Swaptions and CMS
- Conclusion

Smile Modeling: Requirements

• Flexibility:

- Need to reflect the support of the underlying (e.g. compatible with negative IR)
- Calibration to (typically) 5 european options
- $\bullet\,$ Potentially incorporate market value of convex products \rightarrow control smile in the wings

• Intuitive parameterization:

- Transparent mapping of parameters to ATM level, skew and convexity
- Control over the dynamics of the model ('backbone')

• Tractability:

 $\bullet~$ Robustness and performance critical \rightarrow closed form solutions for european options

Local Stochastic Volatility Models

$$dF_t = \alpha_t \cdot \sigma(F_t) \cdot dW_t$$

• $\sigma()$ deterministic function

- Usually determines the support of the distribution (e.g. shifted CEV)
- Determines (partially) the skew
- Controls the backbone

• α_t stochastic volatility process

- Controls convexity via its volatility ('VolVol' parameter)
- Controls skew via its correlation to the driving Brownian Motion W_t

LSV: Examples

• Pure Local Vol ($\alpha_t = 1$)

- Case σ(F) = F^β well known. σ(F) = a + bF + cF² completely solved (see Andersen [2]).
- Piecewise constant and piecewise linear studied in Lipton and Sepp[9] and Itkin and Lipton[5].
- Most other cases rely on numerical methods.

• Pure Stochastic Vol $(\sigma(F) = 1)$

- Usually supported in] − ∞, +∞[
- (Normal) Heston: $dz_t = \kappa (1 z_t) dt + \nu \sqrt{z_t} dW_t^z$, $\alpha_t = \sqrt{z_t}$.
- (Normal) SABR: α_t logNormal $d\alpha_t = \nu \alpha_t dW_t^{\alpha}$

• Local Stochastic Vol

- Heston (CIR+linear), Tremor (CIR + quadratic), Blacher[6] (LNMR + cubic), Lipton[8] ('universal models') and Jaeckel and Kahl[6] (Hyp + Hyp).
- SABR (LN + CEV), see Hagan[2]

LSV generically not tractable: numerical methods required to compute European Options prices.

Other examples

• Levy Processes:

- Finite activity: Poisson process.
- Infinite activity: NIG, see Barndorff-Nielsen [5]. Applied to Inflation, see Ticot[13]

• Path Dependent

• Path Dependent Volatility. See Guyon[10] and Shelton[12].

• Mixture of Models

- Density weighted average of other model densities. See e.g. Antonov et al[1].
- Moment matching techniques
- Sometimes over parameterized.

• Implied Vol Parameterization

SVI see Gatheral[9]

Disentangling Local from Stoch Vol

 $dF_t = \alpha_t \cdot \sigma(F_t) \cdot dW_t$

• Lamperti Transform

•
$$G(F) = \int_{F_0}^F \frac{du}{\sigma(u)}$$

- Ito Lemma: $G(F_t) = M_T \frac{1}{2} \int_0^T \alpha_t^2 \sigma'(\mathbf{F_t}) d\mathbf{t}$ with $M_T \triangleq \int_0^T \alpha_t dW_t$ (pure SV).
- Drift Reduction: replace stochastic drift with a function of maturity μ_T.
 - μ_T impacts primarily $\mathbb{E}(F_T) \to \text{designed to ensure correct forward } F_0$.
 - Mild impact on the volatility skew.
 - Similar approach applied for a pure LV process (piecewise linear), see Schlenkrich[11] for a full discussion.

We adopt the definition:

$$F_T \stackrel{\Delta}{=} \frac{G^{-1}}{G^{-1}} \left(\frac{M_T}{M_T} - \mu_T \right)$$

Local Vol encapsulated in functional G.

Option Pricing

• Notation: $C^{Y}(K) \triangleq \mathbb{E}(Y_T - K)$. we have:

$$C^{F}(K) = \sigma(K)C^{M}(\mu_{T} + G(K)) + \int_{K}^{\infty} \sigma'(k)C^{M}(\mu_{T} + G(k)) dk$$

- proof (sketch):
 - Pay-off decomposition (carr-Madan, see e.g. Rouah[10]) applied to $F_T=G^{-1}\left(M_T-\mu_T\right)$
 - Change of variables using $(G^{-1})' = \sigma \circ G^{-1}$ and $(G^{-1})'' = [\sigma \sigma'] \circ G^{-1}$.
- Similar decomposition for any function of F_T (e.g. puts)
- General case: efficient formula required for C^M .

Next: focus on SABR models family

Normal SABR

Set M_t as a normal SABR process:

 $dM_t = \alpha_t dW_t,$ $d\alpha_t = \nu \alpha_t dW_t^{\alpha}$

where dW_t and dW_t^{α} are ρ -correlated BM under pricing measure \mathbb{Q} .

- Closed form solutions available as 2-d integral of elementary fonctions (see Henry-Labordere[3], Islah[4] and Korn & Tang[7]) or as a 1-d integral of special functions (see Antonov, Konikov & Spector[1])...
- .. but computationally too expensive when embedded into our method (already involves one integral for generic LV).
- Need for efficient arbitrage-free and accurate approximations.

Normal SABR: LV projection

• Gyongy's Lemma (see Gyongy[1]): $M_t \stackrel{d}{=} L_t$ where:

$$dL_t = \sqrt{V(L_t)} dW_t \tag{1}$$

$$V(x) = \mathbb{E}\left(\alpha_t^2 | M_t = x\right) \tag{2}$$

• Remarkable result: V(x) is quadratic (elegant proof in the line of Balland and Tran[3]).

$$dL_t = \alpha_0 \sqrt{1 + 2\rho\nu \frac{L_t - M_0}{\alpha_0} + \nu^2 \left(\frac{L_t - M_0}{\alpha_0}\right)^2} dW_t$$

• Coordinate Transform

$$\begin{split} L_t &= M_0 + \frac{\alpha_0}{\nu} z_t \\ dz_t &= \nu \sqrt{1 + 2\rho z_t + z_t^2} dW_t, z_0 = 0. \end{split}$$

Normal SABR: Jamshidian's Trick

• Reconstruction Formula:

$$\begin{split} L_t - M_0 &= \frac{\alpha_0}{\nu} \left[-\rho + \frac{1}{2} \left((1+\rho)\xi_T - \frac{(1-\rho)}{\xi_T} \right) \right] \\ \xi_T &\triangleq exp \left(\int_0^{z_T} dz \left(1+2\rho z + z^2 \right)^{-\frac{1}{2}} \right) \end{split}$$

Monotonic relationship between L_t and ξ_T

• Jamshidian's trick Let ξ_K defined via $K - M_0 = \frac{\alpha_0}{\nu} \left[-\rho + \frac{1}{2} \left((1+\rho)\xi_K - \frac{(1-\rho)}{\xi_K} \right) \right]$. Thus:

$$L_t - K = \frac{\alpha_0}{2\nu} \left((1+\rho)(\xi_T - \xi_K) + (1-\rho)(\frac{1}{\xi_K} - \frac{1}{\xi_T}) \right)$$

and

$$(M_t - K)^+ \stackrel{d}{=} \frac{\alpha_0}{2\nu} \left((1 + \rho)(\xi_T - \xi_K)^+ + (1 - \rho)(\frac{1}{\xi_K} - \frac{1}{\xi_T})^+ \right)$$

Normal SABR: a novel representation of option price

• Exact representation of the call price

$$C^{M}(K) = \frac{\alpha_{0}}{2\nu} \left((1+\rho)C^{\xi}(\xi_{K}) + (1-\rho)P^{\frac{1}{\xi}}(\frac{1}{\xi_{K}}) \right)$$
$$\frac{d\xi_{t}}{\xi_{t}} = \nu dW_{t} + \frac{(1-\rho)\nu^{2}}{(1+\rho)\xi_{t}^{2} + (1-\rho)} dt, \ \xi_{0} = 1$$

- LN approximation for subordinate process ξ_T
 - Assuming ξ_T = Γ̃ exp(ν̃W_T), Γ and ν̃ computed via moment matching.
 - Pricing formula for Normal SABR requires one BS call and one BS Put
 - Model arbitrage free. Works well.
- Represent more closely dynamics of ξ_T for even better accuracy and small computational overhead.

Normal SABR: measure change.

• Define
$$h_t$$
 via $\xi_t = e^{\nu h_t}$. We have:

$$dh_t = dW_t - \frac{\nu}{2} \tanh\left(\nu(h_t + \bar{h})\right) dt$$
$$\bar{h} \triangleq \frac{1}{2\nu} \ln\left(\frac{1+\rho}{1-\rho}\right)$$

• Change of measure using the martingale θ_t^{\star}

$$\frac{d\theta_t^{\star}}{\theta_t^{\star}} = \frac{\nu}{2} \tanh(\nu(h_t + \bar{h})) dW_t,$$

- Associated measure \mathbb{Q}^{\star} defined via $\frac{d\mathbb{Q}^{\star}}{d\mathbb{Q}} = \theta_T^{\star}$
- Per construction, h_T standard (driftless) Brownian under \mathbb{Q}^* .

Normal SABR: local projection and density

• Local projection of Radon-Nikodym derivative

• solve for f such that
$$d\left[\frac{f(h_t)}{\theta_t^{\star}}\right] = O(dt) \to f(h) = \sqrt{\cosh\left(\nu(h+\bar{h})\right)}$$

• Tractable projection

$$\begin{split} \mathbb{E}^{\star} \left[\frac{1}{\theta_T^{\star}} | h_T \right] &= \frac{1}{f(h_T)} \mathbb{E}^{\star} \left[\frac{f(h_T)}{\theta_T^{\star}} | h_T \right], \\ &\approx \frac{1}{\gamma} e^{-\frac{\nu}{2} |h_T + \bar{h}|} \frac{3 - e^{-\nu |h_T + \bar{h}|}}{2} \triangleq \frac{1}{\theta^{\dagger}(h_T)}, \end{split}$$

• Density

$$\mathbb{E}\left(\delta_{h}(h_{T})\right) = \mathbb{E}^{\star}\left(\frac{\delta_{h}(h_{T})}{\theta_{T}^{\star}}\right) = \mathbb{E}^{\star}\left(\mathbb{E}^{\star}\left[\frac{1}{\theta_{T}^{\star}}|h_{T}\right]\delta_{h}(h_{T})\right)$$
(3)
$$\approx \mathbb{E}^{\star}\left(\frac{\delta_{h}(h_{T})}{\theta^{\dagger}(h_{T})}\right) = \frac{e^{-\frac{h^{2}}{2T}}}{\sqrt{2\pi T}\theta^{\dagger}(h_{T})}$$
(4)

Normal SABR: Summary

• Normal SABR option price

$$C^{M}(K) = \frac{\alpha_{0}}{2\nu} \left((1+\rho)C^{\xi}(\xi_{K}) + (1-\rho)P^{\frac{1}{\xi}}(\frac{1}{\xi_{K}}) \right)$$

•
$$\xi_T = e^{\nu h_T} \approx \Gamma e^{\nu h_T^{\dagger}}$$

• Γ enforce re-pricing of the Forward (closed form).
• Density of h_T^{\dagger} is $\varrho(h) \triangleq \frac{e^{-\frac{\nu}{2}|h+\bar{h}|} \left(\frac{3-2e^{-\nu|h+\bar{h}|}}{2}\right)}{\gamma} \frac{e^{-\frac{h^2}{2T}}}{\sqrt{2\pi T}}$
• $C^{\xi}()$ and $P^{\frac{1}{\xi}}()$ closed form (few calls to the normal CDF)

- Arbitrage free by construction for any configuration.
- Formula accurate for expiries as long as 50Y.

Normal SABR: Comparison Exact, Hagan and New

• Normal SABR: swaption tenor is 10 years, maturities 10 to 50 years. Forward F₀ = 2%, ATM normal Vol ô = 0.5%, Vol-of-vol ν = 20% and correlation ρ = 50%. Comparison of implied PDF (left vertical axis) and normal implied volatility (right vertical axis) for our new approach ("New"), the exact approach in Antonov et al[1] ("Exact"), and the asymptotic approximation in Hagan et al[2] ("Hagan") for the Normal SABR model.

Normal SABR: Exact, Hagan and New

Local Volatility specification

- Standard Local Vol $\sigma(F) = (\max(F+m, 0))^{\beta}$
 - $\bullet\,$ Allows for negative IR, but shift m somehow arbitrary. Approach doesn't support stress tests scenarios.
 - Little control over the dynamics.
 - No control over high strikes.

• Our approach provides total control over the LV. Possible spec:

- $\max(\cdot, 0)$ replaced by a regularized version, e.g $\eta(\epsilon, f) = \epsilon \ln(1 + e^{\frac{J}{\epsilon}})$.
- β can be made spot dependent by introducing two levels (β_l, β_h) .
- Add a term for high strikes, e.g. $\Psi \max(F F_h, 0)$ (or regularized version).

Figure: Control over the wings of the LV (normalized at the forward $F_0 = 0.02$) varying ϵ and Ψ . Base case (square-root LV): $\beta_l = \beta_h = \frac{1}{2}$, $\epsilon = 0$, $F_h = F_0 + 8\%$ and $\Psi = 0$.

SABR LV: Calibration

Assuming a LV σ has been chosen:

• Pricing Equations

•
$$C^{F}(K) = \sigma(K)C^{M}(\mu_{T} + G(K)) + \int_{K}^{\infty} \sigma'(k)C^{M}(\mu_{T} + G(k)) dk$$

•
$$P^F(K) = \sigma(K)P^M(G(K) + \mu) - \int_{-\infty}^K \sigma'(k)P^M(G(k) + \mu) dk$$

•
$$C^M(K) = \frac{\alpha_0}{2\nu} \left((1+\rho)C^{\xi}(\xi_K) + (1-\rho)P^{\frac{1}{\xi}}(\frac{1}{\xi_K}) \right)$$

- Model Calibration
 - Forward: $C^{F}(F_{0}) P^{F}(F_{0}) = 0$, mostly governed by μ_{T}
 - ATM Straddle: $C^F(F_0) + P^F(F_0) = \hat{\sigma} \sqrt{\frac{2T}{\pi}}$, mostly controlled by α_0 .
 - Good initial guess for (μ_T, α₀) available.
 - Standard 2-d solver performs well.

LSV: example EUR 10Yx30Y

Figure: implied PDF (left vertical axis), LV and implied Normal volatility (right vertical axis) for a model calibrated to swaptions implied volatilities (Market) and the CMS convexity adjustments (61 basis points). Forward $F_0 = 1.833\%$, ATM Vol $\hat{\sigma} = 0.533\%$, Vol of vol $\nu = 16.5\%$, correlation $\rho = 7\%$, $\beta_l = 26.5\%$, $\beta_h = 0\%$, $\epsilon = 0.0032$ and $\psi = 47.7$

Conclusion

- New mechanism to combine arbitrary LV and SV.
- Tractable when efficient option pricing under SV available
- Applied to SABR LV
 - New arbitrage-free, accurate and efficient proxy for pricing under Normal SABR.
 - Example of practical LV. Calibration to Swaptions and CMS.
 - Resulting distribution smooth and well behaved.
- Method generic and can be applied to other LSV models.

References

Antonov, A., Konikov, M. and Spector, M.	(2015) Mixing SABR Models for Negative
Rates, SSRN 2015.	

Andersen L. (2011) Option Pricing with Quadratic Volatility: a Revisit, F&S, Springer.

Balland, P. (2013) SABR Goes Normal, Risk.

Bang, D. (2018) Local-Stochastic Volatility Models for Vanilla Modeling: a Tractable and Arbitrage Free Approach to Option Pricing, available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3171877.

Blacher, G. (2001) A New Approach for Designing and Calibrating Stochastic Volatility Models for Optimal Delta Vega Hedging of Exotic Options. Global Derivatives

Breeden D. and Litzenberger, R. (1978) Prices of State-Contingent Claims Implicit in Option Prices, The Journal of Business.

Carr, P., M. Tari, and T. Zariphopoulou (1999). Closed Form Option Valuation with Smiles. Tech. rep. www.math.nyu.edu/research/carrp/papers/pdf/closed4. pdf.

Gatheral, J. and Jacquier, A. (2013) Arbitrage-Free SVI Volatility Surfaces, QF.

Guyon, J.(2014) Path-dependent volatility, Risk Magazine, October 2014.

