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Understanding the variation of expected excess returns of Treasury bonds and their

relation with the economy is one of the central questions in economics and finance, and

an active area of ongoing research. The literature suggests that factors driving bond

risk premia can take at least two forms. First, the yield curve itself seems to contain a

component that, being hard to detect in the cross-section of yields, has a strong forecasting

power for future bond returns. This variable reveals itself through a linear combination

of forward rates. Second, macroeconomic variables such as real activity, unemployment or

inflation appear to contribute to the predictability of bond returns beyond what is explained

by factors in the yield curve. Combining these two domains into a joint view of term premia

and yields continues to present an open question. This is the question we address with the

current paper.

Inflation expectations play a major role in determining the level of nominal yields

in a world characterized by fiat money. We start with this notion to analyze the linkages

between factors in yields and those determining expected bond returns. A key observation

underlying our approach is that interest rates move on different economic frequencies.

Specifically, we decompose the yield curve into a persistent component and shorter-lived

fluctuations particular to each bond maturity, which we term as cycles. The persistent

component captures smooth adjustments in the short rate expectations that may take

decades to unfold, and are related both economically and statistically with the shifting

long-run inflation expectations. The cycles across different maturities combine the term

structure of transitory short rate expectations with the term structure of bond risk premia.

We proxy for the persistent inflation factor using the discounted moving average of

past core inflation data. This single variable explains 87% of variation in the ten-year

yield. Cycles, as we show, represent transitory deviations from the long-term relationship

between yields and that slow-moving factor.
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Working from the basic notion of a n-period yield y(n) as the sum of the short rate

y(1) expectations and the risk premium rpy(n):

y
(n)
t =

1

n
Et

n−1∑

i=0

y
(1)
t+i + rpy

(n)
t , (1)

we exploit the cross-sectional composition of the cycles to construct a measure of the

variation in bond risk premium. The underlying economic intuition is as follows: Being

derived from a one-period risk-free bond, the cycle with the shortest maturity inherits

transitory variation in short rate expectations but not in risk premia. As maturity in-

creases, however, the transitory short rate expectations subside, and the variation in premia

becomes stronger. In combination, we are able to trace out a term structure pattern of risk

compensation throughout the yield curve.

We separate these effects into three economic frequencies: generational frequency

related to persistent inflation expectations, business cycle frequency related to transitory

short rate expectations, and the term premium frequency. This decomposition delivers new

findings about the degree of bond return predictability, and about the link between term

premia, yield curve factors and macroeconomic risks.

We start by revisiting the empirical predictability of bond excess returns. From

cycles, we construct a factor that forecasts bond returns across all bond maturities. We

label this factor ĉf . Predictive regressions of one-year excess bond returns on ĉf give

R2’s above 50% in the period 1971–2009 and at long maturities. The sources of this high

predictability lie in the additional information about long-run inflation expectations that

we provide to an otherwise standard predictive regression. This additional information

alleviates the error-in-variables problem present in yield-only predictors. As one example,

the level factor (first principal component of yields) combines short rate expectations and

term premia into one variable, and being dominated by the expectations component, shows
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little predictive ability for bonds returns. Our decomposition frees up the piece of term

premium information that the level embeds.

As a consequence of this view, we are able to explore the mechanism that makes a

linear combination of forward rates a successful predictor of bond excess returns. We show

that the forward rate factor proposed by Cochrane and Piazzesi (2005) can be interpreted

as a specific linear combination of interest rate cycles, whose predictive power is constrained

by the persistence of yields. If the information set of market participants contains only past

history of forward rates, then the forward rate factor is the best measure of the term premia

that both econometricians and investors could obtain. However, given ample evidence in

the macroeconomic literature (summarized below) that agents slowly adapt their long-

horizon expectations about inflation to new data, ĉf provides a viable benchmark for the

degree of term premia variation.

One is ultimately interested in understanding the link between the term premia

and macro-finance conditions. Taking ĉf as a benchmark, we can assess the marginal

predictive content of macroeconomic fundamentals for bond returns. The presence of ĉf

in the predictive regression renders most macro-finance variables insignificant, suggesting

that our factor successfully aggregates different economic risks into a single quantity. This

evidence points to a heterogeneity of economic factors driving term premia. Moreover, the

half-life of ĉf of about ten months suggests that term premia vary at a frequency higher

than the business cycle. Many of the large moves in bond excess returns and in ĉf appear

in otherwise normal times, giving rise to an interest rate-specific cycle.

Our results have also implications for forecasting economic activity. An important

literature documents that the positive slope of the term structure is associated with an

increased economic activity in the future (Harvey, 1989; Estrella and Hardouvelis, 1991).

We further decompose the slope into short rate expectations and term premia. Lower short

rate expectations forecast stronger growth up to two years ahead, and account almost
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entirely for the predictive ability of the slope for the real activity. The effect of term

premia on growth is different: While at horizons below one year, a higher term premium

predicts lower growth, this effect reverts completely at longer forecast horizons so that a

higher term premium today suggests stronger economic growth two and a half years ahead.

One may wonder whether our findings present a robust feature of Treasury bonds.

We address this concern in several ways. First, we show that the bond return predictability

is not an artifact of the discounted moving average by which we measure the persistent

component of inflation expectations. Using long-horizon inflation surveys, we report very

similar predictability results. The expectations’ horizon matters: Short-horizon measures

of inflation expectations generally contain less information about the source of persistence

in yields and, consequently, underestimate the variation in the term premia. Second,

we verify that the predictive power of the cycles for bond returns is not affected by the

choice of the data set or by the splining of the zero curve. We support our results using

actual bond portfolio returns, analyze the predictability at different holding periods, and

for non-overlapping returns. Third, we show that our forecasting factor provides stable

and positive out-of-sample performance. In sum, these robustness checks confirm that our

results describe an important characteristic of the bond market.

Related literature

In establishing the link between term premia and long-horizon expected inflation, we bridge

macroeconomic and asset pricing literatures.

We build on a large macroeconomic literature that studies US inflation dynamics in

the last four decades within the context of drifting coefficient models. The consensus view

arising from this work is that inflation contains a slow moving trend component, related

to monetary policy targets, that economic models need to accommodate. This view is a

recurring theme in Cogley and Sargent (2005a,b), Cogley, Primiceri, and Sargent (2010),

Erceg and Levin (2003), Kozicki and Tinsley (1998, 2001a,b), Ireland (2007), among others,
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and follows from the idea of adaptive models of policy making introduced in Sargent (1999)

and motivated by Sims (1988). With a focus on forecasting inflation, that literature has

been recently summarized by Faust and Wright (2011), who emphasize that a good model

of inflation must account for a slowly varying local mean of inflation. We build on those

insights to study their implications for the variation in interest rates and, especially, in

bond risk premia.

A related strand of research deals with the persistence of yields. Cogley (2005)

estimates a Bayesian VAR model in short- and long-term yields with drifting conditional

means. Assuming expectations hypothesis, he shows that changing beliefs about target

short rate are an important part of the yield curve dynamics. Fama (2006) shows that

the predictability of the short rate for horizons beyond one year comes from its reversion

toward a time-varying rather than constant long-term mean, which he proxies with a

moving average of past one-year yield. Following similar intuition, several authors adopt

slow-moving means of variables to generate persistent long-term yields (Rudebusch and

Wu, 2008; Dewachter and Lyrio, 2006; Orphanides and Wei, 2010; Dewachter and Iania,

2010; Piazzesi and Schneider, 2011; Koijen, Van Hemert, and Van Nieuwerburgh, 2009).

To the best of our knowledge, our study is the first to establish the link between long-

horizon inflation expectations, persistent and transitory short rate expectations, and the

predictability of bond excess returns.

Our paper is related to the literature on predictability of bond returns. Cochrane and

Piazzesi (2005, CP) show that a single linear combination of forward rates, the CP factor,

predicts bond excess returns across maturities, but has a low correlation with the principal

components of yields. Subsequently, a large literature studies the link between term premia,

the CP factor and macro-finance variables that are outside the yield curve (Ludvigson and

Ng, 2009; Cooper and Priestley, 2009; Huang and Shi, 2010; Fontaine and Garcia, 2011).

We focus on explaining the variation of bond excess returns using a predictor, ĉf , that
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we form from the basic zero yield curve and a variable that captures long-run inflation

expectations. We show that the ĉf factor encompasses many commonly used predictors of

bond returns. We also reconcile our result with the predictive power of the CP factor.

Duffee (2011) and Joslin, Priebsch, and Singleton (2010) study hidden factors in bond

risk premia within affine term structure models. The theoretical implication of those models

(absent hidden factors) is that variables other than yields add no content from a forecasting

perspective. The authors allow for the possibility that yields have non-Markov dynamics

under the historical measure. Our results are consistent with this notion. Specifically,

we contribute to the discussion by showing that long-horizon inflation expectations are

an important element of investors’ information set beyond yields themselves. Related to

that, we document that yield-only predictors of bond excess returns suffer from an error-

in-variables problem.

I. Data sources

We use end-of-month yield data obtained from the H.15 statistical release of the Fed. Since

we want to cover a broad spectrum of maturities over a possibly long sample, we consider

constant maturity Treasury (CMT) yields. The available maturities comprise six months

and one, two, three, five, seven, ten and 20 years in the post Bretton Woods period from

November 1971 through December 2009. We bootstrap the zero coupon curve by treating

the CMTs as par yields.1

We define inflation as year-over-year log changes in the core CPI. The core CPI data

is from the Fred database. There are two reasons for using core CPI rather than all-items

CPI. First, core CPI has been at the center of attention of the monetary policy makers.2

1In the online appendix, we provide a comparison of our zero curve and realized excess bond returns with
other data sets (Fama-Bliss and Gürkaynak, Sack, and Wright (2006)). The comparison confirms a
very close match between the different data sets at maturities that overlap.

2Fed officials rely on core inflation to gauge price trends. As one recent example, this view has been
expressed by the Fed chairman Ben Bernanke in his semiannual testimony before the Senate Banking
Committee on March 2, 2011: “Inflation can vary considerably in the short run. [...] Our objective is
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Second, it is more suitable to compute the long-run expectations of inflation by excluding

volatile components of prices. Nevertheless, we verify that our results remain robust to both

core and all-items CPI. An important advantage of CPI over other measures of inflation

(e.g. PCE inflation) is that CPI is not subject to revisions (Croushore and Stark, 1999;

Croushore, 2008), and thus can be treated as real time data.

Inflation data for a given month are released in the middle of the next month. To

account for the publication lag when constructing the persistent inflation component we

use the CPI data that are available as of month end. For example, the estimate of the

persistent component for April 2000 uses inflation data until March 2000 only. We also

check that our results are not sensitive to whether or not we allow for the publication lag.

For robustness in Section III.C, we use inflation expectations compiled by different

surveys and available from the Philadelphia Fed webpage. Specifically, we consider ten-

year CPI inflation forecasts from the Livingston survey and from the Blue Chip Financial

Indicators survey, one-year forecast of the GDP deflator from the Survey of Professional

Forecasters, and the four-quarter ahead inflation forecast from the Blue Chip Financial

Forecasts. The online appendix provides additional details about the data we use in the

subsequent analysis.

II. Components in the yield curve

II.A. Basic intuition

The yield of an n-period bond can be expressed as the average future short rate y
(1)
t

expected over the life of the bond and the term premium, rpy
(n)
t (assuming log normality).

Reiterating equation (1):

y
(n)
t =

1

n
Et

n−1∑

i=0

y
(1)
t+i + rpy

(n)
t . (2)

to hit low and stable inflation in the medium term.” Core inflation is a good predictor of the overall
inflation over the next several years, which is the horizon of focus for the monetary policy makers.
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Since inflation is a key determinant of real cash flows from nominal government bonds,

inflation expectations have a first order effect on nominal bond prices. A generally adopted

view in macroeconomics is that the long-run mean of inflation is well approximated by a

driftless random walk, and is related to the central bank’s long-run target. Recent examples

of work modeling inflation in this way are Cogley, Primiceri, and Sargent (2010), Ireland

(2007), Stock and Watson (2007), among others. Inflation gap, i.e. the deviations of

realized inflation from the target, is then assumed to follow a stationary process.

To convey our intuition, we start from the simple Fisher equation, in which the one-

period nominal interest rate y
(1)
t is:

y
(1)
t = rt + Etπt+1, (3)

where rt is a one-period real rate and Etπt+1 is the expected inflation over one period. Let

the real rate rt follow a stationary process, and let inflation be composed of a persistent

(τt) and a transitory (πc
t ) component:

πt = τt + πc
t (4)

τt = τt−1 + ετt , (5)

where ετt is uncorrelated with πc
t , and πc

t follows an AR(1). One can think of τt in equation

(4) as a time varying long-run inflation mean: lims→∞Et(πt+s) = τt, i.e. the value to which

the series is expected to converge after the transitory dynamics die out (Beveridge and

Nelson, 1981). Then, substituting for the short rate y
(1)
t in equation (2), the yield with

n-years to maturity y
(n)
t can be written as:

y
(n)
t = b

(n)
0 + b(n)τ τt + b(n)r rt + b(n)π πc

t + rpy
(n)
t , (6)
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where b
(n)
0 is a maturity dependent constant, b

(n)
τ = 1 and b

(n)
r , b

(n)
π decay with maturity

n.3 Equation (6) captures the long-run Fisher effect, i.e. permanent changes in inflation

are reflected approximately one-to-one in nominal yields giving rise to their low frequency

comovement.4

We note that the unit root dynamics in inflation, while standard in the macroeconomic

literature, is considered to be a convenient approximation to the factual behavior US

inflation since the 1960s. For our intuition to hold true, inflation and interest rates do

not need to be exactly unit root, but can be characterized by a common component which

is very slowly mean-reverting.5

We will refer to the sum of the transitory components of short rate expectations, πc
t

and rt, and the risk premium rpy
(n)
t in equation (6) as “the cycle” defined as:

c̃
(n)
t = b(n)r rt + b(n)π πc

t + rpy
(n)
t . (7)

The composition of c̃
(n)
t changes with the maturity of the bond. For n = 1, c̃

(1)
t captures

variation in the real rate rt and the cyclical part of inflation expectations πc
t , but not in

premia because rpy
(1)
t is zero in nominal terms. We term c̃

(1)
t as the transitory component

of short rate expectations. As the maturity n increases, the transitory part of short rate

expectations decays due to the mean reversion. Thus, cycles extracted from the long end

of the yield curve should provide the most valuable information about expected excess

3Assuming that πc
t and rt follow an AR(1), these coefficients are of the form b

(n)
r = 1

n
(φn

r − 1) (φr − 1)
−1

and b
(n)
π = 1

n
φπ (φn

π − 1) (φπ − 1)−1, where φr, φπ are the respective AR(1) coefficients.
4Mishkin (1992) provides a detailed discussion of the long-run Fisher and empirical evidence supporting
its validity. If the Fisher effect does not hold at least in the long run, one has to resort to alternative
explanations of interest rates such as money illusion (e.g. Summers, 1982) or to believe in the long
term impact of demand and supply effects on interest rates induced by inflation (Mundell, 1963). In
the presence of taxes, the Fisher effect is higher than one implying that yields change by more than
one-to-one with expected inflation due to taxation (Crowder and Wohar, 1999).

5We note an analogy between this intuition and the long-run risk literature that models the mean of the
consumption growth as a very persistent but a stationary process. The fractional integration literature
provides econometric toolbox to handle situations of this type, as summarized by Baillie (1996), and
recently applied in asset pricing to study cointegration of volatility series by Bollerslev, Osterrieder,
Sizova, and Tauchen (2011).
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returns. This intuition is strongly supported by the data and underlies the predictability

of bond returns that we document below.

II.B. Measuring the persistent component of inflation expectations

Sargent (1999) describes the post 1960 history of inflation in the US in terms of an adaptive

theory of policy, allowing policy makers to update their parameters to the recent data.

Adaptive expectations play an essential role in generating the inflation expectations. He

stresses that this theory is a minimal departure from rational expectations, but it accounts

for features of the data that rational expectations miss.

Borrowing from the adaptive learning literature (e.g., Evans and Honkapohja, 2009;

Ljungqvist and Sargent, 2004), agent’s estimate τt recursively from the inflation data. We

construct a proxy for agent’s long-run expectations of inflation τt in equation (6) as a

discounted moving average of past core CPI inflation:

τCPI
t =

∑t−1
i=0 v

iπt−i∑t−1
i=0 v

i
, (8)

where (1 − v) is the constant gain learning parameter. In Appendix D, we show how

(8) arises from agents’ learning about τt in equation (4). The discounted moving average

captures the idea that economic agents update their long-run inflation expectations by

a fraction of the deviation of current inflation from the previous long-run mean.6 Using

various inflation surveys, we estimate the gain parameter at v = 0.9868 (standard error

0.0025), and truncate the sums in equation (8) at N = 120 months. Appendix E provides

6τCPI
t can be written equivalently as a constant gain adaptive expectations scheme τCPI

t = vτCPI
t−1 +(1−

v)πt; see e.g. Carceles-Poveda and Giannitsarou (2007) for a derivation of learning recursions.
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details of the estimation of v.7 With those parameters, an observation from ten years ago

still receives a weight of approximately 0.2.

As proxied by τCPI
t , inflation expectations explain a major part of yield variation

with an R2 of 86% on average across maturities from one to 20 years. Figure 1, panel a,

superimposes a one-year and ten-year yield with τCPI
t showing that τCPI

t coincides with

the low-frequency variation in interest rates. For comparison, in panel b, we plot the

median inflation forecast from the Livingston survey one year ahead, collected in June and

December each year. The limited forecast horizon drives shorter-lived transitory variation

in the survey-based measure, especially in the volatile periods.

[Figure 1 here.]

Our approach to constructing τCPI
t mimics well the properties of long-run expected

inflation documented in the macro literature summarized above. It has the advantage of

simplicity and could be used by agents in real-time as a rule to update their estimates

of long-run inflation mean. Importantly, τCPI
t reflects the well-documented property that

forecasters consistently underestimated inflation in the 1970s but overestimated inflation

in the 1980s, and this feature of forecasts is increasingly true at longer forecast horizons

(Coibion, 2010). This means that economic agents adapt their long-run inflation expecta-

tions with a lag (Barsky and DeLong, 1991; DeLong, 1997). In Section III.C, we confirm

our results with long-horizon inflation surveys.

7A number of papers argue for a similar gain parameter for inflation: Kozicki and Tinsley (2001a) use
v = 0.985 for monthly data, Piazzesi and Schneider (2011) and Orphanides and Wei (2010) use v = 0.95
and v = 0.98 for quarterly data, respectively. Kozicki and Tinsley (2005) estimate v = 0.96 and find
that discounting past data at about 4% per quarter gives inflation forecasts that closely track the
long-run inflation expectations from the Survey of Professional Forecasters. The truncation parameter
N = 120 months is motivated by the recent research of Malmendier and Nagel (2011) who argue that
individuals form their inflation expectations using an adaptive rule and learn from the data experienced
over their lifetimes rather than from all the available history. We stress that the parameters v and N are
not a knife edge choice that would determine our subsequent findings. A sensitivity analysis shows that
varying N between 100 and 150 months and v between 0.975 and 0.995 leads to negligible quantitative
differences in results and does not change our interpretation. These results are available in the online
appendix.
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II.C. Cycles as deviations from the long-run relationship between yields and expectations

As predicted by the long-run Fisher effect, there is a low frequency comovement between

yields and expected inflation at long horizons. In our sample, we fail to reject the hypoth-

esis that yields and τCPI
t both feature nonstationary dynamics.8 Following the standard

approach (Engle and Granger, 1987), we regress yields on a contemporaneous value of τCPI
t :

y
(n)
t = b

(n)
0 + b(n)τ τCPI

t + ǫ
(n)
t , (9)

and test for stationarity of the fitted residual. We denote the fitted residual of (9) as c
(n)
t

for individual yields, and ct for the average yield across maturities, i.e. yt =
1
20

∑20
i=1 y

(i)
t .

As an example, we provide the point estimates of equation (9) for the average yield yt:

ct = yt − b̂0︸︷︷︸
0.02 [4.7]

− b̂τ︸︷︷︸
1.24 [14.2]

τCPI
t , R2 = 0.86. (10)

The numbers in brackets are the Newey-West corrected t-statistics. We report the results

of unit root ADF and DF-GLS tests for yields, τCPI
t and the cycles at different maturities

in Appendix A, and here just state the main conclusions. We consistently reject the null

hypothesis that c
(n)
t contains a unit root for maturities from one to 20 years at the 1% level.

Note that c
(n)
t gives an empirical content to the notion of cycles we have introduced

in equation (7). Cycles represent stationary deviations from the long-run relationship

between yields and the slow moving component of inflation expectations. Therefore, by

the Granger representation theorem, they should forecast either ∆yt or ∆τt, or both. To

verify this prediction, we estimate the error correction representation for yield changes. We

8Here we stress the qualifier ‘in sample.’ Even if the assumption of nonstationary interest rates may raise
objections, the results of Campbell and Perron (1991) suggest that a near-integrated stationary variables
are, in a finite sample, better modeled as containing a unit root, despite having an asymptotically
stationary distribution. Indeed, many studies fail to reject the null hypothesis of a unit root in the
US data (e.g. Jardet, Monfort, and Pegoraro, 2010; Joslin, Priebsch, and Singleton, 2010). We note,
however, that our results are maintained if yields and inflation expectations are not exactly unit root
but are both very highly persistent and fractionally cointegrated, as we mentioned above.
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allow one lag of variable changes to account for short-run deviations from (9):

∆y
(n)
t = acc

(n)
t−∆t + ay∆y

(n)
t−∆t + aτ∆τt−∆t + a0 + εt, ∆t = 1 month. (11)

We focus on ∆y
(n)
t because we are interested in transitory adjustments of asset prices.

Indeed, the error correction term, c
(n)
t−∆t, turns out significant precisely for this part of the

system.

Table II presents the estimates of equation (11) for monthly data. The essence of

the results is that cycles are highly significant predictors of monthly yield changes. The

negative sign of ac coefficients for all maturities suggests that a higher value of the cycle

today predicts lower yields and thus higher excess bond returns in the future. This conforms

with the intuition of equation (7) that cycles and term premia should be positively related.

In the next section, we build on this observation to explore the predictability of excess

bond returns by the cycles.

[Table II here.]

III. The predictability of bond excess returns

III.A. First look at predictive regressions

Following the literature, we focus on one-year holding period bond excess returns, and

defer the analysis of other holding periods to Section VII.A. To fix notation, a one-

year holding period excess log return on a bond with n years to maturity is defined as:

rx
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t − y

(1)
t , where p

(n)
t is the log price of a zero bond, p

(n)
t = −ny

(n)
t , and

y
(1)
t is the one-year continuously compounded rate. The one-year forward rate locked in

for the time between t+ n− 1 and t+ n is given by: f
(n)
t = p

(n−1)
t − p

(n)
t . In Table III, we

report the descriptive statistics for bond excess returns.

[Table III here.]
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We obtain cycles as fitted residuals from the regressions of yields on the persistent

inflation factor in equation (9), i.e.:

c
(n)
t (τCPI

t ) = y
(n)
t − b̂

(n)
0 − b̂(n)τ τCPI

t , (12)

and estimate the predictive regression:

rx
(n)
t+1 = δ0 +

∑

i

δic
(i)
t (τCPI

t ) + ε
(n)
t+1, (13)

where i = {1, 2, 5, 7, 10, 20} years.9 In equation (12) and (13), we make explicit the

dependence of c
(i)
t on the cointegrating variable τCPI

t ; subsequently, we simply use c
(i)
t

as shorthand notation for c
(i)
t (τCPI

t ). To provide a benchmark for our results, we also

estimate an analogous equation using forward rates instead of cycles:

rx
(n)
t+1 = d0 +

∑

i

dif
(i)
t + ε

(n)
t+1. (14)

For excess returns rx, we single out points along the yield curve with maturities of two,

five, seven, ten, 15 and 20 years.10

Table IV summarizes the estimation results. We report the adjusted R2 values and

the Wald test statistics for the null hypothesis that all coefficients in (13) are jointly zero.

The individual coefficient loadings are not reported, as by themselves they do not yield an

economic interpretation (Section IV.A explains why). The cycles ct’s forecast a remarkable

portion of variation in excess bond returns. R2’s increase from 42% up to 57% across

maturities. On average, these numbers more than double the predictability achieved with

9This choice of maturities summarizes the relevant information in ct’s.
10We note that in terms of its predictive power, regression (13) is very close to using a set of yields and

τCPI
t as the explanatory variables. We follow the representation in terms of cycles because it offers a
convenient interpretation of factors underlying the yield curve which we exploit below.
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forward rates. All coefficient on ct’s are statistically different from zero. We confirm the

statistical robustness of these conclusions later in Section VII.B.

[Table IV here.]

Since cycles used in regression (13) are obtained from (12), we correct for the sampling

uncertainty due to generated regressors. To this end, we use nonparametric block bootstrap

with fixed block length and overlapping blocks which is appropriate for dependent series

(Künsch, 1989; Lahiri, 1999) (see Appendix F for details on implementation).11 Table IV

provides small sample (SS) bootstrapped confidence bounds for regression statistics. The

lower 5% confidence bound for the R2’s obtained with the cycles consistently exceeds the

large-sample R2 obtained with forward rates. A similar observation holds true for the

reported values of the Wald test.

III.B. The single return forecasting factor

The intuition following from equation (7) suggests that we can construct a single forecasting

factor that predicts bond returns with different maturities. We proceed in two steps:

Step 1. Obtain the cycles c
(n)
t as residuals from regressing yields of different maturities on

τCPI
t as in equation (9) and (12).

Step 2. Project the average excess return across maturities rx onto the transitory short

rate expectations factor c
(1)
t and the average cycle c̄t. The fitted linear combination

of c
(1)
t and c̄t gives the return forecasting factor which we term ĉf t:

rxt+1 = γ0 + γ1c
(1)
t + γ2c̄t + εt+1, where c̄t =

1

m− 1

m∑

i=2

c
(i)
t (15)

ĉf t = γ̂0 + γ̂1c
(1)
t + γ̂2c̄t. (16)

11Block bootstrap allows us to compute the distributions for various statistics. Using this approach we
report the percentiles of the distribution for R2, Wald tests and t-statistics in subsequent parts of
the paper. Different from the parametric bootstrap, this procedure does not require that we make
distributional assumptions or specify the null hypothesis.
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Step 1 removes from the yield curve the slow moving component of inflation expectations;

Step 2 removes the business cycle variation of short rate expectations.12 Empirically, ĉf t

has a faster mean reversion than the factors related to the short rate expectations, τCPI
t

and c
(1)
t : Its half-life is slightly below ten months, giving rise to a distinctive term premium

frequency. Figure 2 displays the evolution of the forecasting factor over time.

[Figure 2 here.]

In Table V, panel A, we report the estimates of equation (15). Low standard errors on the

estimated coefficients indicate that we are able to identify a robust feature of the data. The

negative sign of γ1 is consistent with the decomposition of cycles into the premium and

expectations components. We find that a 100 basis points change in the transitory short

rate expectations factor c
(1)
t generates a 42 basis points reaction in longer-maturity cycles,

on average.

[Table V here.]

With ĉf t, we forecast individual excess bond returns:

rx
(i)
t+1 = β

(i)
0 + β

(i)
1 ĉf t + ε

(i)
t+1. (17)

Panel B of Table V reports the predictability of individual bond returns achieved with

the single factor. On average, during the 1971–2009 period, ĉf t explains around 54%

of variation in excess returns. The results are not significantly worse than those of the

unrestricted regression in equation (13): That comparison is reflected in the row “∆R2.”

12In implementing (15), we measure rx and c̄ as the average of excess returns and cycles, respectively,
with maturities from two to 20 years for the CMT data. We obtain very similar results when using
Gürkaynak, Sack, and Wright (2006) data or using bonds with maturities up to ten years only. Other

ways of constructing the ĉf are reported in the online appendix, and deliver essentially identical results.
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III.C. Alternative measures of long-horizon inflation expectations

The results we have reported so far, rely on discounted moving average of past core

CPI inflation, τCPI
t , as a simple proxy for the long-run inflation expectations. Here, we

discuss alternative measures of inflation expectations based on surveys and realized CPI.

Specifically, we consider:

Long-horizon inflation expectations from surveys: combined median ten-year CPI inflation

expectations from the Livingston survey and from the Blue Chip Economic Indicators

survey (BCEI), 1979:12–2009:12, as provided by Philadelphia Fed;

Short-horizon inflation expectations from surveys: (i) median forecast of GDP deflator

one-year ahead from the Survey of Professional Forecasters (SPF), 1971:11–2009:12;

(ii) median four-quarters ahead inflation forecast from the Blue Chip Financial Fore-

casts (BCFF), 1984:07–2009:12;

Realized inflation measures: (i) current core CPI inflation; (ii) 12-month moving average

of past core CPI inflation.

The sample lengths are dictated by the availability of the survey data.13 We reconstruct

the return forecasting factor by replacing τCPI
t with each of the inflation expectations

proxies listed above, and re-estimate predictive regressions. Panels A through C in Table

VI compare the regression R2’s.

There are three main observations. First, using long-horizon surveys (panel A),

we obtain R2’s that are very similar to those based on τCPI
t , and significantly higher

than those implied by the CP factor. Second, survey-based measures (panels A and B)

outperform, while the realized inflation proxies (panel C) are approximately on par with

the CP factor. Short-horizon surveys deliver a weaker predictability relative to long-horizon

13The SPF survey is conducted quarterly, Livingston and BCEI surveys are semi-annual. We report results
both for non-interpolated long-term surveys, and also to obtain monthly data, we linearly interpolate
between quarterly/semi-annual observations (e.g. Kiley, 2008).
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inflation forecasts, suggesting that the forecast horizon plays an important role in capturing

the persistent component in yields. One-year surveys still contain a substantial portion of

transitory deviations of inflation from its long-run mean. Third, and analogously, realized

inflation measures (Panel C) do not capture well long-run inflation expectations and their

R2’s are considerably lower than the R2’s obtained using surveys. In summary, survey-

based measures of long-horizon inflation expectations capture the same economic effect as

the adaptive learning proxy, τCPI
t .

Alternatively, one could measure the persistent component in yields by a moving

average of past interest rates themselves. In an extreme case when the real rate is constant,

the short nominal rate should perfectly reveal inflation expectations. We find, however,

that bond return predictability weakens significantly when using the moving average of

past yields instead of τCPI
t (see the online appendix for detailed results). The predictive

R2’s are close to those obtained with the CP factor, indicating that the moving average of

past yields adds little content to the regression. We explain this finding with the behavior

of real rates, which are not constant in real world. When using a moving average of past

interest rates, one faces a tradeoff between smoothing the variation in the real rate and

obtaining a timely proxy for the persistent inflation component. In unreported results, we

establish that for plausible parameters of the real rate dynamics, a moving average of past

inflation provides a better gauge of the persistent component than the moving average of

past yields.

IV. Link to other bond return predictors

IV.A. The Cochrane-Piazzesi factor

Cochrane and Piazzesi (2005) show that a single factor, which they make observable through

a linear combination of forward rates, captures almost complete variation in expected excess

returns on bonds with different maturities. Given its prominence in the empirical term

structure research, it is useful to connect our findings with the CP factor. To this end, let
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us run the predictive regression of an average holding period excess return rxt+1 on a set

of m forward rates with maturities 1 to m years at time t:

rxt+1 = γ0 +
m∑

i=1

γif
(i)
t + εt+1 (18)

= γ0 + γ′ft + εt+1. (19)

Cochrane and Piazzesi (2005) construct the return forecasting factor as γ′ft. From decom-

position (9) and the definition of the forward rate f
(i)
t , we have:

rxt+1 = γ̃0 + τCPI
t (

m∑

i=1

γi) +

m∑

i=1

γ̃ic
(i)
t + εt+1, (20)

= γ̃0 + γ′1τCPI
t + γ̃′ct + εt+1, (21)

where 1 is an m-dimensional vector of ones, γ, γ̃ are respective vectors of loadings that are

explicit functions of b
(i)
τ and γi coefficients, and ct =

(
c
(1)
t , . . . , c

(m)
t

)
′

.

A common empirical property of regression (19) is that the γi coefficients have a

neutralizing effect on each other: Independent of the data set used or the particular shape

of the loadings, γi’s (an so γi’s) sum to a number close to zero. If the long-run Fisher

effect holds, this result is intuitive since only the cyclical part of yield variation matters

for risk premia and thus for forecasting rx. Equation (20) tells us that the OLS tries to

remove the common τCPI
t from forward rates, while preserving a linear combination of the

cycles. For this reason, forecasting returns with forward rates embeds an implicit restriction

on the slope coefficients: γi’s are constrained by the dual role of removing the persistent

component and minimizing the prediction error of excess returns using the cycles.

This interpretation can be tested by allowing the excess returns in (20) to load with

separate coefficients on γ′1τt and γ̃′ct. Effectively, we can split the forward factor into two

components, and estimate: rxt+1 = a0 + a1(γ
′1τt) + a2(γ̃

′ct) + εt+1. This exercise gives an

R̄2 of 30%, similar to 26% obtained with γ′ft. As expected, the predictability comes from
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the strongly significant γ̃′ct term (Newey-West t-statistic of 5.9). The persistent component

γ′1τt is not significantly different from zero, and thus has a minimal contribution to the

overall dynamics of the CP factor.

These results suggest an interpretation of the CP factor as a constrained linear

combination of the cycles. By the presence of the persistent component in forward rates,

the factor is restricted in its ability to extract information about premia. Using just forward

rates, and with no information about long-horizon inflation expectations, τCPI
t , this is the

best predictability one can achieve.

IV.B. Level and slope

It is well-documented that the predictability of bond returns by the level factor (PC1) is

close to zero. Instead, the predictability by the slope (PC2) or the term-spread gives R2’s

of about 15% for long maturities. In this section, we interpret these results in the context

of our decomposition of the yield curve.

Given the representation of yields in equation (1), the level factor should reflect premia

unless they are precisely offset by the short rate expectations. To see the connection between

the level factor lvlt and the return forecasting factor ĉf t, we note that the level, lvlt, is

proportional to the average yield across maturities.14 Therefore, by projecting lvlt onto

τCPI
t , we obtain the average cycle as the residual. We denote this residual by clvlt , noting

that clvlt captures essentially the same source of variation in the yield curve as the average

cycle ct, and their correlation exceeds 99%. Therefore, we can form the forecasting factor

in equation (16) using clvlt instead of ct. The correlation between the two, corr(ĉf
lvl

t , ĉf t),

is 99.9% so the return predictability remains unaffected. This is consistent with the notion

that term premia should contribute to the level of yields.

14The level factor is obtained as lvlt = q1′yt where yt =
(
y
(1)
t , . . . , y

(m)
t

)
′

, 1 is a m × 1 vector of ones,

q is a constant. q1 is the eigenvector corresponding with the largest eigenvalue in the singular-value
decomposition of the yield covariance matrix.
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Principal components rotate short rate expectations and risk premia in yields into

factors. Figure 3 illustrates this point by plotting the contribution of risk premia ĉf t to

the variation in the level factor (average yield curve) and the slope (y
(10)
t − y

(1)
t ).

[Figure 3 here.]

The plot follows from performing a variance decomposition of the level and the slope

in terms of τCPI
t , c

(1)
t , ĉf t.

15 We note that the level factor is predominantly related to short

rate expectations τCPI
t and c

(1)
t , that explain 85% and 9% of its variation, respectively,

while the premium component ĉf t accounts for a small portion of less than 5% of overall

variance of the level. This low contribution of ĉf t explains why the level does not predict

bond returns. The slope of the yield curve, instead, contains information about (transitory)

short rate expectations and risk premia, with c
(1)
t and ĉf t explaining 75% and 23% of its

variance, respectively. This relatively larger contribution of ĉf t is the reason why the slope

carries some degree of predictability for future returns. However, because of the dominant

role of the transitory short rate expectations c
(1)
t , predicting bond returns with the slope

suffers from an error-in-variables problem.

V. Macroeconomic fundamentals and ĉf

This section studies the link between the return forecasting factor and macroeconomic fun-

damentals. We find that ĉf t comprises the predictability of many macro-finance variables.

Conditional on that factor, the additional predictive power of macroeconomic risk pertains

to bonds with short maturities, which we associate with the influence of monetary policy

on this segment of the curve.

15The regression of the level on those three factors gives an R2 = 1 by construction, the regression of
the slope on the three factors gives an R2 = 0.995. The contributions of the factors to the explained
variance are obtained as the partial R2’s. We note that these conclusions are unchanged if we use the
first two principal components rather than the average yield and the term spread.
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V.A. Do macro variables predict returns beyond ĉf?

Including macro-finance variables in predictive regressions together with the CP factor or

with yield principal components usually leads to an increase in R2. Ludvigson and Ng

(2009) summarize information in 132 macro-finance series and find that real activity and

inflation factors remain highly significant and increase the forecasting power relative to the

CP factor. Cooper and Priestley (2009) reach a similar conclusion considering the output

gap.

It is natural to ask whether and how these conclusions may change when we take ĉf t

as our benchmark for term premia variation. Specifically, we estimate the regression:

rx
(n)
t+1 = b0 + b1ĉf t + b′2Macrot + ε

(n)
t+1, (22)

where Macrot represents the additional macro-finance information. This regression allows

us to assess which macroeconomic variables are reflected in the movements of bond risk

premia.

Table VII displays estimates of (22) with eight macro-finance factors, F̂t, constructed

according to Ludvigson and Ng (2009), and indicates the domains that these factors

capture. We use data from 1971:11 through 2007:12. The end of the sample is dictated

by the availability of the macro series. Alone, F̂t explain more than 20% of variation in

bond excess returns. Although we do not report the details of the separate regression of rx

on F̂t only, in Table VII we indicate significant factors at the 1%, 5% and 10% level with

superscripts H, M, L, respectively. If we exclude ĉf from regression (22), the significant

factors involve financial spreads, stock market returns, inflation, and monetary conditions.

[Table VII here.]

In the presence of ĉf t, however, most macro variables lose predictive power. Their

contribution to R2, denoted as “∆R2” in the table, does not exceed 2%. The only exception
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is the two-year bond for which inflation and, to a lesser degree, the real activity factor

remain significant yielding ∆R2 of 5%.16

We also use output gap to represent macro information in equation (22). Following

Cooper and Priestley (2009), we obtain gapt from the unrevised data on industrial produc-

tion by applying a quadratic time trend.17 Also here, the estimates (not reported) suggest

that gapt does not provide additional information beyond that conveyed by ĉf t.

Out of eight factors considered in Table VII, only F̂2t is statistically significant for

intermediate and long maturities. To the extent that F̂2t is related to different financial

spreads, as shown by Ludvigson and Ng (2009), it seems to reflect the variation in funding

liquidity. To explore this predictability channel, we construct several liquidity proxies such

as spreads on commercial papers, swap rates, Baa corporate bonds, three-month T-bill

over Fed’s target, and the TED. We also consider the on-the-run liquidity factor recently

proposed by Fontaine and Garcia (2011) (henceforth, FG factor).18 Exact descriptions of

the variables are in Appendix B. We evaluate the joint significance of ĉf t and each of those

variables over the sample period 1987:04 through 2007:12 when all series are available. The

FG factor and the Moodys Baa spread turn out to be the only variables that, albeit weakly

and only at short maturities, continue to contribute to the predictability achieved with

ĉf t.
19

At this point, it is worth summarizing two properties of ĉf revealed by our analysis

up to now: ĉf has a non-trivial effect on the cross-section of yields, and its predictive power

increases with the maturity of the bond. The current section suggests that while macroe-

conomic risks have different effect on term premia across maturities, their contribution

is strongest at the short maturity range. Specifically, using macroeconomic information

16We do not report analogous estimates with the CP factor for our sample, and just note that they conform
with the conclusions of Ludvigson and Ng (2009). Using the CP factor as a benchmark, increases the

contribution of macroeconomic information in (22) in that most F̂t variables preserve their significance.
17We construct gapt using the industrial production going back to 1948:01 as in Cooper and Priestley

(2009).
18We thank Jean-Sébastien Fontaine for providing the data on their liquidity factor.
19The details of these results are available upon request.
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beside ĉf could improve investors’ forecast of the return on the two-year bond, but not on

bonds with longer maturities.

V.B. Predicting economic activity

The ability of the slope of the yield curve to predict future economic activity is one of the

well-documented facts in macroeconomics (e.g. Estrella and Hardouvelis, 1991; Harvey,

1989). We have shown that the slope reflects both short rate expectations and the risk

premium. In this section, we explore how each of these components is related to economic

growth.

We forecast future economic activity, measured by the Chicago Fed National Activity

Index (CFNAI),20 by estimating the following regression:

CFNAIt+k = β ′Xt + ut+k, k = 1, 2, . . . , 48 months, (23)

where as regressors Xt we consider the following variables: (i) slope y
(10)
t − y

(1)
t , (ii)

the negative of the transitory short rate expectations −c
(1)
t ,21 (ii) the return forecasting

factor ĉf t, and (iv) jointly −c
(1)
t and ĉf t. To study the impact on growth of the different

components we run each of these regressions separately.

Figure 4 summarizes the R2’s, β coefficients, and t-statistics of these regressions.

The key observation is that the term premium and the expected short rate differ in their

respective abilities to predict economic activity in terms of the magnitude and forecast hori-

zon. Moreover, separating these two components leads to a stronger growth predictability

20The CFNAI is published on the Chicago Fed web page as a weighted average of 85 existing monthly
indicators of national economic activity including (i) production and income, (ii) employment,
unemployment, and hours, (iii) personal consumption and housing, and (iv) sales, orders, and
inventories. The index is constructed to have an average value of zero and a standard deviation of one.
Since economic activity tends toward trend growth rate over time, a positive index reading corresponds
to growth above trend and a negative index reading corresponds to growth below trend. Thus, we can
interpret CFNAI as a growth indicator. We use the monthly unsmoothed reading of the index.

21The minus sign in front of c
(1)
t makes it positively correlated with the slope, and is for the ease of

exposition.
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relative to the slope, because it alleviates the errors-in-variables problem. Lower expected

short rate (higher −c
(1)
t ) forecasts higher growth up to 24 months ahead, with a peak

around 12 months ahead. This effect is analogous to the one captured by the slope. A new

effect comes with the term premium: Initially, a higher term premium (higher ĉf t) predicts

lower growth up to one year ahead, but this effect is marginally significant and tapers

off relatively fast. Over longer time horizon, higher bond risk premium predicts higher

economic activity—this effect becomes strongest about two and a half years ahead, precisely

when the impact of short rate expectations wears down to approximately zero.22 This

last results provides an analogy to the consumption-based CAPM literature (Parker and

Julliard, 2005; Malloy, Moskowitz, and Vissing-Jorgensen, 2009). Similar to our findings,

this literature finds that a positive relationship between future consumption growth and

stock excess returns becomes visible at long horizons of about three years.

[Figure 4 here.]

VI. Additional results

VI.A. Link to unspanned factors

The return predictability that we document crucially depends on the new information we

provide about long-horizon inflation expectations. That is, relative to the forward rate

regressions, the extra predictive power comes from extending the information set of an

econometrician. It is therefore natural to relate our findings to the literature on unspanned

(or hidden) factors in term premia (Joslin, Priebsch, and Singleton, 2010; Duffee, 2011).

One way used in the literature to assess the additional information that τCPI
t provides, and

that is not in the cross section of yields, is to estimate the residual of the regression:

22The relation between the yield curve and economic activity is often discussed by policy makers. “(. . . )
the decline in term premiums in the Treasury market of late may have contributed to keeping long-term
interest rates relatively low and, consequently, may have supported the housing sector and consumer
spending more generally” (D. Kohn, speech on Jul 25, 2005). “Easier financial conditions will promote
economic growth.” (B. Bernanke, Nov 4, 2010, The Washington Post). These quotes appear to refer to
the part of the relationship between risk premia and growth that we find at shorter horizons.
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τCPI
t = b0 + b′1yt + ut. (24)

We estimate (24) using six yields with maturities one, two, five, seven, ten and 20 years as

regressors.23 The adjusted R2 from this regression is 89.5%. While high, the R2 less than

one suggest a possibility of important information being left in ût.

By construction the fitted ût is orthogonal to the vector of yields yt, i.e. it is a hidden

factor. Two additional features of the residual are worth emphasizing: First, ût exhibits

a non-zero correlation with factors in our decomposition (τCPI
t , c

(1)
t , ĉf t). The correlation

between ĉf t and ût is the strongest at −0.71. Other correlations are also non-negligible

reaching 0.32 for τCPI
t and 0.47 for c

(1)
t , and given that neither of these factors predicts

bond returns, they cast doubt on û capturing the pure risk premium effect. Second, while

ût predicts bond excess returns, its predictive power is on average 45% lower than that of

ĉf t. In a predictive regression of bond excess returns on ût, the R2 values range between

19% and 31% across maturities. This evidence indicates that ût does not capture the same

term premium effect that ĉf t does.

The regression (24) assumes that yields are measured perfectly. We now analyze the

extent to which the empirical properties of û are sensitive to this assumption.24 To this

end, we set up a simulation experiment from an affine three-factor model under the null

hypothesis that three factors are perfectly spanned by the cross section of yields:25 In such

a model, in absence of the measurement error, the R2 in regression (24) equals one, and the

theoretical correlation between the residual û and underlying factors equals zero. We find

that already a small measurement error introduces large biases in the regression coefficients.

23Including more yields or different maturities does not change the results. Including more yields raises
the concern of multicollinearity.

24The perfect observability of yields can be violated for several reasons, e.g. the splining of the zero curve.
For instance the measurement error implied by different constructions of the zero curve (GSW, FB,
CMT) ranges between 6 and 25 basis points, with an average of 14 basis points. Similarly, using the
CRSP data set, we estimate the average bid-ask spread in yields across maturities is to equal 8 bps
(1971–1980), 5 bps (1981–1990), 2 bps (1991–2000), and 1 bps (2001–2010).

25Details of the simulation design and the results are available upon request.
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Those biases tend to decrease the R2 away from the theoretical value of one and to increase

the correlation between the residual û and factors away from the theoretical value of zero.

The experiment suggests that the empirical values of R2 in regression (24) and the

correlation between ĉf and û found in the data could arise under the measurement error of

about five basis points. These results grant some caution in interpreting ĉf as the hidden

factor. We leave a further investigation of these issues for future research.

VI.B. Out-of-sample predictability

Out-of-sample predictability presents and important check for the stability of our findings.

Suppose an investor perceives the process generating the slow variation in yields as being

driven by the long-run inflation expectations, and estimates the persistent factor τCPI
t using

core CPI. In doing so, they exploit inflation information that is available only up to time

t, and update the estimates of τCPI
t with the gain parameter of 0.9868.

We consider three out of sample periods starting in 1978:01, 1985:01 and 1995:01,

ending in 2009:12. For each of the samples, we obtain the initial estimates based on

the period from 1971:11 until 1977:01, until 1984:01 and until 1994:01, respectively. With

information up to this point, say t0, we obtain cycles as in equation (12), and run regression

(13) predicting excess returns realized up t0 using cycles up to t0 less 12 months. At the

estimated parameters, we then predict excess returns 12 months ahead, i.e. realized at

t0 plus 12 months. We extend the sample month-by-month, and repeat these steps until

we reach the maximum sample length. The performance of cycles is compared to that of

forward rates and the slope.

Our out-of-sample tests involve three measures (see Appendix G for details). We

start with the encompassing test (ENC-NEW) proposed by Clark and McCracken (2001).

Following discussion in Section IV.A, we treat cycles as an unrestricted model and forward

rates as a restricted one. The null hypothesis of the ENC-NEW test is that the restricted
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model (forwards) encompasses all the predictability in bond excess returns, and it cannot

be further improved by the unrestricted model (cycles).26

The second measure is the ratio of mean squared errors implied by the unrestricted

versus restricted model, MSEcyc/MSEfwd. A number less than one indicates that the

unrestricted model is able to generate lower prediction errors.

The third measure is the out-of-sample R2 of Campbell and Thompson (2008), R2
OOS.

R2
OOS compares the forecasting performance of a given predictor toward a “naive” forecast

obtained with the historical average return. The statistic is analogous to the in-sample R2:

Its positive value indicates that the predictive model has a lower mean-squared prediction

error than the “naive” forecast.

Throughout, for forward rate regressions, we use forward rates with maturities of

one, two, five, seven, ten and 20 years as predictors. For cycle regressions (except the

ENC test), we use the short maturity cycle c
(1)
t and the average cycle c̄t as predictors in

bivariate regressions.27 For the sake of comparability with the forward rate regressions, in

the ENC test we simply employ six cycles with the same maturities as the forward rates.

For slope regressions, we forecast excess return on the n-year bond with the corresponding

spot forward spread, f
(n)
t − y

(1)
t . The slope regressions provide a useful benchmark out of

sample because, other than forward rate regressions, they do not require an estimation of

a large number of coefficients.

The panels of Table IX report the results for 1971–2009, 1985–2009, and 1995–2009,

respectively. The ENC-NEW test rejects the null hypothesis for all maturities at the 95%

confidence level: The cycles’ model significantly improves the predictive performance over

forwards. The MSE ratio, MSEcyc/MSEfwd, is reliably below one for all maturities. In the

recent sample, the MSEcyc/MSEfwd ratio is substantially lower than in the period 1971–

26Clark and McCracken (2005) show that the ENC-NEW test statistic has a non-standard distribution
under the null, therefore we obtain the critical values by bootstrapping.

27The results remain almost identical if we first construct ĉf as in Section III.B, and then use it for
predicting returns out of sample.
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2009. Indeed, while in the last two decades the performance of forward rates deteriorates

compared to the full sample, the performance of the cycles remains relatively stable. With

one exception, R2
OOS values obtained with cycles are large and positive for all maturities

across all sample periods. In summary, the out-of-sample statistics support the previous

in-sample evidence, indicating the relevance of the economic mechanism that the cycles

capture.

[Table IX here.]

Additionally, in the online appendix we show that the out-of-sample results are only

weakly influenced when varying the learning parameter between 0.975 (fast updating) and

0.995 (very slow updating). Based on the literature which we have summarized above, this

range for the gain parameter can be viewed as covering the extremes.

VII. Robustness

VII.A. Actual non-splined bond portfolio returns across horizons

One may be worried that the predictive results depend on the use of splined (artificial) bond

returns. To address this concern, we use the actual bond returns for different maturity

segments available from the CRSP Fama files. The data have a monthly frequency and

are an equal weighted average of unadjusted holding period returns for each bond in the

portfolio. From the monthly files we compute returns in excess of Tbill rate over investment

horizons of one, three, six, nine and 12 months.

Table VIII summarizes the predictive regressions showing that ĉf t is highly significant

across all horizons, and the R2 increases with the horizon. For 12-month holding period

the results broadly agree with the ones we have reported in Section III, Table V. Therefore,

our conclusions are robust to the way we measure bond returns.

[Table VIII here.]
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VII.B. Other econometric concerns

Predictive regressions like those we estimate pose econometric problems, especially at longer

forecast horizons and when working with the available sample sizes. Therefore, we provide

additional evidence based on reverse regression and non-overlapping annual returns.

Let us go back to regression (13), whose results we report in Table IV. The Wald

test strongly rejects that all coefficient on ct’s are zero, using both the Hansen-Hodrick

and the Newey-West method. However, since both tests are known to overreject the null

hypothesis in small samples (e.g., Ang and Bekaert, 2007), in Table IV we additionally

provide a conservative test based on the reverse regression proposed by Hodrick (1992)

and recently extended by Wei and Wright (2010). This approach amounts to regressing

short-horizon (one-month) returns on the long-run (twelve-month) mean of the cycles, and

is less prone to overrejection.28 While the reverse regression test statistics are by design

more moderate, we consistently reject the null of no predictability by the cycles at the

conventional significance levels. We compare the standard errors obtained with the cycles

to those of the forward rate regressions. In both samples and across all maturities, cycles

give much stronger evidence of predictability than do forward rates.

We also study the predictability of nonoverlapping annual bond returns by the single

factor ĉf . Our conclusions do not change, both in terms of statistical and economic

significance. Based on an non-overlapping sample, the predictive R2 range from 40% for

the two-year, through 56% for the ten-year and 52% for the twenty-year bond.

VII.C. Alternative ways of constructing ĉf

There are alternative ways of constructing the single forecasting factor. We could proceed in

analogy to Cochrane and Piazzesi (2005) and obtain the forecasting factor as a fitted value

28Wei and Wright (2010) extend the reverse regressions proposed by Hodrick (1992) beyond testing the
null hypothesis of no predictability, and allowing for highly persistent regressors. In constructing one-
month excess returns on bonds, we follow Campbell and Shiller (1991), approximating the log price of

a (n− 1/12)-maturity bond as −(n− 1/12)y
(n)
t .
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of the linear combination of several cycles. Also, we could estimate the factor in one step

via non-linear least squares, or by means of an eigenvalue decomposition of the covariance

matrix of expected returns. As an equally valid approach, in the second step regression (16),

we could only use contemporaneous time-t variables on the left- and right-hand sides of the

equation. As it turns out, the single factor amounts to orthogonalizing the average longer-

maturity cycle c̄t with respect to c
(1)
t .29 Those different approaches to constructing ĉf t

produce essentially an identical return forecasting factor (correlation exceeds 99% among

the alternatives), and lead to very similar conclusions for return predictability. These

alternatives are discussed in the online appendix.

VII.D. Other data sets

One may be concerned that the return predictability we document depends to the CMT

yields, and the way we construct the zero curve. To show that our results are robust to

these choices, we perform the predictive exercise on other two commonly used data sets

constructed by Fama and Bliss (FB) and Gürkaynak, Sack, and Wright (2006, GSW). We

remain conservative on two fronts. First, we focus on the range of maturities from one to

five years, as dictated by the FB data. Second, to assess the sensitivity of our results to

the recent crisis, we consider two samples: (i) excluding the crisis (1971–2006), and (ii)

including the crisis (1971–2009). The data sets we consider differ not only in the way of

constructing the zero curve, but also in the choice of the underlying yields. For instance,

CMT yields are based on the on-the-run securities while GSW yields are off-the-run. We are

in this way able to assess if our conclusions are driven by the liquidity premium pertaining

to the on-the-run curve.

29As the online appendix shows, we could estimate the return forecasting factor as the residual from the

regression: c̄t = γ1c
(1)
t + ε̄t+1, ĉft = c̄t − γ̂1c

(1)
t .
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The forecasting ability of the cycles is confirmed across all data sets. Despite using a

restricted number of maturities, the R2’s obtained with the cycles are in the 50% range.30

Using yields and forward rates, or spreads leads to much lower predictability, diminishing

the R2’s by half. The gap between cycles and other predictors becomes even more apparent

when we include the crisis years. While the recent turmoil leads to a weakened performance

across all regressors, with forward rates explaining just about 17% of variation in rxt+1,

the predictive power of the cycles still remains confidently above 45%.

VIII. Conclusions

This paper is concerned with the role of frequencies in the yield curve and how they encode

different economic forces at work. Building on an extensive macroeconomic literature, in a

first step, we separate two effects in yields: a slow adjustment related to the changing long-

run mean of inflation, and transitory fluctuations (cycles) around that smooth component

reflecting current macro-finance conditions. Consistent with the long-run Fisher hypothesis,

cycles present transitory deviations from the long-term relationship between yields and

long-horizon inflation expectations. The cycles across different maturities combine the

term structure of transitory short rate expectations with the term structure of risk premia.

Using their cross-sectional composition, in the second step, we distill those two elements

into distinct factors. This leaves us with three observable variables: persistent short rate

expectations related to perceived inflation target, transitory short rate expectations at a

business cycle frequency, and the term premium factor, ĉf , which has the highest frequency

of the three. We confirm our findings by various robustness checks including different

measures of long-horizon inflation expectations.

30We report these results in the online appendix. Unreported results show that the one to five year yield
maturity range that we use here can be restrictive. For example, in the Greenspan’s subperiod we find
that the inclusion of cycles with longer maturities improves the forecasting performance.
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Künsch, H. R. (1989): “The Jackknife and the Bootstrap for General Stationary Observations,”
Annals of Statistics, 17, 1217–1241.

Lahiri, S. (1999): “Theoretical Comparisons of Block Bootstrap Methods,” Annals of Statistics,
27, 386–404.

Ljungqvist, L., and T. J. Sargent (2004): Recursive Macroeconomic Theory. The MIT Press.

35



Ludvigson, S. C., and S. Ng (2009): “Macro Factors in Bond Risk Premia,” Review of
Financial Studies, 22, 5027–5067.

Malloy, C. J., T. J. Moskowitz, and Vissing-Jorgensen (2009): “Long-Run Stockholder
Consumption Risk and Asset Returns,” Journal of Finance, 64, 2427–2479.

Malmendier, U., and S. Nagel (2011): “Learning from Inflation Experiences,” Working paper,
UC Berkeley and Stanford University.

Mishkin, F. (1992): “Is the Fisher Effect for Real?,” Journal of Monetary Economics, 30, 195–
215.

Mundell, R. (1963): “Inflation and Real Interest,” Journal of Political Economy, 71, 280–283.

Orphanides, A., and M. Wei (2010): “Evolving Macroeconomic Perceptions and the Term
Structure of Interest Rates,” Working paper, Board of Governors of the Federal Reserve System.

Parker, J. A., and C. Julliard (2005): “Consumption Risk and the Cross Section of Expected
Returns,” Journal of Political Economy, 113, 185–222.

Piazzesi, M., and M. Schneider (2011): “Trend and Cycle in Bond Premia,” Working paper,
Stanford University and NBER.

Rudebusch, G. D., and T. Wu (2008): “A Macro-Finance Model of the Term Structure,
Monetary Policy, and the Economy,” The Economic Journal, 118, 906–926.

Sargent, T. J. (1999): The Conquest of American Inflation. Princeton University Press.

Sims, C. A. (1988): “Projecting Policy Effects with Stocastic Models,” Revista de Analysis
Economico, 3, 3–20.

Stock, J. H., and M. W. Watson (2007): “Why Has U.S. Inflation Become Harder to
Forecast?,” Journal of Money, Credit, and Banking, 39, 3–33.

Summers, L. (1982): “The Non-Adjustment of Nominal Interest Rates: A Study of the Fisher
Effect,” NBER working paper.

Wei, M., and J. H. Wright (2010): “Reverse Regressions and Long-Horizon Forecasting,”
Working paper, Federal Reserve Board and Johns Hopkins University.

36



IX. Figures
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Figure 1: The persistent inflation expectations factor, τCPI
t

Panel a superimposes the one- and ten-year yield with τCPI
t . τCPI

t is constructed as the discounted moving
average of the core CPI in equation (8), with sums truncated at N = 120 months and the discount factor
v = 0.9868. τCPI

t is fitted to yields so that all variables match in terms of magnitudes. Panel b plots the
one-year ahead median inflation forecasts from the Livingston survey and realized core CPI inflation.
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Figure 2: Single factor

The figure displays the return forecasting factor ĉf t formed with equation (16). Shaded areas mark the
NBER recessions. The series has been standardized.
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Figure 3: Contributions of ĉf t to level and slope

The figure plots the contributions of ĉf t to the variation in the level and the slope (term spread) of the

yield curve. We run the regression of the level and slope, respectively, on three factors τCPI
t , c

(1)
t , ĉf t. The

three factors explain 100% of variation in the level and 99.5% of variation in the term spread. Then, the
shadowed area shows the difference between the level and the slope, respectively, and their value fitted by

two factors τCPI
t and c

(1)
t , i.e. excluding ĉf t.
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Figure 4: Predicting economic activity

The figure shows R2’, β coefficients, and t-statistics from regressions of CFNAI (a real activity measure)
on yield curve variables. The regressions are of the type:

CFNAIt+k = β′Xt + ut+k,

where we use four different sets of regressors in Xt: (i) risk premium ĉf t (labeled “premium”), (ii)

transitory short rate expectations −c
(1)
t (labeled “rate expectations”), (iii) both rate expectations and

premium (−c
(1)
t , ĉf t (labeled “rate expectations + premium”), and (iv) slope of the yield curve y

(10)
t − y

(1)
t

(labeled “slope”). Transitory short rate expectations c
(1)
t enter the regressions with a minus so that they

are positively correlated with the slope of the yield curve.
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X. Tables

Table II: Estimates of the vector error correction model

The table reports the estimated coefficients from the error correction model on monthly frequency:

∆y
(n)
t = acc

(n)
t−∆t + ay∆y

(n)
t−∆t + aτ∆τt−∆t + a0 + εt, ∆t = 1 month

Reported t-statistics use Newey-West adjustment with 12 lags. For ease of comparison, all variables are standardized. ∆yt
in the last column denotes the average yield change across maturities. The sample is 1971:11-2009:12.

Dependent variable

Regressor ∆y
(1)
t ∆y

(2)
t ∆y

(5)
t ∆y

(7)
t ∆y

(10)
t ∆y

(20)
t ∆yt

c
(n)
t -0.19 -0.19 -0.21 -0.21 -0.21 -0.21 -0.21

(-2.36) (-2.87) (-3.74) (-4.12) (-4.24) (-4.26) (-3.92)

∆y
(n)
t 0.22 0.22 0.18 0.13 0.13 0.10 0.17

( 3.01) ( 4.38) ( 4.15) ( 3.04) ( 3.10) ( 2.29) ( 3.79)

∆τt 0.07 0.07 0.09 0.08 0.09 0.06 0.09

( 1.13) ( 1.34) ( 1.67) ( 1.64) ( 1.77) ( 1.24) ( 1.67)

R̄2 0.06 0.06 0.06 0.05 0.05 0.04 0.06
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Table III: Bond excess returns: summary statistics

Panel A reports summary statistics for bond excess returns. Panel B reports the mean and standard deviation of duration-

standardized excess returns to remove the effect of duration. AR(1) denotes the first order autocorrelation coefficient. Panel

C reports the correlation between excess returns of different maturities. Bond excess returns are computed at an annual

horizon as rx
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t − y

(1)
t and multiplied by 100.

Panel A. Bond excess returns

rx(2) rx(5) rx(7) rx(10) rx(15) rx(20)

Mean 0.69 1.61 1.97 1.99 2.57 3.05

Stdev 1.99 6.29 8.60 11.69 16.99 22.59

AR(1) 0.94 0.93 0.93 0.93 0.93 0.92

Panel B. Duration standardized excess returns

rx(2) rx(5) rx(7) rx(10) rx(15) rx(20)

Mean 0.34 0.32 0.28 0.20 0.17 0.15

Stdev 1.00 1.26 1.23 1.17 1.13 1.13

Panel C. Correlation of excess returns

rx(2) rx(5) rx(7) rx(10) rx(15) rx(20)

rx(2) 1.00 – – – – –

rx(5) 0.95 1.00 – – – –

rx(7) 0.91 0.99 1.00 – – –

rx(10) 0.86 0.96 0.99 1.00 – –

rx(15) 0.81 0.93 0.96 0.99 1.00 –

rx(20) 0.76 0.87 0.91 0.94 0.97 1.00
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Table IV: First look at predictive regressions of bond returns

The table reports the results of predictive regressions in equation (13). In the first row, we provide adjusted R2 values. To

assess the small sample (SS) properties of R̄2, the next three rows give its 5%, 50% and 95% percentile values obtained with

the block bootstrap (see Appendix F). The χ2(6) tests if the coefficients (excluding the constant) are jointly equal to zero.

We report the Hansen-Hodrick (HH) and the Newey-West (NW) correction, using 12 and 15 lags, respectively. “LS” means

that the statistics were estimated using the full sample. The row “χ2(6) (SS 5%)” states the lower 5% bound on the values

of the χ2-test (using NW adjustment) obtained with the bootstrap. We also provide conservative standard errors obtained

using the reverse regression delta method (rev.reg.) of Wei and Wright (2010) and the corresponding p-values. The last five

rows summarize the corresponding results for the forward rate regressions. Cycles ct and forward rates ft are of maturities

one, two, five, seven, ten, and 20 years. Sample is 1971:11–2009:12.

The asymptotic 1%, 5%, and 10% critical values for χ2(6) are 16.81, 12.59, and 10.64, respectively.

Statistic rx(2) rx(5) rx(7) rx(10) rx(15) rx(20)

Cycle regressions: rx
(n)
t+1 = δ0 + δ′ct + ε

(n)
t+1

R̄2 0.42 0.49 0.52 0.55 0.56 0.57

R̄2 (SS,5%) 0.31 0.37 0.40 0.44 0.45 0.44

R̄2 (SS,50%) 0.47 0.53 0.56 0.59 0.59 0.59

R̄2 (SS,95%) 0.61 0.65 0.67 0.68 0.68 0.69

χ2(6) (LS, HH) 46.98 117.38 149.18 182.40 181.22 149.69

χ2(6) (LS, NW) 61.59 131.12 150.20 172.52 166.63 125.39

χ2(6) (SS,5%) 48.01 86.10 95.26 116.47 116.08 87.13

χ2(6) (rev. reg.) 13.19 24.21 28.56 35.80 36.66 30.02

pval 0.04 0.00 0.00 0.00 0.00 0.00

Forward-rate regressions: rx
(n)
t+1 = d0 + d′ft + ε

(n)
t+1

R̄2 0.21 0.22 0.24 0.24 0.26 0.31

χ2(6) (LS, HH) 23.82 26.07 23.13 22.77 23.20 20.77

χ2(6) (LS, NW) 25.38 28.76 28.13 28.59 28.84 26.95

χ2(6) (rev. reg.) 9.14 12.73 13.15 13.48 13.63 14.22

pval 0.17 0.05 0.04 0.04 0.03 0.03
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Table V: Predicting returns with the single forecasting factor

Panel A reports the estimates of equation (15). Rows denoted as “LS” give the full sample t-statistics and adjusted R2’s.

Rows denoted as “SS” summarize the small sample distributions of the statistics obtained with the block bootstrap. Panel B

shows the predictability of individual bond returns with the single factor. Again, the full sample (LS) and small sample (SS)

distributions are provided. Row “∆R̄2” gives the difference in R̄2 values between the corresponding unconstrained predictive

regressions using six cycles in Table IV and the regressions using the single factor, ĉf t. HH denotes Hansen-Hodrick adjustment

in standard errors, NW denotes the Newey-West adjustment. We use 12 and 15 lags, respectively. Bootstrapped t-statistics

use the NW adjustment with 15 lags to ensure a positive definite covariance matrix in all bootstrap samples. To facilitate

comparisons, in panel B all left- and right-hand variables have been standardized. Sample is 1971:11–2009:12.

Panel A. rx
(n)
t+1 = γ0 + γ1c

(1)
t + γ2ct + εt+1

γ̂1 t-stat (HH,NW) γ̂2 t-stat (HH,NW) R̄2

LS -0.85 (-5.69, -6.52) 1.18 (9.99, 10.24) 0.54

SS (5%, 50%, 95%) [-11.05, -7.52, -5.17] [7.36, 10.70, 14.52] [0.40, 0.56, 0.66]

Panel B. rx
(n)
t+1 = β0 + β1ĉf t + ε

(n)
t+1, where ĉf t = γ̂0 + γ̂1c

(1)
t + γ̂2c̄

(n)
t

Statistic rx(2) rx(5) rx(7) rx(10) rx(15) rx(20)

β 0.62 0.68 0.71 0.73 0.74 0.72

tstat (LS, HH) 5.77 8.66 9.37 10.21 10.07 9.12

tstat (LS, NW) 6.60 9.45 9.92 10.55 10.26 9.06

tstat (SS,5%) 4.58 6.37 6.95 7.35 7.50 6.89

tstat (SS,50%) 7.54 10.28 10.69 11.09 10.77 9.56

tstat (SS,95%) 12.80 15.40 14.95 15.17 14.24 12.70

R2 (LS) 0.38 0.46 0.50 0.53 0.55 0.52

∆R̄2 (LS) 0.03 0.02 0.03 0.02 0.01 0.05

R2 (SS, 5%) 0.22 0.30 0.35 0.39 0.41 0.39

R̄2 (SS, 50%) 0.40 0.48 0.52 0.55 0.56 0.53

R̄2 (SS, 95%) 0.55 0.61 0.63 0.65 0.66 0.63
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Table VI: Return predictability with different measures of long-horizon inflation

expectations

This table reports the R2’s from predictive regression using different measures of the long-horizon inflation expectations.

Because the survey samples are of different lengths, in panels A and B, the first row reports R2’s when ĉf t is constructed

using τCPI , as in the previous sections. The second row reports R2’s obtained when the alternative proxy for the persistent

component from surveys or from realized inflation. The third row reports R2’s for the CP factor. Panel A reports the results

using survey data linearly interpolated to the monthly frequency (panel A1) and not interpolated surveys at their original

semi-annual frequency (panel A2). Panel C contains only results obtained using alternative realized CPI measures, as the

sample length for ĉf and CP factors overlaps with the one reported in previous tables.

rx(2) rx(5) rx(7) rx(10) rx(15) rx(20)

Panel A: Ten-year ahead inflation expectations

A1. Livingston and BCEI, 1979–2009 (monthly, linearly interpolated)

R̄2 ĉf, τCPI 0.28 0.41 0.45 0.50 0.51 0.49

R̄2 ĉf, τsurv 0.43 0.43 0.47 0.47 0.48 0.48

R̄2 CP 0.12 0.13 0.15 0.16 0.18 0.19

A2. Livingston and BCEI, 1979–2009 (semiannual data, non-interpolated)

R̄2 ĉf(τCPI ) 0.30 0.45 0.50 0.53 0.55 0.53

R̄2 ĉf(τsurv) 0.42 0.43 0.49 0.49 0.50 0.50

R̄2 CP 0.20 0.23 0.26 0.25 0.26 0.28

Panel B: One-year ahead inflation expectations

B1. GDP deflator, SPF, 1971–2009

R̄2 ĉf, τCPI 0.38 0.46 0.50 0.53 0.55 0.52

R̄2 ĉf, τsurv 0.29 0.26 0.30 0.31 0.32 0.30

R̄2 CP 0.19 0.20 0.23 0.23 0.26 0.30

B2. Median CPI, BCFF, 1984–2009

R̄2 ĉf, τCPI 0.26 0.43 0.50 0.54 0.55 0.51

R̄2 ĉf, τsurv 0.22 0.32 0.38 0.40 0.44 0.46

R̄2 CP 0.24 0.28 0.32 0.34 0.36 0.35

Panel C: Realized inflation

C1. Current realized core CPI, 1971–2009

R̄2 ĉf, CPI 0.19 0.18 0.21 0.23 0.25 0.23

C2. 12-month MA of realized core CPI, 1971–2009

R̄2 ĉf, CPI(MA12) 0.19 0.20 0.23 0.26 0.28 0.27

44



Table VII: Marginal predictability of bonds excess returns by macro factors

The table reports predictive regressions of bond excess returns on the single return forecasting factor ĉf t and eight macro

factors proposed by Ludvigson and Ng (2009), F̂1t, . . . , F̂8t. “∆R̄2” denotes the gain in adjusted R2 from adding all eight

macro factors to the predictive regression with ĉf t. “R̄2 (F̂t only)” reports the adjusted R2 values from regressing the excess

returns on F̂1t, . . . , F̂8t. Macro factors are constructed from 132 macroeconomic and financial series. The sample period is

1971:11–2007:12. Superscripts H,M,L at t-statistics indicate variables that are significant in the macro-only regression of rx

on F̂t at 1%, 5% and 10%, respectively. In parentheses, t-statistics use the Newey-West adjustment with 15 lags. All variables

are standardized.

Macro factors: rx
(n)
t+1 = b0 + b1ĉf t + b′

2
F̂t + ε

(n)
t+1, sample 1971-2007

Regressor rx(2) rx(5) rx(7) rx(10) rx(15) rx(20)

ĉf t 0.52 0.60 0.63 0.67 0.69 0.68

4.89 6.53 6.72 7.18 7.16 6.37

F̂1t (real) 0.17 0.08 0.04 0.01 -0.01 0.00

(1.66)M (0.86) (0.45) (0.15) (-0.15) (-0.03)

F̂2t (financial spreads) 0.05 0.07 0.09 0.09 0.09 0.06

(1.03)M (1.53)M (2.00)H (2.02)H (1.91)H (1.14)M

F̂3t (inflation) -0.03 -0.01 0.00 0.01 0.01 0.01

(-1.58) (-0.44) (0.17) (0.31) (0.51) (0.47)

F̂4t (inflation) -0.15 -0.06 -0.02 0.01 0.05 0.06

(-2.12)H (-0.84)M (-0.23)M (0.17)L (0.64) (0.77)

F̂5t 0.07 0.02 0.01 0.00 -0.01 0.00

(1.17) (0.35) (0.19) (-0.03) (-0.18) (-0.01)

F̂6t (monetary) -0.09 -0.10 -0.10 -0.10 -0.10 -0.09

(-1.00)H (-1.06)H (-1.05)H (-1.17)H (-1.14)H (-0.92)H

F̂7t (bank reserves) -0.04 -0.08 -0.08 -0.08 -0.09 -0.09

(-0.74)M (-1.24)H (-1.26)H (-1.45)H (-1.56)H (-1.47)H

F̂8t (stock market) 0.01 0.02 0.02 0.01 0.01 0.03

(0.23) (0.72)M (0.66)M (0.43)M (0.52)H (1.18)H

R̄2 0.45 0.49 0.52 0.55 0.57 0.54

R2 (F̂t only) 0.25 0.22 0.22 0.22 0.22 0.20

∆R̄2 = R̄2
− R̄2(ĉf t) 0.05 0.02 0.01 0.02 0.02 0.02
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Table VIII: Predicting actual bond portfolio returns

The table reports the predictive regressions of actual bond portfolio excess returns from CRSP on ĉf t at different investment

horizons, rxt+h/12, h = 1, 3, 6, 9, 12 months. The column labels reflect the maturity bin for each bond portfolio: from below

two years to above ten years. The sample is from 1972:01 (where return for the > 120m portfolio become available) through

2010:12. We use log returns; returns are in excess of Tbill rates of corresponding maturity obtained from H.15 Fed tables. Tbill

rates are converted from discount to continuous basis. T-statistics use Newey-West adjustment with 12 lags. All variables

are standardized.

12m < rx < 24m rx < 36m rx < 48m rx < 60m rx < 120m rx > 120m

Panel A. h = 1 month

ĉf t 0.17 0.17 0.19 0.19 0.20 0.22

( 3.60) ( 3.85) ( 4.29) ( 4.60) ( 4.86) ( 5.62)

R̄2 0.03 0.03 0.03 0.03 0.04 0.05

Panel B. h = 3 months

ĉf t 0.30 0.31 0.33 0.34 0.36 0.38

( 4.71) ( 4.98) ( 5.45) ( 5.82) ( 6.07) ( 6.83)

R̄2 0.09 0.09 0.10 0.11 0.12 0.14

Panel C. h = 6 months

ĉf t 0.44 0.45 0.47 0.48 0.51 0.54

( 5.70) ( 6.05) ( 6.56) ( 7.03) ( 7.43) ( 8.36)

R̄2 0.19 0.20 0.22 0.23 0.25 0.29

Panel D. h = 9 months

ĉf t 0.54 0.56 0.58 0.59 0.62 0.67

( 6.92) ( 7.41) ( 7.95) ( 8.49) ( 9.00) ( 9.93)

R̄2 0.29 0.31 0.33 0.35 0.39 0.44

Panel E. h = 12 months

ĉf t 0.62 0.64 0.67 0.68 0.72 0.76

( 7.47) ( 8.38) ( 9.09) ( 9.92) (10.31) (11.60)

R̄2 0.39 0.41 0.44 0.46 0.51 0.58
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Table IX: Out-of-sample tests

The table reports the results of out-of-sample tests for the period 1978–2009 (panel A), 1985–2009 (panel B), and 1995–

2009 (panel C). Row (1) in each panel contains the ENC-NEW test. The null hypothesis is that the predictive regression

with forward rates (restricted model) encompasses all predictability in bond excess returns. The null is tested against the

alternative that cycles (unrestricted model) improve the predictability achieved by the forward rates. For forwards and cycles

we use maturities of one, two, five, seven, ten and 20 years. Row (2) reports bootstrapped critical values (CV) for the

ENC-NEW statistic at the 95% confidence level. Row (3) shows the ratio of mean squared errors for the unrestricted and

restricted models, MSEcyc/MSEfwd. Rows (4), (5) and (6) report the out-of-sample R2, R2
OOS, defined in equation (45), for

cycles, forwards and the yield curve slope, respectively. For forwards we use six maturities as above, for cycles we use c
(1)
t

and c̄t. The slope for predicting the bond return with maturity n is constructed as f
(n)
t − y

(1)
t . Implementation details for

the out-of-sample tests are collected in Appendix G.

Test rx(2) rx(5) rx(7) rx(10) rx(15) rx(20)

Panel A. Out-of-sample period: 1978–2009

(1) ENC-NEW 131.41 140.12 150.39 168.35 167.68 149.99

(2) Bootstrap 95% CV 74.77 65.22 64.04 61.39 61.72 63.27

(3) MSEcyc/MSEfwd 0.65 0.56 0.54 0.49 0.50 0.63

(4) R2
OOS cyc 0.18 0.29 0.34 0.40 0.39 0.31

(5) R2
OOS fwd -0.25 -0.26 -0.22 -0.24 -0.23 -0.10

(6) R2
OOS slope 0.10 0.09 0.08 0.08 0.10 0.10

Panel B. Out-of-sample period: 1985–2009

(1) ENC-NEW 108.16 111.04 121.87 137.93 138.71 127.53

(2) Bootstrap 95% CV 42.36 41.10 44.50 43.01 45.24 46.74

(3) MSEcyc/MSEfwd 0.59 0.52 0.51 0.49 0.51 0.59

(4) R2
OOS cyc 0.12 0.34 0.40 0.44 0.44 0.41

(5) R2
OOS fwd -0.48 -0.26 -0.18 -0.14 -0.09 -0.00

(6) R2
OOS slope 0.07 0.07 0.06 0.09 0.10 0.11

Panel C. Out-of-sample period: 1995–2009

(1) ENC-NEW 53.74 53.64 61.99 74.83 80.02 75.91

(2) Bootstrap 95% CV 20.35 22.01 24.12 24.57 29.71 39.26

(3) MSEcyc/MSEfwd 0.48 0.47 0.41 0.40 0.37 0.31

(4) R2
OOS cyc -0.06 0.10 0.18 0.20 0.27 0.37

(5) R2
OOS fwd -1.20 -0.92 -1.00 -1.00 -0.99 -1.06

(6) R2
OOS slope -0.20 -0.06 -0.08 -0.04 -0.04 -0.05
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A. Cointegration

In Section II.C, we invoke cointegration to argue that cycles should predict bond returns. This
Appendix provides unit root tests for yields, τCPI

t and residuals from the cointegrating regression
(9).

Table A-I reports values of the augmented Dickey-Fuller (ADF) test and Dickey-Fuller GLS
(DF-GLS) test. For the ADF test, we consider changes in respective variables up to lag 12 as
indicated in the first column. Both test in panel A are specified with a constant since all series have
nonzero mean. In panel B, the ADF test is specified without a constant, while the DF-GLS test
is specified with a constant. Each panel provides the corresponding critical values. Additionally,
we also apply the Phillips-Perron test and find that it conforms very closely with the conclusions
of table A-I. Therefore, we omit these results for brevity.

The tests indicate that: (i) we cannot reject the hypothesis that both yields and τt have a
unit root, (ii) that cycles are stationary.

B. Data

This section describes the construction of data series and compares bond excess returns obtained
from different data sets: Gürkaynak, Sack, and Wright (2006, GSW), Fama-Bliss (FB) and
constant maturity Treasury rates (CMT).

Interest rate data:

– CMT rates. We use constant maturity Treasury rates (CMT) compiled by the US Treasury,
and available from the H.15 Fed’s statistical release. The maturities comprise one, two,
three, five, seven, ten and 20 years. Our sample period is November 1971 through December
2009. The beginning of our sample coincides with the end of the Bretton Woods system
in August 1971. This is also when the GSW data for long-term yields become available.
Data on 20-year CMT yield are not available for the period from January 1987 through
September 1993. We fill this gap by computing the monthly yield returns of the 30-year
CMT yield and using them to write the 20-year CMT yield forward. To compute the zero
curve, we treat CMT rates as par yields and apply the piecewise cubic Hermite polynomial.

– Zero curve. For comparison, we also use the GSW and Fama-Bliss zero yields. GSW data
set is compiled by the Fed. The GSW data are available at Fed website.31 Fama-Bliss data
are obtained from the CRSP database.

Macroeconomic variables:

– Inflation. CPI for all urban consumers less food and energy (core CPI) is from Bureau of
Labor Statistics, downloaded from the FRED database. We define core CPI inflation as the
year-on-year log growth rate in the core CPI index. We construct the cyclical component of
inflation CPIct as the difference between the core CPI inflation and permanent component
τCPI
t computed according to equation (8).

– Unemployment. UNEMPL is the year-on-year log growth in the unemployment rate pro-
vided by the Bureau of Labor Statistics. The series is downloaded from the FRED database.

Financial variables:

31http://www.federalreserve.gov/econresdata/researchdata.htm.
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Table A-I: Unit root test

Panel A reports values of the ADF and DF-GLS tests for τCPI
t and yields with different maturities. τCPI

t is specified in

equation (8). In the last column, yt is the average of yields across maturities: yt = 1
20

∑20
i=1 y

(i)
t . For all variables the test

contains a constant since yields and τt are both nonzero mean. Panel B reports the values of the ADF and DF-GLS tests for

the cycles c
(n)
t , i.e. residuals from the regression of y

(n)
t on τCPI

t (the regression includes a constant). ct in the last column

is obtained as the residual from a regression of yt on τCPI
t . The null hypothesis states that a variable has a unit root. We

specify the ADF test without a constant since c
(n)
t is zero mean by construction. DF-GLS test contains a constant. For ADF

test we report test statistics obtained for four different lags, for the DF-GLS we report the optimal lag selected using Schwarz

criterion. Corresponding critical values are reported separately in each panel. The sample is monthly 1971:11–2009:12.

Panel A. Unit root tests for τCPI
t and yields

# lags τCPI
t y

(1)
t y

(2)
t y

(5)
t y

(7)
t y

(10)
t y

(20)
t yt

Panel A1. ADF test

1 -2.65 -1.88 -1.72 -1.57 -1.44 -1.35 -1.51 -1.42

3 -1.17 -1.43 -1.33 -1.26 -1.23 -1.18 -1.27 -1.16

6 -1.08 -1.19 -1.16 -1.24 -1.25 -1.24 -1.51 -1.23

12 -0.88 -1.64 -1.61 -1.62 -1.62 -1.53 -1.70 -1.55

Critical values: -3.46 (1%), -2.87 (5%), -2.59 (10%)

Panel A2. DF-GLS test

Test statistics -1.30 -1.57 -1.43 -1.56 -1.27 -1.16 -1.23 -1.37

Lag selected 14 2 1 1 0 0 0 1

Critical values: -2.57 (1%), -1.94 (5%), -1.62 (10%)

Panel B. Unit root tests for cycles

# lags – c
(1)
t c

(2)
t c

(5)
t c

(7)
t c

(10)
t c

(20)
t ct

Panel B1. ADF test

1 – -4.05 -4.25 -4.62 -4.57 -4.63 -4.61 -4.62

3 – -3.40 -3.63 -4.06 -4.20 -4.28 -4.12 -4.12

6 – -3.12 -3.42 -4.11 -4.31 -4.51 -4.80 -4.35

12 – -4.08 -4.45 -5.15 -5.38 -5.55 -5.47 -5.36

Critical values: -2.57 (1%), -1.94 (5%), -1.62 (10%)

Panel B2. DF-GLS test

Test statistics – -3.83 -3.95 -4.48 -4.38 -3.46 -2.69 -3.83

Lag selected – 1 1 1 1 0 0 1

Critical values: -2.57 (1%), -1.94 (5%), -1.62 (10%)

– Commercial paper spread. Commercial paper spread is defined as the difference between
the yield on a three-month commercial paper and the yield on a three-month T-bill.

– Swap spread. Swap spread is the difference between ten-year swap rate and the correspond-
ing CMT yield.

– Moody’s Baa spread. Moody’s Baa spread is the difference between the Moody’s Baa
corporate bond yield and the 30-year CMT yield. To compute the yield, Moody’s includes
bonds with remaining maturities as close as possible to 30 years.
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– TED spread. The TED spread is the difference between the three-month LIBOR and the
yield on three-month Treasury bill.

– T-bill3M spread. T-bill3M spread is the difference between the three-month T-bill and the
Fed funds target rate.

– Fed funds rate. The Federal funds denotes the monthly effective Fed funds rate. Monthly
Fed funds rates are obtained as the average of daily values.

All financial data series are obtained from the FRED database, the only exception are the swap
and LIBOR rates which are downloaded from Datastream.

Survey data:

– Blue Chip Financial Forecasts. Blue Chip Financial Forecasts (BCFF) survey contains
monthly forecasts of yields, inflation and GDP growth given by approximately 45 leading
financial institutions. The BCFF is published on the first day of each month, but the survey
itself is conducted over a two-day period, usually between the 23rd and 27th of each month.
The exception is the survey for the January issue which generally takes place between the
17th and 20th of December. The forecasts are for the current quarter, the next quarter out
to five quarters ahead. Inflation survey data four quarters ahead and are available for the
period 1984:07–2009:12.

– Livingston Survey. Livingston survey was started in 1946, it covers the forecasts of economists
from banks, government and academia. The survey contains semi-annual forecasts of key
macro and financial variables such as inflation, industrial production, GDP, unemployment,
housing starts, corporate profits and T-bills. It is conducted in June and December each
year. The survey contains forecast out to ten years ahead for some variables. However, the
inflation forecasts for ten years ahead start only in 1990.

– Survey of Professional Forecasters (SPF). Conducted quarterly; respondents provide esti-
mates of the one- and ten-year inflation, among other variables. One-year inflation forecasts
start in 1981:Q3, and the ten-year forecasts begin in 1991:Q4.

– Long-horizon inflation expectations surveys. Philadelphia Fed provides a combined file of
ten-year inflation forecasts32 compiled from Blue Chip Economic Indicators (BCEI) and
from the Livingston survey, both of which are conducted semi-annually. The sample covers
the period 1979:12–2009:12.

C. Basic expression for the long-term yield

It is straightforward to express an n-period yield as the expected sum of future short rates plus
the term premium. For completeness, we briefly provide the argument. The price of an n-period
nominal bond Pn

t satisfies:

P
(n)
t = Et

(
Mt+1P

(n−1)
t+1

)
, (25)

where Mt+1 is the nominal stochastic discount factor. Let lowercase letters
(
mt, p

(n)
t

)
denote

natural logarithms of the corresponding variables. Under conditional joint lognormality of Mt+1

and the bond price, from (25) we obtain the recursion:

32http://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-
forecasters/historical-data/inflation-forecasts.cfm
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p
(n)
t = Et

(
p
(n−1)
t+1 +mt+1

)
+

1

2
V art

(
p
(n−1)
t+1 +mt+1

)
,

where rt is the short rate: rt = y
(1)
t . By recursive substitution, we can express p

(n)
t as:

p
(n)
t = −Et (rt + rt+1 + ...+ rt+n−1) + Et

[
1

2
V art

(
p
(n−1)
t+1

)
+ Covt

(
p
(n−1)
t+1 ,mt+1

)

+
1

2
V art+1

(
p
(n−2)
t+2

)
+ Covt+1

(
p
(n−2)
t+2 ,mt+2

)
+

...+
1

2
V art+n−2

(
p
(1)
t+n−1

)
+Covt+n−2

(
p
(1)
t+n−1,mt+n−1

)]
.

Let rx
(n)
t+1 = ln

P
(n−1)
t+1

P
(n)
t

− rt and y
(n)
t = − 1

n
p
(n)
t . For an n-maturity yield, since Et

(
rx

(n)
t+1

)
=

−Covt

(
mt+1, p

(n−1)
t+1

)
− 1

2V art

(
p
(n−1)
t+1

)
, we obtain:

y
(n)
t =

1

n
Et

(
n−1∑

i=0

rt+i

)
+

1

n
Et

(
n−2∑

i=0

rx
(n−i)
t+i+1

)

︸ ︷︷ ︸
:=rpy

(n)
t

. (26)

D. Learning about the long-run mean of inflation

Let us assume that the data-generating process for inflation πt is as follows:

πt = τt + πc
t

τt = τt−1 + ετt

πc
t = φππ

c
t−1 + εct ,

with φc strictly lower than one and the variance of ετt small. Investors are interested in the limit
behavior of inflation πt :

lim
s→∞

Et (πt+s) = τt,

hence they focus on learning about the time-varying intercept τt. To estimate long term mean
τt sequentially, one could run a simple OLS of (π1, ..., πt) on a vector of ones at each time t.
This type of recursive least squares (RLS) gives an equal weight to each observation considered.
Therefore, it implies a decreasing learning gain of the form t−1, i.e. one learns less and less from
new observations with the increasing sample size. However, given the well-established evidence in
the literature that τt moves substantially and persistently over time in a fashion consistent with
learning (e.g., Cogley and Sargent, 2005a,b; Sargent, 1999), we apply constant gain (CG) learning
rule as opposed to classical RLS. With the increasing sample size, the CG rule assigns a constant
weight to new observations. Thus, more recent observations are always overweighed. Intuitively,
CG learning rules are more robust to structural changes in the long run mean.

A general constant gain least squares estimator for a model with time varying coefficients
yt = xtβt + εt, with βt = βt−1 + εβt , is defined as:

β̂t =

[
t−1∑

i=0

(1− ω)ixt−ix
′

t−i

]−1 [ t−1∑

i=0

(1− ω)ixt−iyt−i

]
,
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where ω is the constant gain, typically a small number. In that case, the weight on observations
decreases geometrically. We apply this definition to our case of learning about the long-run mean
of inflation (i.e. learning about the constant), setting v = 1− ω, we obtain:

τ̂t =

(
t−1∑

i=0

vi

)−1(t−1∑

i=0

viπt−i

)
. (27)

Truncating the sums in equation (27) at some t = N , we obtain the persistent component τCPI
t

as defined in the body of the paper in equation (8).
Now, we show that (27) is equivalent to a learning recursion. We follow the argument

provided by Carceles-Poveda and Giannitsarou (2007); an alternative derivation based on the
Kalman filter can be found in Ljungqvist and Sargent (2004) (Section 5.6.1, Muth’s example).

We define:

τ̂t = R−1
t At

Rt = ω
t−1∑

i=0

(1− ω)i (28)

At = ω

t−1∑

i=0

(1− ω)iπt−i.

Rewrite Rt and At as recursions:

Rt = (1− ω)Rt−1 + ω (29)

At = (1− ω)At−1 + ωπt.

and

At−1 =
1

1− ω
(At − ωπt)

Rt−1τ̂t−1 = At−1.

Hence, we have:

τ̂t = R−1
t At

= R−1
t [τ̂t−1Rt−1(1− ω) + ωπt]

= R−1
t [τ̂t−1(Rt − ω) + ωπt]

= τ̂t−1 + ωR−1
t (πt − τ̂t−1) . (30)

To conclude, we verify that in our case (univariate OLS on a constant), Rt = 1 is a solution
to the recursion for Rt. This follows immediately either from substituting the solution into (29),
or as a limit of (28). Hence, equation (30) reads:

τ̂t = τ̂t−1 + ω(πt − τ̂t−1).

Equation (30) is the constant gain learning recursion, which we use in the paper with v = 1− ω.
Evans, Honkapohja, and Williams (2010) provide a detailed evaluation of the learning

algorithm above from the Bayesian and robustness perspective. In particular, they show that the
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constant gain learning algorithm is the maximally robust estimator in settings with the uncertainty
about the true data generating process.

E. Estimating the learning parameter in τCPI
t

In this appendix, we use survey data to estimate the constant gain parameter v in equation 8,
that is consistent both with the adaptive learning model discussed in Appendix (D) and with the
available survey data on inflation. We show how τCPI

t can be embedded within a simple model
of the term structure of inflation expectations. .

E.1. Model of the term structure of inflation expectations

The model of the term structure of inflation expectations follows Kozicki and Tinsley (2006). Let
the realized inflation CPIt follow an AR(p) process, which we can write in a companion form as:

CPIt+1 = e′1zt+1 (31)

zt+1 = Czt + (I − C)1µ(t)
∞

+ e1εt+1, (32)

where zt = (CPIt, CPIt−1, ..., CPIt−p+1)
′, e1 = (1, 0, ..., 0)′ with dimension (p× 1), 1 is a (p× 1)

vector of ones, and companion matrix C is of the form

C =




c1 c2 . . . cp−1 cp
1 0 0 0
0 1 0 0

. . .
...

0 . . . 0 1 0




. (33)

Then,
CPIt+1 = e′1Czt + e′1(I − C)1µ(t)

∞
+ e′1e1εt+1. (34)

In the above specification, inflation converges to a time varying, rather than constant, long-run
mean:

µ(t)
∞

= lim
k→∞

Et (CPIt+k) , (35)

which itself follows a random walk:

µ(t+1)
∞

= µ(t)
∞

+ vt+1. (36)

The expected inflation j-months ahead is given as:

Et (CPIt+j) = e′1C
jzt + e′1(I − Cj)1µ(t)

∞
. (37)

Thus, survey expectations can be expressed as:

st,k =
1

k

k∑

j=1

Es
t (CPIt+j) , (38)

where the survey is specified as the average inflation over k periods, and Es denotes the sur-
vey expectations. We treat the survey data as expected inflation plus a normally distributed
measurement noise:
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st,k =
1

k

k∑

j=1

Et (CPIt+j) + ηt,k. (39)

It is convenient to cast the model in a filtering framework with the state equation given as:

µ(t+1)
∞

= µ(t)
∞

+ vt+1, vt+1 ∼ N(0, Q), (40)

and the measurement equation:

mt = Azt +Hµ(t)
∞

+ wt, wt ∼ N(0, R) (41)

where mt = (CPIt+1, st,k1 , st,k2 , . . . , st,kn) and wt = (εt+1, ηt,k1 , ηt,k2 , ...ηt,kn)
′ , where ki is the

forecast horizon of a given survey i. We assume that the covariance matrix R is diagonal, and
involves only two distinct parameters: (i) the variance of the realized inflation shock, and (ii) the
variance of the measurement error for sk,t, which is assumed identical across different surveys.
From equations (37) and (38), A and H matrices in (41) have the form:

A =




e′1C

e′1
1
k1

∑k1
j=1C

j

e′1
1
k2

∑k2
j=1C

j

...

e′1
1
kn

∑kn
j=1C

j




, H =




e′1 (I − C)1

e′1

(
I − 1

k1

∑k1
j=1C

j
)
1

e′1

(
I − 1

k2

∑k2
j=1C

j
)
1

...

e′1

(
I − 1

kn

∑kn
j=1C

j
)
1




. (42)

We consider two versions of the endpoint process, µ
(t)
∞ . In the first version, we treat µ

(t)
∞

as a random walk as in equation (36). We estimate the model by maximum likelihood combined

with the standard Kalman filtering of the latent state, µ
(t)
∞ .

In the second version, we obtain the endpoint as the discounted moving average of past
inflation, as we do in the body of the paper, i.e.

µ(t)
∞

:= τCPI
t (v,N). (43)

In the expression above, we explicitly stress the dependence of τCPI
t on the parameters. This

case allows us to infer the gain parameter v that is consistent with the available survey data. We
estimate the model with maximum likelihood. Since v and N are not separately identified, we fix
the window size at N = 120 months, and estimate the v parameter for this window size. In the
subsequent section, we provide an extensive sensitivity analysis of the predictive results for bond
returns to both v and N parameters.

E.2. Data

We combine two inflation surveys compiled by the Philadelphia Fed that provide a long history
of data and cover different forecast horizons:

– Livingston survey: Conducted bi-annually in June and December; respondents provide
forecasts of the CPI level six and twelve months ahead. Following Kozicki and Tinsley
(2006) and Carlson (1977) we convert the surveys into eight- and 14-month forecasts to
account for the real time information set of investors. We use data starting from 1955:06.
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– Survey of Professional Forecasters: Conducted quarterly; respondents provide estimates
of the one- and ten-year inflation. One-year forecasts start in 1981:Q3, and the ten-year
forecasts begin in 1991:Q4.

We use the median survey response. We match the data with the realized CPI (all items) because
it underlies the surveys. The estimation covers the period from 1957:12–2010:12. In the adaptive
learning version of the model, we use data from 1948:01 to obtain the first estimate of τCPI

t .

E.3. Estimation results

We estimate the model assuming an AR(12) structure for inflation. In the adaptive learning
version of the model, we estimate the gain parameter at v = 0.9868. The BHHH standard
error of 0.0025 suggest that v is highly significant. Its value implies that when forming their
long-run inflation expectations, each month agents attach the weight of about 1.3% to the current
inflation. Other parameters are not reported for brevity. Panel a of Figure E-1 displays the realized
inflation and the estimates of its long-run expectations considering the two specifications. The

series labeled as “random walk” is the filtered µ
(t)
∞ state. The series marked as “adaptive” shows

discounted moving average of inflation τCPI
t constructed at the estimated parameter v = 0.9686,

and assuming N = 120 months. Panel b of Figure E-1 plots the survey data used in estimation.
Comparing the filtered series in panel a, we note that while both estimates trace each other closely,
the random walk specification points to a faster downward adjustment in inflation expectation
during the disinflation period compared to the adaptive learning proxy. This finding is intuitive
in that in the first part of the sample until early 1990s, the long-horizon survey information is

unavailable. Thus, the filtered inflation endpoint µ
(t)
∞ is tilted towards the realized inflation, and

short horizon survey forecasts.

F. Small sample standard errors

This appendix provides the details of the bootstrap procedure for regressions reported in Table
V, which use the single factor to forecast individual bond returns. Small sample inference in other
regressions is analogous.

We use nonparametric block bootstrap to assess the small sample properties of the test

statistics and to account for the for the uncertainty about c
(n)
t . Block bootstrap preserves the

dependence structure of there series and therefore is appropriate for dependent series that we are
dealing with (e.g., Künsch, 1989; Lahiri, 1999).

The estimation consists of the steps as described in Section III.B, i.e:

Step 1. Project yields on the persistent component τCPI
t to obtain the cycles, c

(n)
t .

Step 2. Construct the single forecasting factor, ĉf t from the cycles as in equation (16).

Step 3. Forecast individual excess bond returns with ĉf t.

Let Z be a T×p data matrix with the t-th row: Zt =
(
y′

t, τ
CPI
t , rx

(i)
t+1

)
′

, and yt =
(
y
(1)
t , y

(2)
t , . . . , y

(m)
t

)
′

.

We split Z into blocks of size bs × p, where bs =
√
T (bs = 21 for the 1971–2009 sample).

Specifically, we create (T − bs + 1) overlapping blocks consisting of observations: (1, . . . , bs),
(2, . . . , bs + 1), . . . , (T − bs+ 1, . . . , T ). In each bootstrap iteration, we select T/bs blocks with
replacement, out of which we reconstruct the sample in the order the blocks were chosen. We
perform steps 1 through 3 on the newly created sample, store the coefficients, t-statistics and
adjusted R2 values. For the statistics of interest, we approximate the empirical distribution using
1000 bootstrap repetitions, and obtain its 5% and 95% percentile values.
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Figure E-1: Long-horizon inflation expectations

Panel a shows the realized CPI and the estimated long-run inflation expectations specified as a random
walk and discounted moving average of past CPI data (adaptive). Vertical lines mark the dates on which
10-year inflation forecasts from Livingston and SPF surveys become available, respectively. Panel b shows
the CPI surveys used in estimation.

G. Out-of-sample tests

Below we describe the implementation of the bootstrap procedure to obtain the critical values for
the ENC-NEW test. The test statistic for maturity n is given by:

ENC-NEW(n) = (T − h+ 1)

∑T
t=1

(
u
2,(n)
t+12 − u

(n)
t+12ε

(n)
t+12

)

∑T
t=1 ε

2,(n)
t+12

, (44)
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where T is the number of observations in the sample, ε
(n)
t and u

(n)
t denote the prediction error

from the unrestricted and restricted model, respectively, and h measures the forecast horizon, in
our case h = 12 months. Note that the time step in (44) is expressed in months.

Our implementation of bootstrap follows Clark and McCracken (2005) and Goyal and Welch
(2008). To describe the dynamics of yields and to obtain shocks to the state variables generating
them, we assume that the yield curve is described by four principal components following a
VAR(1). Persistent component τt is assumed to follow an AR(12) process. We account for the
overlap in bond excess returns by implementing an MA(12) structure of errors in the predictive
regression. Imposing the null of predictability by the linear combination of forward rates, we
estimate the predictive regression, the VAR(1) for yield factors and VAR(12) for τt by OLS on
the full sample. We store the estimated parameters and use the residuals as shocks to state
variables for the resampling. We sample with replacement from residuals and apply the estimated
model parameters to construct the bootstrapped yield curve, the persistent component and bond
excess returns. To start each series, we pick a random date and take the corresponding number of
previous observations to obtain the initial bootstrap observation. In our case, the maximum lag
equals 12, hence we effectively sample from T −12 observations. We construct 1000 bootstrapped
series, run the out-of-sample prediction exercise and compute the ENC-NEW statistic for each of
the constructed series. We repeat this scheme for different maturities. The critical value is the
95-th percentile of the bootstrapped ENC-NEW statistics.

The out-of-sample R2 proposed by Campbell and Thompson (2008) is defined as:

R
2,(n)
OOS = 1−

∑T−12
t=1

(
rx

(n)
t+12 − r̂x

(n)
cyc,t+12

)2

∑T−12
t=1

(
rx

(n)
t+12 − rx

(n)
t+12

)2 , (45)

where the time step t and sample size T is expressed in months. r̂x
(n)
cyc,t+12 is the forecast of annual

excess return based on time t cycles, where the parameters of the predictive model are estimated

using cycles up to time t−12 and returns realized up to time t. rx
(n)
t+12 is the return forecast using

historical average excess return estimated through time t.
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A. Comparison of excess returns from different data sets

Realized bond excess returns are commonly defined on zero coupon bonds. Since the computation
of returns can be sensitive to the interpolation method, we compare returns obtained from CMTs
to those from the GSW and FB data. Table I presents the regressions of one-year holding period
CMT excess returns on their GSW and FB counterparts with matching maturities. Figure 1
additionally graphs selected maturities. Excess returns line up very closely across alternative
data sets. The R2’s from regressions of CMT excess returns on GSW and FB consistently exceed
99%, except for the ten-year bond for which the R2 drops to 98% due to one data point in the
early part of the sample (1975). Beta coefficients are not economically different from one. We
conclude that any factor that aims to explain important features of excess bond returns shall
perform similarly well irrespective of the data set used. Therefore, our key results are not driven
by the choice of the CMT data.

Table I: Comparison of one-year holding period excess returns: CMT, GSW and FB

data

The table reports β’s and R2’s from regressions of excess returns constructed from CMT data on GSW (panel A) and FB

(panel B) counterparts. We consider a monthly sample 1971:11–2009:12 with maturities from two to ten (five) years for

GSW (FB) data. Excess returns are defined over a one-year holding period.

rx(2) rx(3) rx(4) rx(5) rx(6) rx(7) rx(8) rx(9) rx(10)

Panel A. Regressions of rx from CMT on GSW

β 1.04 1.03 1.04 1.05 1.06 1.05 1.04 1.04 1.04

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98

Panel B. Regressions of rx from CMT on FB

β 1.04 1.01 1.02 1.05 — — — — —

R2 0.99 0.99 0.99 0.99 — — — — —
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Figure 1: Comparison of realized excess returns across data sets

The figure plots one-year holding period returns on zero bonds constructed from three data sets: CMT, GSW and FB over
the period 1971:11–2009:12. Upper panel provides a comparison for the excess returns on a two-year bond, the bottom panel
compares the excess returns on the ten-year bond.
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B. Alternative ways to construct the single factor

This appendix introduces alternative approaches to constructing the single factor discussed in
Section III.B.

B.1. Exploiting no information about future returns

The baseline construction of the return forecasting factor in equation (15) uses rx on the left-

hand side. We now use only time-t variables to obtain ĉf , i.e. unlike the CP factor, this way
of obtaining the return forecasting factor does not involve future returns. We can estimate the

return forecasting factor as the residual from the regression of c̄t onto c
(1)
t :

c̄t = γ1c
(1)
t + ε̄t+1, (46)

ĉft
CS

= c̄t − γ̂1c
(1)
t , (47)

and ct = 1
m−1

∑m
i=2 c

(i)
t . The superscript “CS” indicates that we provide only cross sectional

information to construct the forecasting factor.

B.2. One-step NLS estimation

We form a single factor as a linear combination of ct’s:

ĉf
NLS

t = λ′ct, (48)

and estimate the restricted system:

rxt+1 = A

(
1

λ′ct

)
+ εt+1, (49)

where rxt+1 is a (m − 1) × 1 vector of individual returns with maturities from two to m years,

rxt+1 =
(
rx

(2)
t+1, rx

(3)
t+1, ..., rx

(m)
t+1

)
′

, ct is a vector of cycles, and A is a matrix parameters:

A =




α
(2)
0 α

(2)
1

α
(3)
0 α

(3)
1

...
...

α
(m)
0 α

(m)
1




. (50)

We perform non-linear least squares (NLS) estimation, by minimizing the sum of squared errors:

(Â, λ̂) = min
A,λ

T∑

t=1

(
rxt+1 −A

(
1

λ′ct

))′(
rxt+1 −A

(
1

λ′ct

))
. (51)

For identification, we set α
(7)
1 = 1. This choice is without loss of generality. The loss function

(51) is minimized iteratively until its values are not changing between subsequent iterations.

In application, being interested in the dynamics of the single factor ĉf
NLS

t , we additionally
standardize excess returns cycles prior to estimation.
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B.3. Common factor by eigenvalue decomposition

Alternatively, in constructing the single factor we can exploit the regression of an individual excess

return on c
(1)
t and the cycle of the corresponding maturity:

rx
(n)
t+1 = α

(n)
0 + α

(n)
1 c

(1)
t + α

(n)
2 c

(n)
t + ε

(n)
t+1. (52)

We form a vector erxt of expected excess returns obtained from this model:

erxt = Et

(
rx

(2)
t+1, rx

(3)
t+1, ..., rx

(m)
t+1

)
′

. (53)

The single factor is obtained as the first principal component of the covariance matrix of erxt:

ĉf
PC

t = U ′

(:,1)erxt, (54)

where Cov (erxt) = ULU ′, and U(:,1) denotes the eigenvector associated with the largest eigenvalue
in L. Using returns from two to 20 years, the first principal component explains 94% of common
variation in erxt.

B.4. Comparing the results

We compare the single factor obtained with the different procedures. To distinguish between

approaches, we use the notation: ĉf
TS

t for the construction involving future returns, ĉf
NLS

t for

the one-step NLS estimation, ĉf
PC

t for the factor obtained with the eigenvalue decomposition of

expected returns, and ĉf t for the simple approach introduced in the body of the paper in Section
III.B.

First, panel A of Table II presents the correlations among the four measures. Clearly,
while the methods differ, they all identify virtually the same dynamics of the single factor. The
correlation between the constructed factors reaches 98% or more.

Second, the way we obtain the single factor is inconsequential for the predictability we
report. As a summary, panel B of Table II displays the adjusted R2 values obtained by regressing

individual excess returns on ĉf
NLS

t , ĉf
PC

t and ĉf t, respectively. The difference between the three
measures is negligible.
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Table II: Comparing alternative constructions of the single factor

The table reports correlations between alternative approaches to constructing the single forecasting factor (panel A), as well

as R̄2 values for predictability of individual excess returns (panel B). ĉf t is used in the body of the paper, and defined in

equation (16); ĉf
CS

t differs from the baseline specification in that it involves no information about future returns as discussed

in Section B.1; ĉf
PC

t is obtained from the eigenvalue decomposition of expected excess returns in Section B.3 of this Appendix;

ĉf
NLS

t is obtained in a one-step estimation in Section B.2.

Panel A. Correlations

ĉf t ĉf
TS

t ĉf
PC

t ĉf
NLS

t

ĉf t 1 0.999 0.998 0.979

ĉf
CS

t · 1 0.999 0.979

ĉf
PC

t · · 1 0.986

ĉf
NLS

t · · · 1

Panel B. R̄2 from predictive regressions

rx(2) rx(5) rx(7) rx(10) rx(15) rx(20)

ĉf t 0.38 0.46 0.50 0.53 0.55 0.52

ĉf
CS

t 0.38 0.46 0.50 0.53 0.55 0.52

ĉf
PC

t 0.39 0.47 0.51 0.54 0.55 0.52

ĉf
NLS

t 0.40 0.48 0.52 0.55 0.56 0.53
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C. Sensitivity of predictive results to τCPI
t

We analyze the sensitivity of our predictive results towards the specification of the persistent
component τCPI

t . One concern is that these results could be highly dependent on the weighting
scheme (v parameter) or the length of the moving average window (N) used to construct τt. For
this reason, in Figure 2 we plot in-sample and out-of-sample R2’s varying v between 0.975 and
0.995 and N between 100 and 150 months. While the predictability is stable across a wide range
of parameter combinations, it weakens for values of v approaching one and for long window sizes.
The deterioration in this region of the parameter space is intuitive: When combined with a long
moving window, v close to one oversmooths the CPI data and leads to a less local estimate of the
persistent component.33

In Figure 3, we use a simple moving average of past core CPI to isolate how the in- and
out-of-sample predictive results depend on the window size, N . We consider N between 10 and
150 months. The predictive results are relatively stable for windows between 40 and 100 months,
and taper off at the extremes. A very short moving window tilts τCPI

t to current realized inflation,
a very long window, in turn, oversmooths the data. Both cases provide a poor measurement of
the current long-run inflation mean, thus the predictability of bond returns weakens.

Beside the core CPI, Figure 3 considers two alternative variables used in the literature to
construct proxies of the local mean reversion in interest rates: (i) the effective fed funds rate, and
(ii) the one-year yield. For usual and economically plausible window sizes, neither alternative
delivers predictability of bond returns at the level documented with the CPI. The question that
underlies the difference in predictability is how each variable captures the persistent movement
in interest rates. Using the moving average of the short rate one is faced with a tradeoff between
smoothing the business cycle frequency in the short rate and contemporaneously measuring the
generational inflation factor. Apart from the statistical fit, the advantage of τCPI

t lies in its direct
link to an economic quantity, rather than to bond prices themselves. The benefit of an economic
interpretation is also revealed in the estimates of a simple Taylor rule that we entertain in the
Introduction to this paper. Indeed, considering rt = γ0 + γcCPIct + γyUNEMPLt + γττ

i
t + εt

with different proxies for τt, i = {CPI, FFR} shows that it is the CPI that provides highly stable
coefficients across different subsamples (not reported).

33As v → 1, the discounted moving average converges to a simple moving average with the corresponding
window.
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Figure 2: Sensitivity of the predictability evidence to v and N parameters

The figure studies the sensitivities of predictive R̄2’s to the values of N and v parameters used to construct

τCPI
t . We predict the average bond return across maturities by regressing it on c

(1)
t and c̄t as in the body

of the paper. We consider the gain parameter v between 0.975 and 0.995, and the window size between
100 and 150 months. Panel a and b correspond to in-sample and out-of-sample results, respectively.
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Figure 3: Sensitivity of predictability evidence to the window size

The figure depicts the sensitivity of the predictive results, in- and out-of-sample, to the length of the moving
average window. All results are based on a simple (i.e. undiscounted) moving average. The window varies
from ten to 150 months. We consider predictability of rx, and use three different proxies for the persistent
component using moving average of: (i) past core CPI, (ii) past fed funds rate and (iii) past one-year rate.
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D. Different datasets

This appendix, Table III, reports details of the predictive regressions reported in Section VII.D.

Table III: Comparing predictive R2 in different data sets

The table compares the predictive adjusted R2’s for three different zero curves obtained from: Fama-Bliss

(FB), Gürkaynak, Sack, and Wright (2006, GSW), and Treasury constant maturity (CMT) rates. The

dependent variable is:

rxt+1 =
1

4

5∑

i=2

rx
(i)
t+1, (55)

and regressors are indicated in the first column. In both panels, row (1) uses two cycles with maturity one

and five years, row (2): five cycles with maturities from one through five years, row (3): two yields with

maturity one and five years, row (4): five forward rates with maturity one through five years, row (5):

spread between five- and one-year cycle, row (6): spread between five- and one-year yield. The column

“sample” provides adjusted R2’s for each regression; the column “bootstrap” gives the 5%, 50% and 95%

percentile values for the adjusted R2’s obtained with the block bootstrap (Appendix F).

CMT GSW FB

Regressor Sample Bootstrap Sample Bootstrap Sample Bootstrap

Panel A. Pre-crisis: 1971–2006

(1) c(1), c(5) 0.53 [0.39, 0.53, 0.66] 0.53 [0.40, 0.54, 0.66] 0.51 [0.38, 0.51, 0.64]

(2) c(1), ..., c(5) 0.54 [0.42, 0.55, 0.68] 0.53 [0.42, 0.55, 0.67] 0.56 [0.44, 0.57, 0.69]

(3) y(1), y(5) 0.22 [0.10, 0.25, 0.44] 0.19 [0.08, 0.23, 0.42] 0.19 [0.08, 0.22, 0.42]

(4) f(1), ..., f(1) 0.27 [0.18, 0.32, 0.49] 0.21 [0.12, 0.27, 0.46] 0.30 [0.21, 0.34, 0.49]

(5) c(5) − c(1) 0.13 [0.02, 0.13, 0.29] 0.11 [0.01, 0.12, 0.27] 0.11 [0.01, 0.12, 0.27]

(6) y(5) − y(1) 0.13 [0.02, 0.14, 0.30] 0.11 [0.01, 0.12, 0.29] 0.11 [0.01, 0.12, 0.28]

Panel B. Post crisis: 1971–2009

(1) c(1), c(5) 0.47 [0.32, 0.49, 0.62] 0.46 [0.31, 0.49, 0.61] 0.44 [0.30, 0.47, 0.60]

(2) c(1), ..., c(5) 0.47 [0.34, 0.51, 0.65] 0.47 [0.34, 0.50, 0.63] 0.48 [0.35, 0.53, 0.65]

(3) y(1), y(5) 0.15 [0.05, 0.19, 0.37] 0.13 [0.04, 0.17, 0.35] 0.13 [0.04, 0.16, 0.35]

(4) f(1), ..., f(1) 0.17 [0.10, 0.25, 0.42] 0.14 [0.08, 0.21, 0.38] 0.21 [0.13, 0.27, 0.43]

(5) c(5) − c(1) 0.11 [0.00, 0.10, 0.25] 0.09 [0.00, 0.09, 0.23] 0.09 [0.00, 0.09, 0.23]

(6) y(5) − y(1) 0.11 [0.00, 0.11, 0.26] 0.09 [0.00, 0.10, 0.25] 0.09 [0.00, 0.09, 0.24]
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