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Abstract

In this paper, we develop tests for structural change in cointegrated panel regressions

with common and idiosyncratic trends. We consider both the cases of observable and non-

observable common trends, deriving a Functional Central Limit Theorem for the partial

sample estimators under the null of no break. We show that test based on sup-Wald statistics

are powerful versus breaks of size  (1
√
 ), also proving that power is present when the

time of change differs across units and when only some units have a break. Our framework

is extended to the case of cross correlated regressors and endogeneity. Monte Carlo evidence

shows that the tests have the correct size and good power properties.
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1 Introduction

Since the seminal contributions by Perron (1989) and Rappoport and Reichlin (1989), the liter-

ature has produced a comprehensive set of results on the changepoint problem in a time series

framework - we refer, inter alia, to the articles by Andrews (1993), Andrews and Ploberger

(1994), Bai and Perron (1998), and Kejriwal and Perron (2008, 2010). Useful surveys can be

found in Banerjee and Urga (2005) and Perron (2006). When extending the framework to a

multivariate setting, the literature has shown that the cross sectional dimension can lead to

better inference; for example, Bai, Lumsdaine and Stock (1998) show that the estimation of the

changepoint in a VAR improves with the dimension of the VAR, due to the presence of cross

sectional information. As pointed out by Qu and Perron (2007), a crucial condition is having

nonzero correlations across equations, even when including equations without breaks.

Thus, a natural development to enhance the power of tests for structural breaks is to use

panel data models, especially when cross sectional dependence is present. Despite the potential

usefulness, the inferential theory on structural changes in panels is still underdeveloped. There

are a few exceptions: Feng, Kao and Lazarova (2008) and Bai (2010) propose procedures for

dating breaks in simple settings with no cross sectional dependence amongst units; Kim (2010a,

2010b) investigates the estimation of change points in panel time trend models with cross-

sectional dependence; Breitung and Eickmeier (2010) propose a test for changes in the loadings

of a panel factor model.

This paper fills the gap in the literature by proposing an estimation and testing framework for

slope parameter instability in cointegrated panel regression; strong cross-sectional dependence

is allowed for through the presence of common stochastic trends.

Basic model and extensions

We study a cointegrated panel with unit-specific variables (idiosyncratic shocks) and a set

of possibly unobservable variables that are common across all units (common shocks):

 =  + 0 + 0 +  (1)

where  = 1   and  = 1   and  and  are  × 1 and  × 1 respectively. We assume
that (1) is a cointegrating regression for all units , so that the vector [ 0  0]

0
is  (1) and the

error term  is stationary for all s. The presence of (strong) cross-sectional dependence arises

directly from the common shocks ; due to the slope  being homogeneous across units, the

term 0 represents an -dimensional stochastic time effect. As well as having cross dependence
due to the common shock , and as well as having homogeneous response to common shocks,

we also consider dependence and heterogeneity in the s as

 = Γ +  (2)
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where  is a set of common factors that can be independent of the regressors  or overlap with

them, and  is a unit specific (stationary or nonstationary) shock - see also Pesaran (2006)

and Kapetanios, Pesaran and Yamagata (2011) for a similar (in spirit) framework. From (2),

cross-dependence is accounted for directly (via ) and indirectly (via the factor structure in

). Heterogeneity in the response to common shocks is also allowed for through the possibly

heterogeneous loadings Γ; also, the response to  is allowed to be (indirectly) heterogeneous

across individuals if  contains .

Model (1) encompasses a wide set of models in economics and finance which may be subject to

breaks. Such a model may represent a situation whereby the decision  of microeconomic agent

 is influenced by macroeconomic factors  and by a set of individual specific characteristics,

 and . Examples that have been studied in the literature include, inter alia: demand

for household food consumption (see e.g., Dynarski and Sheffrin, 1985, where households are

assumed to have the same elasticity to food price, which is the common shock, and to permanent

income, which is the idiosyncratic variable); firm size evolving according to a random walk, a case

known in the literature as Gibrat’s law (see Sutton, 1997; Geroski et al, 2002); other examples

can also be found in micro demand for investment, consumption, labour demand. Moreover, the

forward rate unbiasedness hypothesis postulates that the forward rate is an unbiased predictor

of the corresponding future spot rate. This hypothesis has been extensively tested for exchange

rates (Baillie and Bollerslev, 1989; Liu and Maynard, 2005; Westerlund, 2007). Another example

in finance are models for default intensity for firm  at time  expressed as function of common

factors (such as U.S. 3-month T-bill and the trailing 1-year returns) and idiosyncratic covariates

such as distance to default and trailing 1-year stock return of the firm  (see Das et al., 2007).

Relevant is also the literature on output convergence where output for country  at time  depends

on a set of common, to all  countries, technological shocks/knowledge and heterogenous degrees

of access to the technological knowledge (Pesaran, 2007; Phillips and Sul, 2007).

Finally, most of the results in this paper are derived assuming zero long run correlation

between [ 0  0]
0
and . However, we show that our framework can be accommodated to allow

for endogeneity. Whilst this involves modifying the estimation technique, i.e., from ordinary

least squares (OLS) to fully-modified OLS (FMOLS), the limiting distribution of the test and

the power versus local alternatives remain unaltered. Other estimation techniques have been

proposed in similar contexts - see e.g. Bai, Kao and Ng (2009).

Main results of this paper

We focus our attention on testing for the constancy over time of  =
¡
0 0

¢0
, thus developing

tests for changes in the cointegration relationship between  and (
0
 

0
)
0
. Considering, for

simplicity, the alternative of only one abrupt change at (unknown) time bc, the null is 0 :
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 =  for all , whereas the alternative could be defined as

 :  =

(
1 for  = 1  bc
2 for  = bc+ 1   

with 1 6= 2.

This paper makes two contributions to the existing literature. First, we develop a Functional

Central Limit Theorem (FCLT) for the partial sample estimators of , considering both the cases

of observed and unobserved common shocks. Results are extended to the case of endogeneity by

proving an FCLT for the partial sample FMOLS estimators. These results are of independent

interest: ordinary large panels asymptotic theory (Phillips and Moon, 1999; Kao, 1999) cannot

be applied in our framework due to the strong cross-sectional dependence introduced by the

common shocks. Second, we show that tests based on Wald-type statistics (Andrews, 1993; An-

drews and Ploberger, 1994) have nontrivial power versus local alternatives of order  (1
√
 ),

which provides further justification towards the use of panel models in order to enhance the

power of tests. Although the tests are constructed under the alternative  of an abrupt and

common change, we show that they have power versus other classes of alternatives, e.g. smooth

parameter changes. Also, we prove that our tests, albeit designed for the common changepoint

alternative , have nontrivial power versus alternatives where series have a break at potentially

different points in time. This is a desirable property, since a break could be induced by a change

common to all units, but each unit could have different levels of hysteresis and therefore respond

with different lag. Also, we study the presence of power when only some units (say ) are

subject to a change. We show that, in the extreme case of  finite, tests have power versus

local alternatives shrinking as 

³√



´
: when the panel contains many units that do not have

a break, there is a loss of power with respect to the case of testing for one unit at a time.

The remainder of the paper is organized as follows. Section 2 introduces the model. Section

3 discusses the asymptotics; test statistics and their null distribution are in Section 4 defines the

test statistic and it discusses the local power; extensions (including FMOLS) are in Section 5.

In Section 6 we report the finite sample properties, i.e., size and power, of our proposed tests.

Section 7 provides concluding remarks. Appendix A contains some preliminary lemmas; the

proofs of the main results (test distribution under the null and under local-to-null alternatives)

are in Appendix B.

NOTATION. We write integrals involving Brownian motions such as, e.g.,
R 1
0
() asR

when there is no ambiguity over limits. We define Ω12 to be any matrix such that

Ω =
¡
Ω12

¢ ¡
Ω12

¢0
 We use k·k to denote the Euclidean norm of a vector,


= to denote al-

most surely equality, → to denote the ordinary limit,
−→ to denote convergence in distribution,

−→ to denote convergence in probability, bc to denote the integer part,  =  (Ω) to denote

Brownian motion with covariance matrix Ω, and ̄ =  − R  to denote the demeaned version

of  We let  ∞ be a generic positive number which does not depend on  or  .
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2 Model and assumptions

Consider the panel model with common and idiosyncratic shocks

 =  + 0 + 0 +  (3)

with  = 1   and  = 1   . We let  = (1  )
0 be a  × 1 vector of common

stochastic trends

 = −1 +  (4)

 a × 1 vector of observable individual-specific regressors,

 = −1 +  (5)

and [ 
0
 

0
]
0
the error terms.

When common shocks  are not observable in (3),  can be estimated by a set of observable

exogenous variables, , defined up to a factor-loading specification as

 = 0 +  (6)

where  is a vector of factor loadings and  is the error term. Whilst results are presented

under the simplifying assumption that  is known, the number of common shocks  could be

estimated using e.g. the criteria discussed in Bai (2004). Also, since panel  is employed solely

for the estimation of , whilst panel  is used to estimate , the number of cross sectional

units in the two panels need not be the same. Similarly, the cross sectional index  needs not

refer to the same units: for example, in panel ,  could index individuals, but as far as 

is concerned,  could index different macro variables such as in Stock and Watson (1999, 2002,

2005).

Consider the following assumptions:

Assumption 1: Let  = [ 
0
 

0
 ]

0
. We assume that (a)  is a linear process across 

with  kk4+ ∞ for some   0, and a Beveridge-Nelson decomposition exists such that



= ∗ +  (7)e = e∗ +  (8)



= ∗ +  (9)



= ∗ +  (10)

where ∗ and e∗ are two random walks with long run covariance matrices Ω and Ω respectively,
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and ∗ and ∗ are i.i.d. processes with variances 
2
, and 2 respectively. Also,

sup

| | = 

µ
1√


¶
 (11)

for  ∈ {  }; (b) for a given , {}, {}, and {} are mutually independent across 
and independent of {}; (c) { } are not cointegrated and Ω and Ω are non singular; (d)
the eigenvalues of Ω and the random matrix

R


0
 are distinct with probability 1.

Assumption 2: kk ≤ and 1


P
=1 

0
 → ΣΛ as →∞, where ΣΛ is non singular.

Assumption 1(a) is a standard requirement on the amount of serial dependence allowed for,

and it enables the asymptotic theory developed by Phillips and Solo (1992) and Phillips and

Moon (1999) to hold. The only requirement which is nonstandard is (11), which is needed

as a sufficient condition in order to prove a panel functional central limit theorem (FCLT).

Assumption 1(b) considers a framework where: (a) regressors are strictly exogenous and (b)

no cross sectional dependence is allowed other than the one determined by the presence of the

common regressors . Particularly, 1(b) also rules out the presence of cross-sectional dependence

among the idiosyncratic shocks s. As discussed in the introduction, these restrictions are

considered only for the purpose of simplicity of the exposition. We show that the main results

of the paper (null distribution and local power of the test) still hold after relaxing each of these

assumptions. We discuss the presence of cross-dependence among the idiosyncratic explanatory

variables s and the presence of endogeneity in Section 5. The requirement that {} is
independent of the other innovations considered in 1(b) is needed for the inference on the s

when they are not observable and it is a standard assumption - see Assumption D in Bai

(2004, p. 141). Assumption 1(c) rules out cointegration among regressors. This too is a

standard requirement in cointegration analysis - see e.g., Park and Phillips (1988) for discussion.

Assumption 1(d) is a standard requirement in large panel factor literature, and it is needed in

order to identify the factors s in (6) when they are not observable.

Assumption 2 is also standard and it ensures that each factor has a nontrivial contribution

towards .

Let e = − 1


P
=1  and  = − 1



P
=1 . The following proposition is important

for developing the asymptotics in this paper.

Proposition 1 Let Assumption 1 hold. As (  )→∞, for all  ∈ (0 1)

1√
 2

X
=1

bcX
=1

e0 =  (1) 

Proposition 1 states that the asymptotic magnitude of the cross term
P

=1

Pbc
=1 e0 is



¡√
 2

¢
. The

√
-convergence is achieved since a CLT holds for the cross-sectional average
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P
=1 e0, and this holds since the es are i.i.d. among  by Assumption 1(b) and because they

have zero mean by construction.

We now turn to partial sample estimation of , studying its asymptotics under the null of

no structural change.

3 Partial sample estimation

This section contains the FCLT for the partial sample estimator (PSE) of  in (3).

When  is unobservable, we propose a two step approach. First, we derive an estimate

of , say b, using (6). Second, we estimate  using OLS in (3) replacing  with b. The
estimator b can be obtained applying principal components to the ; we refer to Bai (2004).
It is well known that  is identifiable only up to a transformation, say  0 where  is an

 ×  matrix. Thus, using b in (3) allows to estimate −1 rather than . However, as far

as testing is concerned, knowledge of  0 and of −1 is the same as estimating  and .

Hence, for simplicity, we assume  being a × identity matrix in this paper.

Let ̂ = b − 1


Pbc
=1

b and c =
£
̂0 e0¤0; define, similarly, ̂1− = b −

1
 (1−)

P
=bc+1 b and c1− =

£
̂01− e0¤0. Also, consider

 =  + 0 b + 0 +  (12)

where  =  + 0
³
 − b´. We define the PSE as

̂1bc =

⎡⎣ X
=1

bcX
=1

c
c 0



⎤⎦−1 ⎡⎣ X
=1

bcX
=1

c

⎤⎦  (13)

̂2bc =

⎡⎣ X
=1

X
=bc+1

c1−c 0
1−

⎤⎦−1 ⎡⎣ X
=1

X
=bc+1

c1−

⎤⎦  (14)

for some  ∈ (0 1). Under the null

̂1bc −  =

"
̂1bc − 

̂1bc − 

#

=

⎡⎣ X
=1

bcX
=1

c
c 0



⎤⎦−1 ⎡⎣ X
=1

bcX
=1

c

⎤⎦
=

" P
=1

Pbc
=1 ̂̂

0


P
=1

Pbc
=1 ê0P

=1

Pbc
=1 ̂e0 P

=1

Pbc
=1 ee0

#−1 " P
=1

Pbc
=1 ̂P

=1

Pbc
=1 e

#


and a similar expression can be derived for ̂2bc − .
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Before presenting the main result for the asymptotics of ̂1bc and ̂2bc, we introduce some
notation; let

2 = 2 + 2Π (15)

2Π = 2

³
0̃ΣΛ̃

0

´
 (16)

and 1
 2

P
=1 ̂

0


−→ ̃.

It holds that

Theorem 1 Let Assumptions 1-2 hold. Then, as (  ) −→∞ with 

→ 0

√

h
̂1bc − 

i
=
√


"
̂1bc − 

̂1bc − 

#
−→ (17)"


¡R 
0
̄̄

0


¢−12
0×

0× 6
2
Ω

−12


#
×
"

1
1√
6
 (; 0)

#


√

h
̂2bc − 

i
=
√


"
̂2bc − 

̂2bc − 

#
−→ (18)⎡⎣ 

³R 1

̄̄

0


´−12
0×

0× 6

(1−)2Ω
−12


⎤⎦× " 2
1√
6
 (1; )

#


uniformly in , where ̄ () is a standard, demeaned -dimensional Brownian motion, 1 and

2 are two independent -dimensional Gaussian random variables and the stochastic process
1√
6
 (; ) is Gaussian, independent of ̄ (), with independent increments, mean zero and

covariance kernel given in (36).

Remarks

1.1 Theorem 1 is the building block to implement sequential testing for breaks. The process

 (; 0) is, in essence, a variance transformed Brownian motion. As far as ̂1bc −  is

concerned, it is
√
 consistent, as in Phillips and Moon (1999) and Kao (1999). However,

the limiting distribution is not normal, contrary to what typically found in cointegrated

panels, but mixed normal. This is due to the shocks  being nonstationary and common

across units, which results in the covariance matrix
¡
 2

¢−1P
=1

P
=1

0
 converging

to the random matrix
R
̄̄

0
 rather than to a matrix of constants as in standard panel

cointegration - see the proof of Lemma A.3.

1.2 Equation (36) in Lemma A.3 in Appendix describes the covariance structure of  (; );

note that  [ (; 0)]2 = 1
6
2, and  [ (1; )]2 = 1

6
(1− )2, which is essentially the same

result as Lemma A.4 in Chiang et al. (2002). The covariance structure of the process is

 [ (; 0) (; 0)] = 1
6
( ∨ )2.
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1.3 The estimates ̂1bc −  and ̂1bc −  are asymptotically independent. This result is a

consequence of Proposition 1, whereby

1

 2

" P
=1

P
=1

0


P
=1

P
=1 e0P

=1

P
=1e0 P

=1

P
=1 ee0

#
=

⎡⎣  (1) 

³
1√


´


³
1√


´
 (1)

⎤⎦  (19)

Also, ̂1bc− and ̂2bc− are independent, as a consequence of both  () and  (; 0)
having independent increments.

1.4 A technical note on Theorem 1. The FCLT is shown using a slightly different approach

than ordinary panel CLT (Phillips and Moon, 1999). Here, the proof is based on showing

that, as  → ∞, the FCLT can hold and on working out the variance for each . That

→∞ is only incidental to the proof. The proof essentially shows that (17) and (18) hold

for all , thereby proving convergence of the finite dimensional distributions; tightness is

shown using conventional tightness arguments, based on bounding the remainder terms in

the Beveridge-Nelson decomposition of , e and  - see also the discussion in Phillips

and Solo (1992).

As a consequence of Theorem 1, a similar result can also be shown to hold for the case of

observable common shocks.

Proposition 2 Let Assumption 1 hold. Then, as (  ) −→ ∞ with 

→ 0,

√

h
̂1bc − 

i
and
√

h
̂2bc − 

i
converge to the same distributions as in (17) and (18) respectively, with

 replaced by .

The FCLT derived in Theorem 1 can now be used to derive the distribution of test statistics

under the null of no break.

4 Testing

In this section, we consider three statistics: the supremum of the Wald statistic,  , the

average Wald statistic,  , and the logarithm of the Andrews-Ploberger exponential Wald

statistic,  - see Andrews (1993), Andrews and Ploberger (1994).

Assumption 3:  ∈ (0 1).

Assumption 3 states that the fraction of  at which the change point occurs, , is bounded

away from zero and one. Thus, our tests are designed to have power versus mid-sample alter-

natives, as it is typical in this literature (see Andrews, 1993, p.838).
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Consider ̂1bc and ̂2bc defined in (13) and (14) respectively, and define, for  = 1, 2

̂
∗
bc =

"
̂ 0

0 ̂

#−1
̂bc

where ̂ and ̂ are consistent for 
2
 and 

2
 respectively under 0. Compute the Wald-type

statistic  (bc) as

 (bc) =
h
̂
∗
1bc − ̂

∗
2bc

i0 ⎡⎣ ³P
=1

Pbc
=1

c
c 0



´−1
+
³P

=1

P
=bc+1c

c 0


´−1
⎤⎦−1 ĥ∗1bc − ̂

∗
2bc

i
 (20)

Before showing the limiting distribution for  (bc) as  and  pass to infinity, some pre-

liminary notation is necessary. Let s () =
¡R 
0
̄̄

0


¢−12
1 −

³R 1

̄̄

0


´−12
2 and M () =∙¡R 

0
̄̄

0


¢−1
+
³R 1


̄̄

0


´−1¸
. Define

 () =

⎡⎣ [(1;)−(;0)]√
2+(1−)2

[M ()]−12 s ()

⎤⎦  (21)

It holds that

Theorem 2 Let Assumptions 1—3 hold. Then, under 0, as (  )→∞ with 

→ 0

 (bc) −→  ()0  () = () +() (22)

where () and () are independent and defined as

() = s ()
0 [M ()]−1 s () (23)

and

() =

°°°(1− )2 (; 0)− 2 (1; )
°°°2

4 (1− )2 + 2 (1− )4
 (24)

Remarks

2.1 Theorem 2 is an application of Theorem 1 and of the Continuous Mapping Theorem. For

a given , () ∼ 2 and () ∼ 2; thus, when suitably normalized, the difference of

the partial sample estimates has a chi-squared distribution for fixed  with +  degrees

of freedom.

2.2 Note that  ()0  () is a variance transformed, tied-down Bessel process; when suitably
normalized by its covariance kernel, as in (20), it has the same distribution as in Andrews

(1993).
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2.3 In principle, one can construct tests separately for  and  using () and () since

() and () are independent. Theorem 2 states that if one wants to test only for the

constancy of  it holds that  (bc) −→ (); if one is interested in testing merely for

the constancy of  it holds that  (bc) −→ ().

2.4 Theorem 2 holds under more general conditions than Assumption 1. For example, the

theorem still holds if one allows for the presence of (strong) cross-dependence among the

s. As we show in greater detail in Section 5, this is because the limiting distribution of

 (bc) follows from the asymptotic normality of
h
̂
0
1bc ̂

0
2bc

i0
, which still holds for

cross correlated s.

Theorem 2 is valid for any consistent estimators of 2 and 2 (of course the choice of these

estimators will affect the finite sample performance). Although here we propose to use estimators

based on the pre- and post- break subsamples, alternatively one could use estimators based on

the full sample - see also the discussion in Andrews (1993, p. 833). To estimate 2, one could

compute

̂21 =
1

 ()

X
=1

bcX
=1

h
 − ̄ − ̂

0
1bcc

i2
 (25)

which is consistent under 0 (a similar definition would apply for ̂
2
2).

To find a consistent estimator of 2 , consider the case of  being i.i.d.. From (15) a possible

choice is

̂21 = ̂21 + ̂2Π1

and similarly for ̂22. From (16), we have ̂2Π1 = ̂
0
1bĉ

2
1̂1bc with

̂21 =

⎡⎣ 1

()2

bcX
=1

̂̂
0


⎤⎦⎡⎣ 1


X
=1

⎛⎝ 1



bcX
=1

̂2

⎞⎠ ̂̂
0


⎤⎦⎡⎣ 1

()2

bcX
=1

̂̂
0


⎤⎦  (26)

where ̂ is a consistent estimate of  and ̂ can be computed as ̂ =  − ̂
0

b. Therefore,

we can provide an estimate for 2 for each subsample as

̂21 = ̂21 + ̂
0
1bĉ

2
1̂1bc (27)

If  is serially correlated, a different formula should be used in (26), replacing
1


Pbc
=1 ̂2 with

e.g. some weighted sum-of-covariances estimator.

Proposition 3 Suppose Assumptions 1-3 hold. Then, as (  ) → ∞, under 0, it holds that

̂21
−→ 2 and ̂21

−→ 2, and similarly for ̂
2
2 and ̂22.

Following Andrews (1993) and Andrews and Ploberger (1994), we consider three test statis-
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tics for the null of no break:

 ≡ max
[∗]≤bc≤−[∗]

 (bc) 

 ≡ 1



−[∗]X
bc=[∗]

 (bc) 

 ≡ ln

⎧⎨⎩ 1
−[∗]X
bc=[∗]

exp

∙
1

2
 (bc)

¸⎫⎬⎭ 

where ∗ represents the fraction of the sample trimmed away from the beginning and the end of

the sample. Using the continuous mapping theorem (CMT) we have the following result:

Corollary 1 Suppose Assumptions 1-3 hold. Under 0 as (  )→∞ with 

→ 0


−→ 

∗≤≤1−∗
£
 ()0  ()

¤



−→
Z 1−∗

∗

£
 ()0  ()

¤



−→ ln

(Z 1−∗

∗
exp

∙
1

2
 ()0  ()

¸


)


uniformly in .

Critical values for  ,  , and can be taken from Andrews (1993) and Andrews

and Ploberger (1994) in light of Remark 2.2. For example, when ∗ = 015 and  =  = 1,

the critical values of the 5% level for  ,  , and  are 1179, 461, and 322

respectively.

4.1 Consistency of the test

In this section, we show that Wald-type tests have non-trivial power versus a general class of

local-to-null alternatives of order  (1
√
 ). Such alternatives include the case of abrupt

change around one common changepoint, but they also include smooth transitions from one

regime to another and the possibility of different changepoints for different units in the panel.

The time series properties of the local alternatives considered here are in line with the findings in

the literature, and particularly the results that the test has nontrivial power versus alternatives

of order 1 and the presence of power versus smooth transition changes. The cross-sectional

properties of the local alternatives are found to be more general than those the test is designed

for. The test is shown to have nontrivial power versus alternatives of order 1
√
 (a consequence

of the panel approach) and under the case whereby different units may undergo changes at

different points in time (if any). We also investigate the power when only some units (possibly

12



a finite number) have a break, showing that when a finite number of units have a break, test

have power versus local alternatives of order  (
√
 ).

We assume the following sequence of local alternatives:

( )
 : 

( )
 =  +

√





µ




¶
 (28)

where  (·) is a (+ )× 1 arbitrary, finite and non-zero function defined on the unit interval,
and  is the number of units for which  (·) 6= 0 (i.e. the units that have a nontrivial break);
 can be finite or pass to infinity as →∞.

The properties of 
¡



¢
are specified in the following assumption.

Assumption 4: The function 
¡



¢
is nonconstant and it belongs to the class of Riemann

integrable functions and as (  ) → ∞, for all : (a) 1


P

=1

Pbc
=1

°° ¡  ¢°°2 =  (1); (b)

1
 2

P

=1

Pbc
=1 

0


¡



¢
=  (1); (c)

1
 2

P

=1

Pbc
=1 0

¡



¢


0


¡



¢
=  (1);

and (d) 1


P

=1

Pbc
=1  0


¡



¢
 =  (1).

Possible alternative functional forms for  (·) include: a single step function, i.e.,  () = 0 if
   and  () = 4 (finite) if  ≥ , which represents a one-time change on  at bc = bc;
multiple steps functions that represent multiple changes; time trending function  (·) =  .

Under the alternative, we assume that  can differ across individual. This has a twofold

implication. First, having different  (·) across  entails having, under the alternative, breaks
of possibly different magnitude. The case whereby some units have a zero size break (i.e., no

change) is taken into account also. Second, allowing for  (·) to differ across  also allows to
consider a specification, under the alternative, where the time of the break (and the presence of

breaks itself) is not restricted to be the same across units. This case could be envisaged to take

into account the presence of a common source of break but differently timed reactions due to

different hysteresis across units. Of course, some units may not have any breaks at all, which is

taken into account by allowing for  to be strictly smaller than .

We now turn to studying the asymptotic distribution of the Wald statistic under the sequence

of local alternatives (28). Model (3) can be rewritten as 
( )
 =  + 0


( )
 + . Similarly,

when common shocks are replaced by their estimates c we have 
( )
 =  +c 0


( )
 + ,

with  =  +
³
 − b´0 ( ) . Let ̂

( )

1bc and ̂
( )

2bc be the OLS estimators under the local
alternative (28), and let ̃2 and ̃2 be consistent estimators for 

2
 and 2 respectively under


( )
 . Define

̂
∗( )
bc =

"
̃ 0

0 ̃

#−1
̂
( )

bc

13



for  = 1 2, the Wald statistics under the local alternative can be computed as

 ( ) (bc) =
h
̂
∗( )
1bc − ̂

∗( )
2bc

i0 ⎡⎣ ³P
=1

Pbc
=1

c
c 0



´−1
+
³P

=1

P
=bc+1c

c 0


´−1
⎤⎦−1 ĥ∗( )1bc − ̂

∗( )
2bc

i


(29)

The local asymptotic power for the Wald statistics is given in the following theorem:

Theorem 3 Suppose Assumptions 1-4 hold. Then under 
( )
 , as (  ) → ∞ with 


→ 0,

it holds that  ( ) (bc) −→ [ () +  ()]0 [ () +  ()], where  () is defined in (21) and

 () is defined in Appendix.

Remarks

3.1 Consider the case = . The test has power versus alternatives shrinking as  (1
√
 );

this is a direct consequence of the
√
 rate of convergence in Theorem 1. This finding is

consistent with the analysis in Bai, Lumsdaine and Stock (1998), Qu and Perron (2007)

and Bai (2010), where it is shown that the quality of the breakpoint estimates improves

as the number of time series employed increases.

3.2 Theorem 3 shows that the test has some well-known time series properties, e.g., the presence

of power versus “smooth” changes as opposed to abrupt changes for which it is designed

for; this is consistent with the findings in Andrews (1993). The test also has some cross-

sectional properties: albeit designed for the detection of common changepoints, the test

exhibits nontrivial power versus breakpoints located at different times for different time

series. Thus, cases whereby a common shock introduces breaks in all units but at dif-

ferent points in time due, e.g., to different levels of hysteresis of inertia across units are

encompassed by the test.

3.3 When  is  (), the test has a loss of power. This is not surprising, since only some of

the cross sectional information (the one from the units which have a break) is actually

relevant. As an extreme, consider the case when the number of units that do have a

break is finite, i.e.  =  (1). Theorem 3 shows that in this case the test has power

versus alternatives of order  (
√
 ), thus being worse than in the univariate case where

nontrivial power is attained versus local to null alternatives of order  (1 ). Including

cross sectional information is beneficial when there are breaks in the units, whereas it

worsens the performance of the tests when many units do not have breaks.

Theorem 3 holds for any choice of the estimators ̃2 and ̃2 , as long as they are consistent

under 
( )
 . A possible estimator for 2 is ̃

2
1 =

1
()

P
=1

Pbc
=1

h
 − ̄ − ̂

( )0
1bcc

i2
.

To estimate 2 we propose ̃
2
1 = ̃21+ ̂

( )0
1bĉ

2
1̂

( )

1bc, where ̂
2
1 is defined in equation (26)
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and ̂
( )

1bc is the partial sample OLS estimator for  under 
( )
 ; similar definitions can be

computed for ̃22 and ̃22.

The following proposition establishes consistency for ̃21 and ̃21 under 
( )
 :

Proposition 4 Suppose Assumptions 1-4 hold. Then under the local alternative hypotheses


( )
 defined in equation (28), it holds that as (  )→∞, ̃21

−→ 2 and ̃21
−→ 2 . The

same holds for ̃22 and ̃22.

5 Extensions

In this section, we consider two extensions: (a) the presence of cross-sectional correlation among

the idiosyncratic shocks , and (b) the presence of endogeneity in the cointegration relationship.

First, we prove that even though the asymptotic law of the OLS estimator changes when cross-

dependence is considered among the s, however the asymptotic distribution (and local power)

of Wald-type statistics is unaltered. Second, as far as the case of endogeneity is concerned, we

develop an FMOLS estimator to accommodate for it, showing that, when using this estimator,

results concerning the test remain unchanged.

Cross-sectional dependence among the s

Theorem 1 shows an FCLT for ̂1bc and ̂2bc, from which the limiting distribution of the

Wald statistic (bc) can be inferred. We show that asymptotic mixed normality is preserved
also when we allow for cross-dependence among the s, even though asymptotic orthogonality

between ̂ −  and ̂ −  does not hold any more. Consider a simpler version of (2), viz.

 = Γ, where  is a set of  (1) shocks that could contain some of the s, and let the

following assumptions hold.

Assumption 5:  = −1 +  with (a) {},
©
 




ª
, and {} mutually independent

across  for all ; (b) letting 2 =
£
 

0
 

0
  

¤0
, 2 is a linear process across  with mean

zero and finite 4th moment and an FCLT holds so that uniformly in  for all 

1√


bcX
=1

2
−→ 2 () =

⎡⎢⎢⎢⎢⎣
 ()

 ()

 ()

 ()

⎤⎥⎥⎥⎥⎦ 

where  () is a multivariate Brownian motion, whose elements have covariance matrices 
2
,

Ω, Ω and 
2
; (c) a Beveridge-Nelson decomposition holds for 2 with the remainder bounded

as in equation (11).

Assumption 6: (a) {Γ}=1 is a random sequence independent of
£
 

0
 

0
  

¤0
with (i)

−1
P

=1 ΓΓ
0


→ ΣΓ where ΣΓ is non singular and (ii) −1
P

=1 Γ
→ Γ̄; (b) as (  )→∞ it
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holds that

1

 2

X
=1

bcX
=1

Γ̄̄
0
Γ
0


→ Σ12Γ

µZ 

0

̄̄
0


¶
Σ
12
Γ

and (under 

→ 0)

1√
 2

X
=1

bcX
=1

Γ̄
0


→ Γ̄
Z 

0

̄̄
0


uniformly in .

Assumption 5 extends Assumption 1 to take account of the factor structure in the s; for

the sake of simplicity, the idiosyncratic component in (2), , is omitted here. Assumption

6(a)(ii) considers two possible, alternative cases, whereby the loadings Γ have either zero or

nonzero mean. This will be shown to play an important role in the asymptotic variance of ̂bc.
The following result, which is the equivalent to Theorem 1, holds:

Proposition 5 Suppose Assumptions 2, 5 and 6 hold. Under 0, as (  )→∞ with 

→ 0

√

h
̂1bc − 

i
−→ 

" R 
0
̄̄

0


R 
0
̄̄

0
Γ̄

0

Γ̄
R 
0
̄̄

0
 Σ

12
Γ

¡R 
0
̄̄

0


¢
Σ
12
Γ

#−12
× 

uniformly in , with  an (+ )-dimensional Gaussian random variable.

Proposition 5 shows, in essence, that the FCLT for ̂1bc− is the same as ̂1bc− for in
Theorem 1 (up to adjusting the dimension from  to +). This entails that  (bc) has, as
(  )→∞ with 


→ 0, the same distribution as () in (23), although the dimension changes

to  + . Therefore, tests based on  (bc) have the same properties under Assumptions 5
and 6 as under Assumptions 1; this includes power versus local alternatives and consistency of

the estimator of  .

Proposition 5 also has some important differences with Theorem 1, mainly in terms of the

correlation between ̂ −  and ̂ −  and the presence of  , instead of , in the expression

of ̂ − . The former is in general not zero, thus not having asymptotic independence, unless

Γ̄ = 0; this, in essence, is because as  →∞, −2P
=1

0
 does not converge to zero even if

 and  are independent.

Endogeneity and FMOLS estimation

This section considers extending the framework to incorporate the case of endogeneity; we

develop a FMOLS estimator and we show that the null distribution of the Wald-type test statistic

is the same as in Theorem 2. This is based on showing that an FCLT holds for the partial sample

FMOLS estimator, and thus all results derived above still hold in the case of endogeneity.
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Assumption 7: (a) Assumption 1(a) holds; (b) a multivariate invariance principle for  holds,

such that, as  → ∞ for all , 1√


Pbc
=1 

−→  () =
h
 ()  

0
 ()  

0
 ()   ()

i0
,

with long run covariance matrix given by 
©
Ω 2

ª
, where  {·} represents a block diagonal

matrix and

Ω =

⎡⎢⎣ Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

⎤⎥⎦ 
partitioned conformably with , where we assume Ω and Ω both equal to zero for simplicity;

(c) { 0 0} and {} are two independent groups.

Assumption 7 substitutes Assumption 1, and it considers the presence of endogeneity, which

is taken into account through the terms Ω and Ω in the long run covariance matrix: both the

common and the idiosyncratic shocks can be correlated with the error term . For simplicity,

the long run covariance matrix of the  () is the same for all . Independence between {}
and {  } is still required in order for the asymptotic theory for b to hold.

Define also

Λ = lim
→∞

1




⎡⎢⎣
P

 0
P

 ∆
0
0

P
 ∆

0
0P

∆0
P

∆∆
0
0

P
∆∆

0
0P

∆0
P

∆∆
0
0

P
∆∆

0
0

⎤⎥⎦ =
⎡⎢⎣ Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

⎤⎥⎦ 
and as before, for simplicity we assume Λ and Λ equal to zero. Assumption 7 entails (see

e.g., Phillips and Durlauf, 1986)



"
X
=1

c
c 0



#−1( X
=1

c

£
 + 0 ( − ̂)

¤)

−→
⎡⎣ ¡R ̄̄

0


¢−12r
Ω + 2

³
0̃ΣΛ̃

0

´
×  + ΛR

 + Λ

⎤⎦ 
for all . Therefore, the OLS estimator of  is no longer

√
 consistent due to the persistence

of the asymptotic bias terms Λ and Λ across units - see also the discussion in Phillips and

Moon (1999, p. 1084).

Let Ω() =
h
Ω0 Ω0

i0
, Ω() =  {ΩΩ}, Λ() =

h
Λ0 Λ0

i0
and Λ() =

 {ΛΛ}, where  {ΩΩ} is understood as a block diagonal matrix with Ω and Ω
on the main diagonal and similarly for Λ(). Estimates of Ω and Λ are based on Γ̂ () =

1


P
=1

+
+

+0
 , with +

 =
h
̂∆ b∆0i0. Estimates of Ω and Λ can be calculated as

Ω̂ =
P−1

=−+1
³



´
Γ̂ () and Λ̂ =

P−1
=0 

³



´
Γ̂ () respectively, where  () is a kernel

and  is the bandwidth.

The averaged kernel estimators of Ω and Λ are calculated as Ω̂ = 1


P
=1 Ω̂ and Λ̂ =
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1


P
=1 Λ̂. The following assumption characterizes the kernel  ().

Assumption 8: (a)  (0) = 1,  () =  (−), R∞−∞2 ()  ∞ and lim→∞ ||− [1−  ()] 

∞, for some  ∈ (0∞); (b) as ,  and →∞, it holds that 

→ 0 and 2


→   0.

Assumption 8 is the same as Assumption 11 in Phillips and Moon (1999, p. 1085), and it

ensures that

√

³
Ω̂−Ω

´
=  (1)  (30)

√

³
Λ̂− Λ

´
=  (1)  (31)

These are stronger than simple consistency and they are needed to prove the asymptotics of the

FMOLS estimator (see Phillips and Moon, 1999, p. 1109). Note that  does not play a role in

determining the value of the bandwidth .

Let

Λ̂+
()

= Λ̂() −
1√


Ã
Λ̂ 0

0
√
Λ̂

!
Ω̂−1
()
Ω̂();

the partial sample estimates for  are defined as

̂


1bc =

⎡⎣ X
=1

bcX
=1

c
c 0



⎤⎦−1 ×
⎡⎣ X
=1

bcX
=1

c − 1√


X
=1

bcX
=1

Ã
̂∆ b 0 ̂∆

0


∆ b 0 √∆0
!
Ω̂−1
()
Ω̂() − Λ̂+

()

⎤⎦ 
and

̂


2bc =

⎡⎣ X
=1

X
=bc+1

c
c 0



⎤⎦−1 ×
⎡⎣ X
=1

X
=bc+1

c − 1√


X
=1

X
=bc+1

Ã
̂∆ b 0 ̂∆

0


∆ b 0 √∆0
!
Ω̂−1
()
Ω̂()

− ( − bc) Λ̂+
()

i


This estimation procedure follows similar lines as e.g., in Phillips and Moon (1999, p. 1085);

the only difference here is the presence of the normalization term
√
, due to the presence of

common regressors across units.
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The Wald statistic for the null of no structural change is defined as

(bc) =
h
̂
∗
1bc − ̂

∗
2bc

i0 ⎡⎣ ³P
=1

Pbc
=1

c
c 0



´−1
+
³P

=1

P
=bc+1c

c 0


´−1
⎤⎦−1 ĥ∗1bc − ̂

∗
2bc

i


(32)

where

̂
∗
bc =

"
Ω̂2 0

0
³
Ω̂ − Ω̂Ω̂−1 Ω̂

´


#−1
̂


bc

with Ω̂ being an estimator of

Ω =
¡
Ω −ΩΩ−1 Ω

¢
+ 2

³
0̃ΣΛ̃

0

´
 (33)

constructed as Ω̂ =
³
Ω̂ − Ω̂Ω̂−1 Ω̂

´
+ ̂2

³
̂
0
̂2̂

´
, where ̂

0
̂2̂ is defined in (26).

It holds that

Proposition 6 Let Assumptions 2, 7 and 8 hold. Under 0, as (  ) → ∞ with 

→ 0, it

holds that (bc) −→  ()0  ().

Proposition states that the limiting distribution of (bc) is the same as the one in
Theorem 2; thus, none of the results obtained so far, including Corollary 1 and the critical values

for the statistics (bc), (bc), and (bc), change.

6 Monte Carlo Simulations

In this section, we use synthetic data to assess the null rejection probabilities and the power

properties of  (bc)   (bc)  and  (bc). We consider combinations of
 = {20 40 60 120 240 480} and  = {20 40 60 120 240 480}. The Monte Carlo experiments
are based on the following design

 =  + 0 + 0 + 

 = −1 + 

 = −1 + 

 = 0 + 

We assume a single factor and one single idiosyncratic component, such that  =  = 1. Under

the null hypothesis of no structural change, we set the values of the parameters  = 1 and  = 1.

Also, we generate  and  from i.i.d. (0 1) and (2 1) respectively.

We run a first set of experiments with i.i.d. data, reported in Tables 1a and 2a
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[Insert Tables 1a and 2a here]

In order to assess power and size under serial correlation and endogeneity, we generate

[ 
0
 

0
 

0
]
0
as follows. We firstly create a Gaussian i.i.d. sequence [̇ ̇

0
 ̇

0
 

0
]
0
, which

ensures that the error term  is independent of ̇, ̇
0
 and ̇. Contemporaneous correlation

between ̇, ̇
0
 and ̇ is imposed by premultiplying ̇ = [̇ ̇

0
 ̇

0
]
0
by the Choleski factor of

Π =

⎡⎢⎣ bc 0  1bc
0  1

1bc 1 

⎤⎥⎦ 
The coefficients  and  represent the correlation coefficients between ̈ and ̈ and ̈ and

̈0 respectively in the new vector ̈ = [̈ ̈
0
 ̈

0
]
0
; also, bc denotes an identity matrix of

dimension bc and e.g., 1bc is a bc ×  matrix of ones. Serial correlation is induced by

creating  = [ 
0
 

0
]
0
according to an ARMA(1,1) specification defined by

 = −1 + ̈ + ̈−1 (34)

We report results for
©
     

ª
= {−04−04 0 04} in Tables 1b and 2b

[Insert Tables 1b and 2b here]

Size and power are evaluated at 5% level. For the purpose of size distortion assessment,

we note that the critical values of the 5% level for  ,  , and  are 1179, 461,

and 322 respectively, as derived by Andrews (1993) and Andrews and Ploberger (1994). Power

assessment is conducted under the alternative hypothesis of structural change in  =
£
0 0

¤0
,

where the break is located at the 40% of the sample. To control for the break magnitude, we

set under 

 =

(
 for   bc
(1 + )  for  ≥ bc

where  is a scalar that defines the percentage change in the parameter values. We set  = 05.

All our results have been obtained using 10 000 iterations; when generating DGPs, the first

1 000 observations are discarded to avoid dependence on the initial conditions. All routines

have been written using Gauss 6.0.

Table 1a contains empirical rejection frequencies of the test statistics,  ,  , and

 , under the null that  and  are stable over time. Overall, all three test statistics

show good size as  and  increase. The three test statistics are undersized if  and  are

small, though size distortion is significantly reduced as  increases. Table 1b illustrates the null
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rejection frequencies for tests constructed upon the FMOLS estimator. The test statistics tend

to be slightly undersized for small samples, and using the FMOLS estimator leads to a more

evident improvement in the sizes for all statistics for small samples, starting from  = 20. As

samples get larger, results are substantially equivalent as those found when tests are conducted

using the OLS estimator, with the only exception being the cases of (  ) = (20 120) and

(  ) = (20 240) where the three statistics become substantially oversized.

Table 2a gives the power of the test statistics. All tests show very good power properties.

The power gain is substantial as  increases and more moderate for increasing sizes of . This

result is consistent with the
√
 asymptotics of the three tests, as reported in the paper.

When using the FMOLS estimator (Table 2b), the power improves even for moderate samples

( ≥ 40), which is consistent with the efficiency gain with respect to OLS. We note that the
power improvement is more pronounced as  increases rather than as  increases. Even with

 = 20, the power improves substantially as  increases.

7 Conclusions

In this paper, we derived an inferential theory for testing for an unknown common change point in

a cointegrated large panel regression. The model we considered contains unit specific regressors

but it can also accommodate for the presence of common shocks, thereby allowing for strong

cross-sectional dependence. We analyze both the cases of observable and unobservable common

shocks, and we prove an FCLT for the partial sample estimators under various assumptions -

i.i.d. data, strong cross dependence among idiosyncratic regressors, endogeneity.

For the purpose of testing, we study various transformations of Wald-type statistics, showing

that under the null the limiting distributions are nuisance parameters free and depend only

on the number of regressors. The distributions of the Wald-type statistics are functionals of

the tied-down Bessel process, as found in the univariate stationary regression framework in

Andrews (1993). The proposed tests are shown to have nontrivial power versus sequences of local

alternatives of order  (1
√
 ); the term 1

√
 shows the usefulness of the panel approach.

Although the tests are designed for the case of one abrupt change common to all units, we show

that the tests have power versus smooth, transition-type alternatives (similarly to Andrews,

1993) and also versus heterogeneous changepoints. Monte Carlo evidence shows that tests have

the correct size and good power properties, the power gain being substantial as  increases and

more moderate for increasing sizes of , consistent with the
√
 asymptotics. However, when

only some units have a break, our results show that the performance of tests actually becomes

worse than in the one-unit-at-a-time case, as tests have power versus local alternatives shrinking

at a rate  (
√
 ) in the extreme case of a finite number of units having a break.

An interesting development of the framework studied in this paper could be the extension to

the multiple breaks case, following a similar approach as Kejriwal and Perron (2008, 2010). Also,

our test statistics are based on taking the supremum of the Wald-type statistics over a trimmed
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interval. Alternatively, the Wald-type statistics could be normalised to take the supremum over

the whole sample. This approach is discussed in various contributions (we refer to Csorgo and

Horvath, 1997, for a comprehensive review) in a time series setting; it would be interesting to

extend it to a panel setting, analysing the role of  → ∞. This is an exciting research agenda
for future work.
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Panel A: Size for 

\ 20 40 60 120 240 480

20 0.0175 0.0375 0.0372 0.0694 0.0587 0.0519

40 0.0145 0.0236 0.0248 0.0462 0.0514 0.0604

60 0.0149 0.0260 0.0340 0.0337 0.0397 0.0550

120 0.0151 0.0287 0.0346 0.0373 0.0470 0.0561

240 0.0172 0.0309 0.0306 0.0360 0.0480 0.0454

480 0.0212 0.0285 0.0351 0.0349 0.0501 0.0560

Panel B: Size for 

\ 20 40 60 120 240 480

20 0.0267 0.0375 0.0350 0.0534 0.0407 0.0350

40 0.0258 0.0267 0.0242 0.0342 0.0349 0.0403

60 0.0220 0.0273 0.0312 0.0299 0.0265 0.0339

120 0.0238 0.0298 0.0315 0.0325 0.0306 0.0354

240 0.0241 0.0333 0.0330 0.0311 0.0367 0.0314

480 0.0312 0.0300 0.0307 0.0298 0.0375 0.0349

Panel C: Size for 

\ 20 40 60 120 240 480

20 0.0306 0.0472 0.0455 0.0724 0.0537 0.0458

40 0.0272 0.0325 0.0534 0.0475 0.0461 0.0525

60 0.0241 0.0353 0.0392 0.0337 0.0352 0.0455

120 0.0269 0.0388 0.0428 0.0396 0.0411 0.0473

240 0.0289 0.0427 0.0403 0.0362 0.0453 0.0405

480 0.0370 0.0403 0.0415 0.0377 0.0489 0.0460

Table 1a. Empirical null rejection frequencies at 5% nominal level for tests based

on  ,  and  . Data are generated as i.i.d.. The estimation method

for  is OLS.
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Panel A. Power for 

\ 20 40 60 120 240 480

20 0.0715 0.2085 0.4723 0.7962 0.9972 1.0000

40 0.0850 0.2332 0.5129 0.9467 1.0000 1.0000

60 0.0932 0.3281 0.6545 0.9837 1.0000 1.0000

120 0.1340 0.5551 0.8512 0.9999 1.0000 1.0000

240 0.2545 0.9640 0.9697 1.0000 1.0000 1.0000

480 0.4195 0.9327 0.9996 1.0000 1.0000 1.0000

Panel B. Power for 

\ 20 40 60 120 240 480

20 0.0859 0.2170 0.4477 0.8364 0.9983 1.0000

40 0.1055 0.2699 0.5523 0.9655 1.0000 1.0000

60 0.1172 0.3693 0.6917 0.9927 1.0000 1.0000

120 0.1686 0.6003 0.8921 1.0000 1.0000 1.0000

240 0.2991 0.8142 0.9877 1.0000 1.0000 1.0000

480 0.4700 0.9637 1.0000 1.0000 1.0000 1.0000

Panel C. Power for 

\ 20 40 60 120 240 480

20 0.1009 0.2448 0.4993 0.8321 0.9980 1.0000

40 0.1224 0.2838 0.5628 0.9620 1.0000 1.0000

60 0.1329 0.3874 0.7006 0.9910 1.0000 1.0000

120 0.1806 0.6151 0.8899 1.0000 1.0000 1.0000

240 0.3168 0.8131 0.9850 1.0000 1.0000 1.0000

480 0.4894 0.9599 0.9999 1.0000 1.0000 1.0000

Table 2a. Empirical power at 5% nominal level for tests based on  , 

and  . Data are generated as i.i.d.. The estimation method for  is OLS.
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Panel A: Size for 

\ 20 40 60 120 240 480

20 0.021 0.030 0.054 0.113 0.180 0.043

40 0.028 0.057 0.042 0.037 0.052 0.066

60 0.061 0.038 0.035 0.080 0.043 0.043

120 0.031 0.038 0.037 0.040 0.054 0.055

240 0.046 0.032 0.042 0.038 0.053 0.043

480 0.032 0.034 0.043 0.043 0.042 0.037

Panel B: Size for 

\ 20 40 60 120 240 480

20 0.030 0.033 0.045 0.070 0.101 0.024

40 0.039 0.056 0.039 0.027 0.033 0.038

60 0.068 0.037 0.035 0.056 0.028 0.026

120 0.042 0.039 0.035 0.031 0.032 0.033

240 0.056 0.037 0.039 0.033 0.035 0.026

480 0.044 0.037 0.041 0.035 0.029 0.026

Panel C: Size for 

\ 20 40 60 120 240 480

20 0.035 0.041 0.066 0.114 0.168 0.039

40 0.048 0.071 0.054 0.039 0.057 0.058

60 0.088 0.049 0.043 0.084 0.041 0.038

120 0.052 0.050 0.045 0.041 0.050 0.048

240 0.071 0.047 0.052 0.043 0.052 0.039

480 0.055 0.048 0.051 0.047 0.040 0.034

Table 1b. Empirical null rejection frequencies at 5% nominal level for tests based

on  ,  and  . Data are generated according to (34). The estimation

method for  is FMOLS.
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Panel A. Power for 

\ 20 40 60 120 240 480

20 0.064 0.144 0.324 0.763 0.974 1.000

40 0.086 0.319 0.555 0.933 0.999 1.000

60 0.156 0.405 0.692 0.983 1.000 1.000

120 0.207 0.618 0.886 1.000 1.000 1.000

240 0.365 0.809 0.987 1.000 1.000 1.000

480 0.536 0.961 1.000 1.000 1.000 1.000

Panel B. Power for 

\ 20 40 60 120 240 480

20 0.081 0.182 0.372 0.804 0.985 1.000

40 0.107 0.342 0.604 0.959 1.000 1.000

60 0.173 0.442 0.742 0.992 1.000 1.000

120 0.234 0.662 0.925 1.000 1.000 1.000

240 0.398 0.864 0.994 1.000 1.000 1.000

480 0.569 0.982 1.000 1.000 1.000 1.000

Panel C. Power for 

\ 20 40 60 120 240 480

20 0.097 0.193 0.383 0.807 0.985 1.000

40 0.126 0.373 0.614 0.955 1.000 1.000

60 0.204 0.467 0.745 0.992 1.000 1.000

120 0.265 0.678 0.922 1.000 1.000 1.000

240 0.435 0.864 0.993 1.000 1.000 1.000

480 0.606 0.980 1.000 1.000 1.000 1.000

Table 2b. Empirical power at 5% nominal level for tests based on  , 

and  . Data are generated according to (34). The estimation method for  is

FMOLS.
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Appendix A: Preliminary Lemmas

Henceforth, we use the following notation:  = min {√ }, ̄ 0 = −1
P

=1 , and

̄ = −1
P

=1
b.

Lemma A.1 Under Assumptions 1 and 2, as (  )→∞ and for all  ∈ (0 1)

(a) −1
Pbc

=1

°°° b − 

°°°2 = 

¡
−2

¢
,

(b) −1
Pbc

=1 k̂ − k2 = 

¡
−2

¢
,

(c) −1
Pbc

=1 0 (̂ −) = 

¡
−1

¢
.

Proof. Without loss of generality, we prove the Lemma for  = 1. Part (a) is taken from

Lemma 1 in Bai (2004). Consider part (b):
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Lemma B.4(i) in Bai (2004) ensures that  = 

¡
−1

¢
. As far as  is concerned, we have  =h

−1
P

=1

i0 h
−1

P
=1

³ b − 

´i
≤
h
−1

P
=1

i0 h
−1

P
=1

°°° b − 

°°°i; Assumption 1
entails −1

P
=1 = 

³√

´
. From Lemma B.4(iii) in Bai (2004), −1

P
=1

°°° b − 

°°° =


¡
−12−1

¢
; thus,  = 

¡
−1

¢
. As far as  is concerned, note  =

h
−1

P
=1 

i0h
−1

P
=1

³ b − 

´i
, and therefore  = 
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Lemma A.2 Under Assumptions 1 and 2, as (  ) −→∞ and for all  ∈ (0 1) 
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Proof. We prove the Lemma for  = 1. For part (a), note that
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Assumption 1 ensures that  =  (1). As far as  and  are concerned, application of the

Cauchy-Schwartz inequality and of Lemma A.1(a) ensures that they are bounded by
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As far as  is concerned, using Lemma A.1(b) we have
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To prove (c) consider
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To prove part (d), let −12−2
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P
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0 = +
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that the sequence e (̂ −)
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, is similar to that of Lemma B.4(i) in Bai (2004), and thus passages are omitted.

Lemma A.3 Let  = −1+ , with  a zero mean, unit variance MDS, and let  be an

MDS independent of  , with unit variance. Then, as  →∞ for       
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Proof. Let ̄ be the demeaned version of  and note
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due to the independence of  and to 
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Similar passages yield
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Putting everything together, (36) follows.
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Appendix B: Proofs and Lemmas

Proof of Proposition 1. Define  bc = −2
Pbc

=1 e0. Then, the BN decompositions
(7) and (8) in Assumption 1 yield
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where the last equality holds in light of Assumption 1(a) and Theorem 5.2 in Park and Phillips

(1999). Thus,
°°°∗bc°°°2+ is bounded by  (1) for all  as  →∞, and therefore an MDS CLT

can be applied such that, for all , −12
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Thus, as (  )→∞ under  → 0, −12
P
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=1e0 =  (1).

Lemma B.1 Under Assumptions 1-2, as (  ) −→∞ it holds that, for all  ∈ (0 1)
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Proof. Consider part (a). Proposition 1 implies that the off-diagonal terms of the matrix

converge in probability to zero. Also, 1
 2

P
=1

Pbc
=1 

0
 =

1
2

Pbc
=1 

0
, and a stan-

dard FCLT yields the result. Finally, standard joint LLN - see Phillips and Moon (1999) -

yields 1
 2

P
=1

Pbc
=1 ̃̃

0


−→ 1
6
2Ω. To prove part (b), note 

−1−2
P

=1

Pbc
=1 ̂̂

0
 =

−2
Pbc

=1 
0
+ 

¡
−12−1

¢
, where the last equality holds from Lemma A2.(a). The de-

sired result holds as long as (  )→∞.

Lemma B.2 Under Assumptions 1-2, as (  ) −→ ∞ with 

→ 0 it holds that, for all

 ∈ (0 1)

1√


X
=1

bcX
=1

c
−→
"

¡R 
0
̄̄

0


¢12
0×

0× Ω
12


#
×
"

 ()

 (; 0)

#


where  () and  (; 0) are defined in Theorem 1.

Proof. The Lemma is an FCLT for cointegrated panel data. To prove it, note first that the

covariance matrix is diagonal in light of Proposition 1; thus, we show separately that

1√


X
=1

bcX
=1

̂
−→ 

µZ 

0

̄̄
0


¶12
× ()  (37)

1√


X
=1

bcX
=1

̃
−→ Ω

12
 ×  (; 0)  (38)

Consider first (37), rewritten as

1√


X
=1

bcX
=1

̂ =
1



bcX
=1

̂

"
X
=1

1√


³
 + 0̃

´#
+  (1) ;

using the BN decomposition, this is equivalent to

1



bcX
=1

̂

"
1√


X
=1

³
 + 0̃

´#
=

1



bcX
=1

̂∗

"
1√


X
=1

³
∗ + 0̃

∗


´#

+
1√


X
=1

bc +  (1) 
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Let ∗ + 0̃
∗
 = ∗; for all , conditional on , ̂∗

³
1√


P
=1 

∗


´
is a zero mean MDS

with covariance matrix



⎡⎣ 1


bcX
=1

̂∗

Ã
1√


X
=1

∗

!¯̄̄̄
¯̄
⎤⎦2 = 1

 2
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=1

̂∗ ̂
∗0
 

Ã
1√


X
=1

∗

!2

= 2
1

 2

bcX
=1

̂∗ ̂
∗0
 

so that, as (  )→∞, 
h
−1

Pbc
=1 ̂∗

³
1√


P
=1 

∗


´¯̄̄

i2
= 2

R 
0
̄̄

0
, in light of Lemma

B.1. Thus, for all , −1
Pbc

=1 ̂∗
³
1√


P
=1 

∗


´
−→ 

¡R 
0
̄̄

0


¢12×, where  is a standard
normal of dimension . Tightness follows if

sup


¯̄̄̄
¯̄ 1

bcX
=1

̂

Ã
1√


X
=1



!
− 1



bcX
=1

̂∗

Ã
1√


X
=1

∗

!¯̄̄̄
¯̄ =  (1) ;

however, this is equivalent to sup

¯̄̄
−1

Pbc
=1 ̂

³
1√


P
=1 

´
− −1

Pbc
=1 ̂∗

³
1√


P
=1 

∗


´¯̄̄
+

 (1) = sup
¯̄
−12

P
=1bc

¯̄
. Neglecting the  (1) term and using (11)

sup


¯̄̄̄
¯ 1√

X
=1

bc

¯̄̄̄
¯ ≤ sup 1√



X
=1

¯̄
bc

¯̄
≤ √ sup



¯̄
bc

¯̄
=
√


µ
1√


¶


which vanishes as (  )→∞ under 

→ 0.

As far as (38) is concerned, we have, applying Lemma A.2(d)

1√


X
=1

bcX
=1

̃ =
1√


X
=1

bcX
=1

̃∗
∗
 +

1√


X
=1

bc +  (1) 

Let ∗ =
1√


P
=1 ̃

∗

∗
; 

∗
 is an MDS across . It holds that



⎛⎝ 1


bcX
=1

∗

⎞⎠2 = 1

 2

bcX
=1

bcX
=1

 (∗
∗
)

=
1

 2

bcX
=1


¡
∗2
¢
= 2

1

 2
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=1

1



X
=1



⎛⎝∗ −
1
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=1

∗

⎞⎠2

= 2
1

 2
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⎛⎝∗ −
1



bcX
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∗

⎞⎠2 
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Applying Lemma A.3 with  =  = 0 and  =  = , it holds that 1
 2

Pbc
=1 

³
∗ − 1



Pbc
=1 ∗

´2
→ Ω

1
6
2. That  → ∞ is only incidental to the main argument of the proof; thus, as

(  ) → ∞, 
³
1


Pbc
=1 ∗

´2
= 1

6
2Ω

2. In order to prove tightness, similar arguments

as above entail

sup


¯̄̄̄
¯̄ 1√



X
=1

bcX
=1

̃ − 1√


X
=1

bcX
=1

̃∗
∗


¯̄̄̄
¯̄

= sup


¯̄̄̄
¯ 1√

X
=1

bc

¯̄̄̄
¯+  (1) ≤

√
 sup



¯̄
bc

¯̄
+  (1) = 

µr




¶
+  (1) ;

thus, an FCLT holds as (  ) → ∞ under 

→ 0. The covariance structure of  (·; ·) can be

calculated using (36) in Lemma A.3, recalling that the long run variances of  and  are,

respectively, Ω and 2.

Proof of Theorem 1. The proof follows from Lemmas B.1 and B.2.

Proof of Theorem 2. To prove the theorem, note
³
̂
∗
1bc − ̂

∗
2bc

´
=
³
̂
∗
1bc − 

´
−
³
̂
∗
2bc − 

´
, and therefore

√
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̂
∗
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∗
2bc

´
=
h
 −

i⎡⎣ √ ³̂1bc − 
´

√

³
̂2bc − 

´ ⎤⎦ 
where  is (+ ) × (+ ) identity matrix. Theorem 1 and the continuous mapping theorem

entail, for any consistent estimators ̂2 and ̂2

√

³
̂
∗
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∗
2bc

´
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h
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i
⎡⎢⎢⎢⎢⎢⎣
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6
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2
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Using Lemma B.1(b) yields⎡⎣ ³
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P
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c
c 0



´−1
+
³

1
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P
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c 0


´−1
⎤⎦ −→

⎡⎣ ¡R 0 ̄̄
0
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+
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0
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0

0 6
2
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Therefore, by the CMT and uniformly in  we have

 (bc) =
√

³
̂
∗
1 − ̂

∗
2

´0 ⎡⎣ ³
1

2

P
=1

Pbc
=1

c
c 0
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+
³
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 2

P
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P
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= s ()0 [M ()]−1 s ()

+

∙
1

2
+

1

(1− )2

¸−1
×
"
(1− )2 (; 0)− 2 (1; )

2 (1− )2

#0 "
(1− )2 (; 0)− 2 (1; )

2 (1− )2

#
=  + 

Consider . Conditioning on , Theorem 1 yields, for fixed , s ()| ∼
h¡R 

0
̄̄

0


¢−1
+¯̄̄̄³R 1


̄̄

0


´−1¸12
× [0 ], so that, conditioning on , s ()0 [M ()]−1 s ()

¯̄̄
 ∼ 2. This

result does not depend on  - i.e. it holds true for all the possible elements in the sigma-field .

Thus s ()0 [M ()]−1 s () = () ∼ 2. As far as  is concerned, normality and independence

of the increments of  (; 0) entail

(1− )2 (; 0)− 2 (1; ) ∼ 
n
0
h
(1− )4 2 + 4 (1− )2

i


o


Therefore, for every 

 ∼ 2 (1− )2

2 + (1− )2

°°° n0 h(1− )4 2 + 4 (1− )2
i


o°°°
4 (1− )4

∼ 2

Hence, for fixed ,  (bc) −→ () + (); this proves equation (2). Independence of

() and () follows from the fact that b and b are asymptotically independent. This also
proves that both () and () are nuisance parameters free.

Proof of Proposition 3. Consider ̂2, defined as ̂
2
 =

1


P
=1

P
=1

³
 − ̄ − ̂

0c

´2
.

Consistency of ̂ under 0 entails ̂
2


→ 2. As far as ̂
2
 is concerned, we have ̂

2
 = ̂2+ ̂

0
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under 0, ̂
2
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P
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´
h
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³
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P
=1 ̂
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´
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P
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0


´
. From Lemma 2.(a) it holds that 1
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P
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0
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1
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P
=1

0
 + (1). Since ̂ = +

¡
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¢
(see Bai, 2004), −1

P
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2


→ 2. Therefore,

̂2 = 2

³
̃ΣΛ̃

0


´
+  (1), whence ̂

2


→ 2 .
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Proof of Theorem 3. Under the local alternative 
( )
 the model can be rewritten as


( )
 =  +c 0


( )
 + 

=  +c 0
 +

√



c 0
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¶
+ 

The partial sample OLS estimate for  is defined as ̂
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c
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c
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and similarly for the second partial sample, ̂
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2
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Combining these two results, it can be shown that
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Consider  and . It holds that
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¶
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Assumption 4(b) states that  =  (1). Also, as far as  and  are concerned, it holds that
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As (  ) → ∞, Lemma A.1(b) ensures that
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using Assumption 4(a). Combining these results we get
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2
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Letting  () be the limit of  as (  ) → ∞,
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h
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Upon assuming that both ̃ and ̃ are consistent for  and , Theorem 3 follows from the

Continuous Mapping Theorem.

Proof of Proposition 4. We first consider the consistency of ̃2. Let e = − ̄; it holds
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As far as term  is concerned, we have
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Combing  and  with  we get
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Lemmas B.1 and B.2 ensure that
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from Lemma B.1 and Assumption 4(c) and 4(d) we have
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finally, Lemmas B.1 and B.2 and Assumption 4(b) entail
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Assumption 1 and the LLN yield  = 2 +  (1). As far as  and  are concerned, we

have kk ≤ kk2 1


P
=1 k( − ̂)k2 =  (1), using Lemma A.1(b). Also, kk ≤ kk2
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local alternatives 
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 it holds that ̃2
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As far as the numerator is concerned, define two non-zero − and −dimensional vectors 1
and 2. Applying Lemma A.1(b), it holds that
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An FCLT for 1√


P
=1

Pbc
=1

¡
01 + 02Γ̄

¢
 follows from the proof of Theorem 1. By

definition, the covariance matrix is

lim
→∞

1

 2

X
=1

bcX
=1

£
01

0
1 + 02Γ̄̄

0
Γ
0
2 + 2

0
1̄

0
Γ
0
2
¤

¡
∗2
¢

= 2

∙
01

Z 

0

̄̄
0
1 + 02Σ

12
Γ

µZ 

0

̄̄
0


¶
Σ
12
Γ 2 + 2

0
1

Z 

0

̄̄
0
Γ̄

02

¸


using Lemma B1.(b) and Assumption 6. Thus, the finite-dimensional distributions are
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Tightness follows from Assumption 5(c), along the same lines as in the proof of Theorem 1.

Proof of Proposition 6. The proof follows similar lines to the proof of Theorem 9 in

Phillips andMoon (1999) and is based on two steps: firstly, we show an FCLT for
√

h
̂


1bc − 
i
;

secondly, we prove the consistency of the rescaling matrix"
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0
³
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Consider the denominator of ̂


1bc − ; Assumption 7 and the application of Lemma B.1(b)

yield
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As far as the numerator of
√

h
̂


1bc − 
i
is concerned, we can write it as
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where we used the fact that Ω() is assumed diagonal. In (40), the remainder of order  (1)

comes from (30) and (31); the term of order 

¡p



¢
comes from the BN decomposition

assumed in Assumption 7(a), following similar lines as in the proof of Proposition 1 and

Lemma B.2. From Assumption 7 and Assumption 1(a), ̂∗
³
∗ − −12Ω0Ω−1 ∆ b ∗ ´ − Λ+

and ∗
¡
∗ −Ω0Ω−1 ∆∗

¢−Λ+ are (by construction) zero mean MDS with finite second mo-
ments. Using the same approach as in the proof of Lemma B.2, as (  )→∞ with 


→ 0
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uniformly in  ∈ [0 1]. Combining this result with the denominator, the FCLT follows.
As far as the rescaling matrix is concerned, equation (30) and Proposition 3 entail Ω̂

→ Ω
and

³
Ω̂ − Ω̂Ω̂−1 Ω̂

´
→ ¡
Ω −ΩΩ−1 Ω

¢
- see also Phillips and Moon (1999; p. 1109).

The rest of the proof can be derived following the same lines as the proof of Theorem 2, and is

therefore omitted.
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