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Abstract. The aim of this survey paper is to provide an account of some of the
important developments in the autoregressive conditional heteroskedasticity
(ARCH) model since its inception in a seminal paper by Engle (1982). This
model takes account of many observed properties of asset prices, and therefore,
various interpretations can be attributed to it. We start with the basic ARCH
models and discuss their different interpretations. ARCH models have been
generalized in different directions to accommodate more and more features of
the real world. We provide a comprehensive treatment of many of the extensions
of the original ARCH model. Next we discuss estimation and testing for ARCH
models and note that these models lead to some interesting and unique problems.
There have been numerous applications and we mention some of these as we
present different models. The paper includes a glossary of the acronyms for the
models we describe.
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1. Introduction

The history of ARCH models is indeed a very short one, for it was introduced
by Robert Engle only a decade ago. Within this brief period, however, the
ARCH literature has grown in a spectacular fashion. The numerous applications
of ARCH models defies observed trends in scientific advancements. Usually,
applications lag theoretical developments, but Engle’s original ARCH model and
its various generalizations have been applied to numerous economic and financial
data series of many countries, while it has seen relatively fewer theoretical
advancements.

The concept of ARCH might be only a decade old, but its roots go far into
the past, possibly as far as Bachelier (1900), who was the first to conduct a
rigorous study of the behavior of speculative prices. There was then a period of
long silence. Mandelbrot (1963a,b, 1967) revived the interest in the time series
properties of asset prices with his theory that ‘random variables with an infinite
population variance are indispensable for a workable description of price
changes’ (cf. 1963b, p. 421). His observations, such as unconditional
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distributions have thick tails, variances change over time and large (small)
changes tend to be followed by large (small) changes of either sign, are ‘stylized
facts’ for many economic and financial variables. Figures 1, 2 and 3 present three
typical data series on price changes. These are, respectively the weekly rate of
return on the U.S. dollar/British pound exchange rate, changes in the three
month treasury bill rate and the growth rate of the NYSE monthly composite
index. The first noticeable thing is that for all three series, the means appear to
be constant, while the variances change over time. In particular, for the treasury
bill rate, there is a dramatic increase in the variance in the late seventies and early
eighties. Sample statistics from these series overwhelmingly support
Mandelbrot’s other stylized facts.

Prior to the introduction of ARCH, researchers were very much aware of
changes in variance, but used only informal procedures to take account of this.
For example, Mandelbrot (1963a) used recursive estimates of the variance over
time and Klien (1977) took five period moving variance estimates about a ten
period moving sample mean. Engle’s (1982) ARCH model was the first formal
model which seemed to capture the stylized facts mentioned above.

The ARCH model is useful not only because it captures some stylized facts,
but also because it has applications to numerous and diverse areas. For example,
it has been used in asset pricing to test the CAAPM, the I-CAPM, the CCAPM
and the APT; to develop volatility tests for market efficiency and to estimate the
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Figure 1. Weekly rate of return on the dollar/pound exchange rate.
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Figure 2. First difference of the 3 month treasury bill rate.

0.10 +

0.05

0.00

~0.03

~0.101

-0.15

ol

T T T T T T T T T T T T T [ T T T T [ T T T T [ T T T O[T T T =
I 1 [

1950 1955 1960 1965 1970 1975 1980 1985 1990
Figure 3. Monthly rate of return on the NYSE composite index.
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time varying systematic risk in the context of the market model. It has been used
to measure the term structure of interest rates; to develop optimal dynamic
hedging strategies; to examine how information flows across countries, markets
and assets; to price options and to model risk premia. In macroeconomics, it has
been successfully used to construct debt portfolios of developing countries, to
measure inflationary uncertainty, to examine the relationship between exchange
rate uncertainty and trade, to study the effects of central bank interventions, and
to characterize the relationship between the macroeconomy and the stock
market.

The literature on ARCH is so vast, it is almost impossible to provide a
comprehensive review. There are already a few survey papers on this topic. In
particular, we would refer the readers to Engle and Bollerslev (1986) and
Bollerslev, Chou and Kroner (1992). The latter paper noted several hundred
papers that apply the ARCH methodology to various financial markets. Some
recent references to the very rapidly growing bibliography include Bekaert
(1992), Bollerslev and Hodrick (1992), Duffee (1992), Koedijk, Stork and De
Vries (1992) and Ng and Pirrong (1992), just to name a few. The purpose of this
review paper is rather modest. Our aim is to provide an informal account of
recent theoretical advances and their impact on applied work. It should be
mentioned that our use of the term ‘ARCH’ does not refer to Engle’s original
model. By ARCH, we mean the phenomena of conditional heteroskedasticity in
general and all models to capture this phenomena.

The plan of the paper is as follows. The basic ARCH models are described in
the next section. As these models capture various stylized facts, they can be given
different interpretations, and these are discussed in section 3. It has been found
that the basic ARCH models are unable to capture all observed phenomena, such
as the leverage effect, excess kurtosis and the high degree of nonlinearity.
Generalizations of the basic ARCH models to capture these phenomena are the
subject matter of section 4. Forecasting with ARCH models is treated in section
5. The following sections, 6 and 7, review further generalizations, such as
multivariate ARCH and ARCH-in-mean (ARCH-M) models. In sections 8 and
9, we discuss estimation and testing of ARCH models. The last section concludes
the paper with a few remarks. At the end of the paper, we include a complete
glossary of the acronyms for the ARCH models which we describe in the survey.

2. Autoregressive conditional heteroskedasticity

In this section, we introduce the original ARCH model of Engle (1982). We
begin by defining the ARCH process, and heuristically describe its properties.
We emphasize the properties of the ARCH model which make it appealing for
modeling the volatility of economic time series. Subsequently, we introduce the
generalized ARCH (GARCH) model of Bollerslev (1986), which provides a
parsimonious parameterization for the conditional variance. The properties of
the ARCH process are then formally characterized by describing its
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unconditional moments. We also discuss how aggregating an ARCH process
over time effects the moments of the process.

2.1. Definition of the process

An ARCH process can be defined in a variety of contexts. We will define it in
terms of the distribution of the errors of a dynamic linear regression model. The
dependent variable y, is assumed to be generated by

yt=x;’£+e,, t=1,..., T, 2.1)

where x: is a kK x 1 vector of exogenous variables, which may include lagged
values of the dependent variable, and & is a kx 1 vector of regression
parameters. The ARCH model characterizes the distribution of the stochastic
error & conditional on the realized values of the set of variables
¥y 1= {¥r—1, Xt—1, Ye—2, X1—2, ... } . Specifically, Engle’s (1982) original ARCH
model assumes
& ] \I’t—] ~ N(O, ht) (22)
where
he= oo+ Q1€f-1 + - + agei-g, (2.3)

with o >0 and o; 20, i=1,...,q, to ensure that the conditional variance is
positive. Note that since e,—; =y,—; — x/-i£, i=1,... g, h; is clearly a function of
the elements of ¥,_;.

The distinguishing feature of the model (2.2) and (2.3) is not simply that the
conditional variance 4, is a function of the conditioning set ¥,_;, but rather it
is the particular functional form that is specified. Episodes of volatility are
generally characterized as the clustering of large shocks to the dependent
variable. The conditional variance function (2.3) is formulated to mimic this
phenomena. In the regression model, a large shock is represented by a large
deviation of y, from its conditional mean x/£, or equivalently, a large positive
or negative value of &. In the ARCH regression model, the variance of the
current error &, conditional on the realized values of the lagged errors e,_;,
i=1,...,q, is an increasing function of the magnitude of the lagged errors,
irrespective of their signs. Hence, large errors of either sign tend to be followed
by a large error of either sign. And similarly, small errors of either sign tend to
be followed by a small error of either sign. The order of the lag ¢ determines
the length of time for which a shock persists in conditioning the variance of
subsequent errors. The larger the value of g, the longer the episodes of volatility
will tend to be. :

A linear function of lagged squared errors, of course, is not the only
conditional variance function that will produce clustering of large deviations.
Any monotonically increasing function of the absolute values of the lagged
errors will lead to such clustering. However, since variance is expected squared
deviation, a linear combination of lagged squared errors is a natural measure of
the recent trend in variance to translate to the current conditional variance A;.
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Alternative formulations of the conditional variance function have been found
to be useful and these formulations will be discussed in depth in section 4.1.

To illustrate the characteristic appearance of ARCH data, we generate
artificial samples from (2.2). An explicit generating equation for an ARCH
process is

E=m ht, (24)

where 5~ IID N(0,1) and A, is given by (2.3). Since 4, is a function of the
elements of ¥,.;, and therefore, is fixed when conditioning on ¥,_, it is
clear that & as given in (2.4) will be conditionally normal
with E(e| ¥e-1) = JhE(ne| ¥:-1) =0 and Var(e | ¥,—1) = h; Var(n | ¥,-1) = k.
Hence, the process specified by (2.4) is identical to the ARCH process (2.2). The
generating equation (2.4) reveals that ARCH rescales an underlying Gaussian
innovation process #; by multiplying it by the conditional standard deviation
which is a function of the information set ¥,_,. First, for comparison when
ARCH is not present in the data, in Figure 4 we present a plot of 500 realizations
of &=, setting h,=1 by imposing ap=1 and «;=0 for i=1,...,q9. The
displayed data is simply Gaussian white noise, the process usually assumed for
the errors in a linear model. Then, using the same 75,’s shown in Figure 4, Figures
5 and 6 are plots of & = n,J_ , for which the A,’s are respectively

(=0.1+0.9¢7_, 2.5
5
! ki
0 A \ t
_5 ]
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Figure 4. Simulated Gaussian white noise.
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Figure 5. Simulated ARCH(1) data.
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Figure 6. Simulated ARCH(4) data.
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and
hy=0.1+0.36e2_; +0.27¢?_2 + 0.18¢7_3 + 0.09¢7_4. 2.6)

To make the scale of the data comparable in all three figures, the parameter
values in (2.5) and (2.6) were chosen to make the unconditional variances of the
ARCH processes equal to one. After section 2.3, it will be clear why the
conditional variance functions (2.5) and (2.6) imply that the unconditional
variances of the processes are one. We do not notice any clustering of the
observations in Figure 4. Figures 5 and 6, however, have close resemblance to
our earlier Figures 1, 2 and 3. In particular, the closeness of Figures 2 and 6 is
quite striking. Comparing Figures 5 and 6, we also note that, as expected, the
episodes of volatility are longer for ARCH(4).

2.2. Generalized autoregressive conditional heteroskedasticity

In the first empirical applications of ARCH to the relationship between the level
and the volatility of inflation, Engle (1982, 1983) found that a large lag g was
required in the conditional variance function. This would necessitate estimating
a large number of parameters subject to inequality restrictions. To reduce the
computational burden, Engle (1982, 1983) parameterized the conditional
variance as

q
2
h =00+ ay 2: WiEt-i,
i=1

where the weights

g+ i

" la@+)
decline linearly and are constructed so that X9-;w;=1. With this
parameterization, a large lag can be specified and yet only two parameters are
required to be estimated in the conditional variance function. Although linearly
declining weights are plausible, the formulation does put undue restrictions on
the dynamics of the ARCH process.

Bollerslev (1986) proposed an extension of the conditional variance function
(2.3), which he termed generalized ARCH (GARCH), that has proven to be very
useful in empirical work. The GARCH model was also independently proposed
by Taylor (1986), who used a different acronym. They suggested that the
conditional variance be specified as

he=oo+on€l 1+ - + agei—g + Bihi—1 + -+ + Bphi—p, Q.7
where the inequality restrictions

ag >0
ai20 fori=1,...q 2.8)
Bi=0 fori=1,..,p
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are imposed to ensure that the conditional variance is strictly positive. A
GARCH process with orders p and g is denoted as GARCH(p,q). The
motivation of the GARCH process can be seen by expressing (2.7) as

h: = ao + a(B)ei + B(B)hy,
where a(B) = 1B + --- + agB? and B(B) = $1B+ --- + 8,B? are polynomials in

the backshift operator B. If the roots of 1 — 8(Z) lie outside the unit circle, we
can rewrite (2.7) as

_ aB)
1-8() 1-8B) "

h:

o0

=g+ Z diet; 2.9)

i=1

where ag'= aof(1 — 8(1)) and the coefficient &; is the coefficient of B’ in the
expansion of «(B)[1 - B(B)] . Hence, expression (2.9) reveals that a
GARCH(p, q) process is an infinite order ARCH process with a rational lag
structure imposed on the coefficients. The generalization of ARCH to GARCH
is similar to the generalization of an MA process to an ARMA process. The
intention is that GARCH can parsimoniously represent a high order ARCH
process.

Although the restrictions (2.8) are sufficient to ensure that the conditional
variance of a GARCH(p, q) process is strictly positive, Nelson and Cao (1992)
demonstrated that weaker sufficient conditions can be found [see also Drost and
Nijman (1992)]. They pointed out that from the inverted representation of A; in
2.9),

ac>0and §; >0, i=1,...,0 (2.10)

are sufficient to ensure the conditional variance is strictly positive. Expressing g
and the §;’s in terms of the original parameters of the GARCH model, Nelson
and Cao showed that (2.10) does not require that all the inequalities in (2.8) to
hold. For example, in a GARCH(1,2) process, a0 >0, a; 20, 8; =20 and
Biay + ap > 0 are sufficient to guarantee that h; > 0. Therefore, in the
GARCH(1, 2) model, a; may be negative. They presented general results for
GARCH(1,q) and GARCH(2,q), but suggest a derivation for GARCH
processes with p > 3 is difficult. Nelson and Cao cited several empirical studies,
such as French, Schwert and Stambaugh (1987), Baillie and Bollerslev (1989),
and Engle, Ito and Lin (1990), which reported negative coefficients and yet
satisfy the conditions for a positive conditional variance based on (2.10). They
concluded that the inequality restrictions (2.8) should not be imposed in
estimation, as violation of these inequalities does not necessarily imply that the
conditional variance function is misspecified.
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2.3. Unconditional moments of the ARCH

Above, we described verbally the properties of ARCH and illustrated the visual
appearance of ARCH with computer generated data. The unconditional
moments of the ARCH process formally characterize these properties. Engle
(1982) gave expressions for many of the moments, and stated necessary and
sufficient conditions for the existence of the moments for the original linear
ARCH process (2.3). Milhoj (1985) provided additional moments. Subsequently,
Bollerslev (1986) extended these results to the GARCH process.

The derivation of the unconditional moments of the ARCH process is possible
through extensive use of the following important probability result:

Law of Iterated Expectations: Let 2, and Q; be two sets of random
variables such that Q; < ©,. Let y be a scalar random variable.
Then E(y| Q1) = E[E(y| Q)] ].

In the context of this paper, &) and £ are information sets available at different
time periods. A special case of the law is frequently employed to find the
moments of the ARCH process. If Qi=( is the empty set, then
E(y)=E[E(y|2)]. This expression is useful because it relates an
unconditional moment to a conditional moment. Since the ARCH model is
specified in terms of its conditional moments, it provides a method for deriving
unconditional moments.

Using the law of iterated expectations, we can easily derive the fundamental
properties of an ARCH process. First, consider the unconditional mean of a
GARCH(p, q) error & with conditional variance (2.7). Applying the law of
iterated expectations, E(g) =E[E(e:] ¥:-1)). However, because the GARCH
model specifies that E(e;| ¥,-1) =0 for all realizations of ¥;-,, it immediately
follows that E(g,) = 0. Thus, the GARCH process has mean zero.

Next, consider the unconditional variance of the GARCH(p, g) process.
Although the variance of & can be evaluated in general, for simple illustration,
we consider the GARCH(1, 1) process. Using (2.7), with p=qg =1, and the law
of iterated expectations

E(e}) = E[E(e?} ¥,-1)]
= E(h:)
= oo + a1 E(e?-1) + B1E(hi-1)
=ap+ (e1 + B1)E(eF-1),
which is a linear difference equation for the sequence of variances. Assuming the

process began infinitely far in the past with a finite initial variance, the sequence
of variances converge to the constant

ol=E(e}) =—X

1 —o1— 61
if a1 + B1 < 1. For the general GARCH( p, q) process, Bollersiev (1986) gave the
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necessary and sufficient condition

q
a()+B(1)= 2] ai+ f} Bi<1 Q@.11)
i=1 i=1
for the existence of the variance. When this condition is satisfied, the variance is
2 F(e2) = ol )
e=EED =T m - s

Although the variance of & conditional on ¥,_; changes with the elements of the
information set, unconditionally the ARCH process is homoskedastic.
Considering Figures 5 and 6 again, the visual appearance of the generated data
conveys the impression that the unconditional variance changes with time. This
false perception results from the clustering of large deviations. A major
contribution of the ARCH literature is the finding that apparent changes in the
volatility of economic time series may be predictable and result from a specific
type of nonlinear dependence rather than exogenous structural change in the
variance.

The nature of the unconditional density of an ARCH process can be analyzed
by the higher order moments. As & is conditionally normal, for all odd integers
m, E(el"| ¥.-1)=0. The skewness coefficient is immediately seen to be zero.
Since & is continuous, this implies that the unconditional distribution is
symmetric. Higher moments indicate further properties of the ARCH process.
An expression for the fourth moment of a general GARCH(p, g) process is not
available, but Engle (1982) gave it for the ARCH(1) process and Bollerslev (1986)
generalized it to the GARCH(1,1) case. Engle’s result for the ARCH(1) case
requires that 3 < 1 for the fourth moment to exist. Simple algebra then reveals
that the kurtosis is

E(e?)=3<1—a%>

4 1-3a?

Oe¢

which is clearly greater than 3, the kurtosis coefficient of the normal distribution.
Therefore, the ARCH(1) process has tails heavier than the normal distribution.
This property makes the ARCH process attractive because the distributions of
asset returns frequently display tails heavier than the normal distribution.
Although no known closed form for the unconditional density function of an
ARCH process exists, Nelson (1990b) demonstrated that under suitable
conditions, as the time interval goes to zero, a GARCH(1,1) process approaches
a continuous time process whose stationary unconditional distribution is a
Student’s f. Nelson’s result indicates why heavy tailed distributions are so
prevalent with high frequency financial data.

That the parameterization of the ARCH process does not a priori impose the
existence of unconditional moments is an important characteristic of the model.
It has long been suggested, at least as early as Mandelbrot (1963b), that the
distribution of asset returns are such that the variance may not exist. In empirical
applications of GARCH, estimated parameters frequently do not satisfy (2.11).
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The fact that the ARCH model admits an infinite variance is desirable because
such behaviour may be a characteristic of the data generating process that should
be reflected in the estimated model. Also, fortunately, as will be noted in Section
8, even for GARCH models with infinite variances, standard results on
consistency and asymptotic normality might still be valid.

Above we considered the univariate distribution of a single . The moments
of the joint distribution of the &:’s also reveal important properties of the ARCH
process. For k > 1, the autocovariances of the GARCH(p, q) process are

E(e€i-k) = E[E(&€1-k | ¥:-1))
= E[er-kE(er| ¥¢-1)]
=0.

Since the GARCH process is serially uncorrelated, with constant mean zero, the
process is weakly stationary if the variance exists, that is if (2.11) holds. A
remarkable property of a GARCH process, first demonstrated by Nelson (1990a)
for GARCH(1,1), is that it may be strongly stationary without being weakly
stationary. Bougerol and Picard (1992) extended Nelson’s result to the
GARCH(p, q) process and stated necessary and sufficient condition for strong
stationarity. These conditions are very technical and will not be described here.
That the GARCH process may be strongly stationary without being weakly
stationary stems from the fact that weak stationarity requires that the mean,
variance and autocovariances be finite and time invariant. Strong stationarity
requires that the distribution function of any finite set of &’s is invariant under
time translations. Finite moments are not required for strong stationarity. The
results of Nelson (1990a) and Bougerol and Picard (1992) show that the
unconditional variance may be infinite and yet the GARCH process may still be
strongly stationary.

The lack of serial correlation is an important characteristic of the ARCH
process which makes it suitable for modeling financial time series. The efficient
market hypothesis asserts that past rates of return can not be used to improve
the prediction of future rates of return. In (2.1), suppose the y, is the rate of
return on an asset and that £ = 0 so that there is no regression component in the
model. Then y; is identical to ¢ and becomes a pure GARCH process. The
optimal prediction of the return y, is the expectation of the return conditional
on any available information. But because the GARCH model specifies
E(y:| ¥:-1) = E(y:) = 0, the past observations on y; contained in ¥,_; do not
alter the optimal prediction of the rate of return. Therefore, the presence of
ARCH does not represent a violation of market efficiency.

Of course, the lack of serial correlation does not imply that the & are
independent. Above, we suggested that the qualitative appearance of data
generated from an ARCH process arises from the particular type of dependence.
Bollerslev (1986) gave a representation for the GARCH(p, q) process which
reveals the nature of the dependence. Letting »; = €7 — A, the squared error can
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be written as

8%= he+ ve

=ao+ 2, (ai+ Bi)et-i— f} Bi(€ri—he-i)+ v -
i=1 i=1

= qo + i (o + Bi)et-i— f: Bive—i+ v: 2.12)
i=1 i=1

where m=max(p,q), a;i=0 and i>q and B;=0 for i>p. Because
E(v:|¥:-1) =0, the law of iterated expectations reveals that », has mean zero
and is serially uncorrelated. Therefore, from (2.12) we see that e has an
ARMA(m, p) representation. The autocorrelation and partial autocorrelation
functions of the squared process e? will have the familiar patterns of those from
an ARMA process. Bollerslev (1988) has suggested that these autocorrelation
functions of €? may be used to identify the orders p and g of the GARCH
process. In practice, the identification of the order of a GARCH(p, q) has not
posed much of a problem, at least in comparison with the earlier modeling
experience with ARMA(p, g) processes. In applied work, it has been frequently
demonstrated that the GARCH(l, 1) process is able to represent the majority of
financial time series. A data set which requires a model of order greater than
GARCH(1, 2) or GARCH(2, 1) is very rare.

2.4, Hlustrative example with the weekly dollar|pound exchange rate

The ARCH model has been widely applied to the study of the dynamics of the
rate of return on holding foreign currencies [see Bollerslev, Chou and Kroner
(1992), pp. 37—46, for a survey of applications]. In this section, we illustrate the
properties of conditionally heteroskedastic data by estimating ARCH and
GARCH models for the weekly rate of return in the US/British currency
exchange market. The data are the weekly spot exchange rate from January 1973
to June of 1985. There are 651 observations. Let s; denote the spot price of the
British pound in terms of the U.S dollar. We then analyze the continuously
compounded percentage rate of return, r; = 100- log(s/s:-1), from holding the
British pound one week. This is the data plotted in Figure 1.

We begin by identifying and estimating an AR process for the mean of r;. The
autocorrelation and partial autocorrelation functions of r; suggest the data can
be represented by an AR(3) process. The estimated model is given by

re= —0.07+0.27re—1 — 0.08r—2 + 0.10r_3 1@) = -971.70,
(0.04) (0.04)  (0.04)  (0.04)

where the standard errors are shown in parentheses and /(8) is the value of the
maximized log likelihood function assuming the data are normally distributed.
Box-Pierce statistics computed from the residuals indicate that the AR(3) process
adequately accounts for the serial correlation in the data. The higher order
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moments of the residuals, however, reveal that nonlinearity is present in the data
and that the unconditional distribution is nonnormal. In Table 1, we present the
skewness and kurtosis coefficients of the residuals, and the autocorrelations of
the squared residuals. If the errors of the AR process are independent, the
autocorrelations of the squared residuals should be approximately zero. From
Table 1, the autocorrelations at lags 1, 2, 3, 4 and 7 exceed twice their asymptotic
standard errors, suggesting the presence of nonlinear dependence in the data.
The skewness coefficient conveys some evidence of asymmetry in the
unconditional distribution. The kurtosis coefficient is significantly greater than 3,
which indicates that the unconditional distribution of the data has much heavier
tails than a normal distribution.

As emphasized in section 2.3, nonlinear dependence and a heavy-tailed
unconditional distribution are characteristic of conditionally heteroskedastic
data. We maintain the AR(3) specification for the conditional mean of r,, but
now specify the error as an ARCH(q) process. The autocorrelations of the
squares of the AR residuals suggest dependence through order 7. Therefore, we
initially estimated an ARCH(7) model, but found a7 to be insignificant. We
respecify the errors as ARCH(6) and estimate the model by the maximum
likelihood method to obtain

re=—0.06+0.27r,—1 + 0.03r:_2 + 0.07r:_3 (0= -919.72
0.03) (0.05)  (0.05  (0.04)

he=0.42 +0.23e7_; + 0.21e?_, + 0.05¢%_5
(0.06) (0.06) (0.06) (0.04)

+0.05¢2_4 +0.07¢?_5 + 0.12¢?%_.
(0.04) (0.04) (0.05)

The ARCH parameters ai, oz and as are highly significant. The ARCH model
also produces a significant increase in the value of the log likelihood. A
likelihood ratio test easily rejects the null of an AR(3) process with independent
Gaussian errors against the alternative of AR(3) process with conditionally
normal ARCH(6) errors. Notice that the coefficient of r,—» loses its significance.
Frequently, after ARCH is accounted for, the initial specification of the mean
must be reevaluated.

The ARCH(6) model can apparently explain the nonlinear dependence in the
residuals. In Table 1, we present the autocorrelations of the squared
standardized residuals 77= £%h;. None of the first eight autocorrelations are
significant at any reasonable significance level. The skewness coefficient of the
standardized residuals is different in sign from the AR residuals and larger in
magnitude, but still not excessively big. The sample kurtosis coefficient of the
standardized residuals is smaller than the coefficient for the AR residuals, but is
still significantly greater than 3. This suggests that the unconditional distribution
of the conditionally normal ARCH process is not sufficiently heavy tailed to
account for the excess kurtosis in the data. The rejection of the conditional
normality assumption is frequently encountered in applications of the ARCH
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model. As will be discussed in section 4.2, there are ways to take account of this
excess kurtosis.

In section 2.2, we demonstrated how the GARCH model can provide a
parsimonious parameterization of a high order ARCH process. To illustrate this,
we estimate an AR(3) model for r. with the conditional variance of the errors
specified as GARCH(1, 1). Maintaining the conditional normality assumption,
the estimated model is

rr=—0.05+0.27r,.1 — 0.003r,_2 + 0.08r,_3 1(6) = —920.02
(0.04) (0.05) (0.05) 0.04)

he=0.09+0.17¢?_1 +0.77h,_ ..
(0.03) (0.04) (0.05)

The estimates of the AR parameters are similar to the estimates for ARCH(6)
errors, with only the coefficient of r,_, changing sign and becoming even less
significant. The autocorrelations of the squares of the GARCH(l,1)
standardized residuals, shown in Table 1, are insignificant and similar in
magnitude to those for the ARCH(6) standardized residuals. This indicates that
the GARCH(1, 1), which requires estimating only three conditional variance
parameters, can account for the nonlinear dependence as well as the ARCH(6)
model, which requires estimating seven conditional variance parameters. The

0 1 li 1 I I Ll I
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Figure 7. Conditional variance of the dollar/pound weekly return.
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skewness and kurtosis coefficients of the standardized GARCH(1, 1) residuals,
also given in Table 1, are almost identical to the coefficients for the standardized
ARCH(6) residuals. The value of the maximized ARCH(6) log likelihood is
marginally greater than the value of the GARCH(l, 1) log likelihood. But any
model selection criteria, such as AIC or BIC, which penalizes a model for
additional parameters, would select the GARCH(1, 1) specification over the
ARCH(6) specification. Finally, in Figure 7 we present a plot of the estimates of
the conditional variances, h;, from the GARCH(1, 1) model. The conditional
variances show considerable variation over time. Comparing the plot of the
weekly returns in Figure 1 with the plot of the conditional variances in Figure
7, it is clear that a clustering of large deviations, of either sign, in the returns
is associated with a rise in the conditional variance.

2.5. Temporal aggregation of ARCH processes

One of the important issues in time series modeling is temporal aggregation. It
is well known that a high frequency (e.g., fitted to daily data) ARMA process
aggregates to a low frequency (fitted to say, weekly data) ARMA process. A
natural question is whether ARCH models also possess this property. Drost and
Nijman (1992) considered this issue in detail and we follow their analysis. Let us
consider the ARCH model (2.2) and (2.3) with g =1, i.e.,

€| ¥1~N(Q,h) (2.13)
where
he=E@E}| Y1) =ao+ouety, t=1,2,...,T. (2.14)
Suppose we want to find the corresponding model for &, when 1=2,4,...,T.
The information set will consist of only [y._2,Xx¢—2, Yr—4, Xt~a, ...} and we will
denote it by ¥,_(z). Drost and Nijman showed that
E(ec| ¥-@)) =0
E(E%‘ ‘I’t_(z)) =oao(l +ay) + a%e%_z, t=2,4,...,T
= hz(z), say.
In general, if we consider t=m, 2m, ..., T, then
E(e| ¥-(my)) =0

m
1 —aj m_,2

E@€?| ¥:-(my) = a0 +alei m.
11—

Therefore, in terms of the first two moments, an ARCH process: is closed under
temporal aggregation and we have an algebraic relationship between the
parameters corresponding to high and low frequency data. It is interesting to
note that as m— o, E(e?| ¥:—(m)) = aof(1 ~ 1), so that in the limit, the
aggregate process behaves like a conditional homoskedastic model as pointed out
by Diebold (1988). If we consider the reverse operation of going from a low
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frequency model to a higher one, in the limit the process will have an integrated
ARCH structure as noted by Nelson (1990b).
Now let us consider the distributional part of the specification (2.13), which
can be stated as
& Jhe| ¥e-1 ~ IID N(0, 1) t=1,2,...,T. (2.15)

We need to check the conditional distribution of &= &/ /by, 1=2,4, ..., T.
Drost and Nijman (1992) showed that

2
E(e [ ¥o@) =3+ 6[—“—9—— l] .
h2)

Therefore, the conditional moments of ¢ depends on the information set and
hence the conditional distribution of &*does not have the IID structure (2.15).
Also the distribution is no longer normal. Therefore, from a distributional point
of view, an ARCH process is not closed under aggregation.

For practical purposes, if we specify an ARCH model only in terms of
moments, it is possible to estimate the low frequency parameters from the
estimation of a high frequency model and vice versa. Drost and Nijman (1992)
demonstrated this using the empirical results of Baillie and Bollerslev (1989),
who fitted a GARCH(l, 1) model to several exchange rates. For the Swiss franc,
the estimates of «; and 8; from the daily data were 0.073 and 0.907. Using the
relationship between the parameters of high and low frequency data, Drost and
Nijman showed that the implied weekly estimates are 0.112 and 0.792. Baillie
and Bollerslev’s estimates using the actual weekly data were 0.121 and 0.781.
Except for the Japanese yen, Drost and Nijman found that direct estimates were
very close to the implied weekly estimates.

3. Interpretations of ARCH

Apart from their simplicity, the main reason for the success of ARCH models is
that they take account of the many observed features of the data, such as thick
tails of the distribution, clustering of large and small observations, nonlinearity
and changes in our ability to forecast future values. Therefore, it is not
surprising that these models can be interpreted in a number of ways, and we
discuss some of these interpretations in this section.

3.1. Random coefficient interpretation

In the last section, we noted that ARCH takes account of the clustering of large
and small errors and fatness of the tail part of the distribution (excess kurtosis)
as observed in many financial data series. One of the major considerations for
introducing ARCH by Engle (1982, p. 989) was that econometricians’ ability to
predict the future varies from one period to another. Predictions are usually
done by using a conditional mean model. Uncertainty about the conditional
mean can be expressed by a random coefficient formulation. Consider a random
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coefficient AR(1) process

Vi=PY-1+ &

where & ~ (¢, o), and & ~ (0, ao) are independent. Then E(y:| ¥:-1) = ¢y:-1
as with the fixed AR(1) process; however, now Var(y:|¥;-1)=ao+ yia,
which has the same form as (2.3). To obtain a general ARCH(g) model in our
regression context from a random coefficient framework, we need to start with
the following set up:

yz=X1/E+€t (31)

q
&= D, biki-it U
i=1

q
= Zl (i + Mie)€ri + s (3.2)

where 1:= (11, ..., 7gr)" ~ (0, Agxg) and u;~ (0,0%) are independent. It
immediately follows that

E(e& | Y 1)=0¢'&-1,
where ¢ = (¢1,...,9¢)" and &-_1= (&1, ..., &~¢)’, and that
Var(e; | ¥i-1) = &/-1A€&—1 + ok (3.3)

If A = ((«;))) is a diagonal matrix with A = diag(e, ..., ag) and 0% = ap, then
q
Var(e: | ¥r—1) =ao + D) gt
i=1

as we have in (2.3). A non-diagonal ‘A’ specifies an ARCH process with
additional cross-product terms between the past errors. The intuition behind the
inclusion of the cross-product terms is that they take account of the effect of the
interaction between the lagged residuals on the conditional variance. White’s
(1980) test for heteroskedasticity has a similar feature which includes the cross-
products of the regressors as the test variables while the operational form of the
Breusch and Pagan (1979) test does not. The model (3.3) was discussed in detail
by Bera, Higgins and Lee (1992), which they called the augmented ARCH
(AARCH) model [see also Tsay (1987)]. If we add linear terms of &1 in (3.3),
we obtain the quadratic ARCH (QARCH) model of Sentana (1991). Bera,
Higgins and Lee (1990) extended the framework (3.1) and (3.2) to give the
GARCH(p, g) model a random coefficient interpretation. It is immediately seen
that unlike ARCH, AARCH is not symmetric in the sense that the conditional
variance depends on the sign of the individual lagged &’s.

In their empirical analysis of exchange rate data, Cheung and Pauly (1990)
found that many of the off-diagonal elements of ‘A’ were significantly different
from zero and concluded that a random coefficient formulation provided a richer
formulation of time varying volatility than did the standard ARCH
characterization. Bera, Higgins and Lee (1990) also noted similar results when
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they reconsidered Engle’s (1983) model for measuring variability of U.S.
inflation. They found that the estimate of the coefficient of the augmented
ARCH term & 4&-7 was —0.195 with a r-statistic of 4.89. Their resulting
specification of an AR-AARCH model passed the specification tests and
diagnostic checks they performed, while Engle’s original ARCH model had some
unexplained serial correlation and conditional heteroskedasticity. An empirical
application in Sentana (1991) with a century of daily U.S. stock returns provided
support for his QARCH model. Coefficients of all of the cross-product terms
were highly significant.

Bera and Lee (1993) established the connection between random coefficients
and ARCH in a somewhat indirect way. They applied White’s (1982)
information matrix (IM) test to a linear regression model with autocorrelated
errors. The IM test had six distinct components and a special case of one
component, which corresponded to the autocorrelation parameter ¢, was found
to be identical to Engle’s (1982) Lagrange multiplier (LM) test for ARCH. Given
Chesher’s (1984) interpretation of the IM test as a test for parameter variation,
it can be said that as far as the test is concerned, the presence of ARCH is
‘equivalent’ to random variation in the autocorrelation coefficient. In our above
analysis, we noted that both ARCH and the random coefficient model lead to
the same first two conditional moments. Under the additional assumption of
conditional normality, all the moments, and hence the two processes themselves,
will be identical.

One byproduct of the random coefficient representation of the ARCH model
is that standard results from the time series literature can be used to derive the
necessary and sufficient conditions for stationarity. Andel (1976), Nicholls and
Quinn (1982) and Ray (1983) stated simple conditions for second order
stationarity of the AR process with random coefficients. In section 2.3, we noted
that the stationarity condition for an ARCH(g) process in the absence of
autocorrelation is £~ a; < 1. As demonstrated in Bera, Higgins and Lee (1990),
presence of autocorrelation leads to a different stationarity condition. For
example, the stationarity condition for an ARCH(g) process in the presence of
first order serial correlation is

1
1-

q
¢% le a; < 1.
i=

In the absence of autocorrelation, X9-1a; < 1 is sufficient for weak stationarity.
This clearly demonstrates that the presence of autocorrelation can make a
stationary ARCH process non-stationary.

3.2. A conditional mixture model interpretation

Following the work of Clark (1973) and Tauchen and Pitts (1983), Gallant,
Hsieh and Tauchen (1991) provided an interesting rationale for the presence of
conditional heteroskedasticity and heterogeneity in the higher order moments of
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asset prices. Let us write the observed price change y: as
I,
ye=m+ 2 ti 3.9
i=1

where ¢; ~ IID N(0, 72). Here y, can be viewed as the forecastable component,
the ¢i’s are the incremental changes and I; is the number of times new
information comes to the market in period ¢. I is a serially dependent
unobservable random variable and is independent of {{:;}. Because of the
randomness of I, y: is not normally distributed; it is in fact a mixture of normal
distributions. Here we can view y: as a subordinated stochastic process, where
¥: — pe is subordinate to ¢;, and I, is the directing process. Equation (3.4) can be
written as

Vo= pe + 71} 0 (3.4a)

with », ~ N(0, 1). Then, conditional on the information set ¥;_; and /,, we have
the conditional heteroskedastic normal distribution

Ye| ¥eo1, I ~ N(pa, TZI:). (3.5)

Since I, is not observable, in practice we can work only with the conditional
distribution y;| ¥,—;. From the general result that if a random variable is
conditionally (on I;) normal, unconditionally it must be nonnormal, a realistic
distribution for y| ¥,_; would be conditionally heteroskedastic and nonnormal.

Framework (3.5) is very general, and a variety of interesting cases can be
derived from this. When I is a constant ¢, we have

Ve l Vo1~ N(ps, CTZ):

which is our standard homoskedastic model. If our information set ¥,_; also
includes I, then

e ‘ Y1~ N(ltt, Tz]t)-

This is a conditional heteroskedastic-normal model. However, the assumption
about the knowledge of I; is not realistic. For the general case (3.5) the first four
moments are

E[(yi— )| ¥:1]1=0

El(e— )| ¥io1] = 12E[L| ¥:-1]

E[(y:— ue)’ | ¥e-1] =0

E[(ye— pe)* | ¥e-1) = T3 E[1?| ¥,-1].

Hence, the conditional kurtosis

E[(y: = po)* | ¥e-1] _ 3EUF| ¥e-i]
E[(yi—p)? | ¥-1)® E[L|¥:-4]?

(3.6

exceeds 3. Therefore, it is not surprising that in many empirical studies the
normal-ARCH model could not capture most of the excess kurtosis in the data,
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while a conditional ¢ or some nonnormal ARCH models worked somewhat better
[see, for example, Engle and Bollerslev (1986), Baillie and Bollerslev (1989),
Bollerslev (1987), Hsieh (1989), Gallant, Hsieh and Tauchen (1991), Gallant and
Tauchen (1989), Lee and Tse (1991)]. Conditional ¢ or other nonnormal
distributions do not of course solve all the problems, since the quantity in (3.6)
is not necessarily time invariant. The conditional ¢ distribution, for example,
although it allows kurtosis to exceed 3, assumes constant conditional kurtosis.
Note that the kurtosis in (3.6) will be time invariant if I, and ¥,_, are
independent. To take account of the time varying higher moments, Hansen
(1992) generalized the conditional  model by expressing the corresponding shape
parameter (the degrees of freedom) as a function of the information set. We will
discuss this model in section 4.2.

Bera and Zuo (1991) suggested a specification test for ARCH models, which
examines the constancy of the kurtosis of the standardized residuals of the
estimated ARCH model. They call it a test for heterokurtosis. The test is derived
using the information matrix test principle and hence is a test for heterogeneity
of the ARCH parameters. As we discussed earlier, conditional heteroskedasticity
can be viewed as a randomness of the AR parameters. Conditional
heterokurtosis is related to the heterogeneity of the ARCH parameters. Mizrach
(1990) used a generalization of the ARCH model which allowed for time varying
coefficients in the conditional variance equation, and found the model to
perform better than the standard GARCH model in an exchange rate
application.

At this point a question could be raised: why in many empirical applications
do ARCH models work remarkably well? To explain this, we again follow
Gallant, Hsieh and Tauchen (1991). As noted before, the conditional variance is

E{(yi— w)* | Yol = P2E[L | W1 ].
Denoting y; — us = 71"?v; as the error &, we have

Cov(el e ) = r* Cov(Iw? I,_jv?-))

= 7* Cov(l,, It ).
If the I’s are serially dependent, which seems plausible a priori, that will
introduce correlation in the squared errors. The ARCH methodology tries to
capture this correlation.
Using U.S. daily stock return data, Lamoureux and Lastrapes (1990a)

provided empirical evidence in support of the hypothesis that ARCH is a

manifestation of the time dependence in the rate of information arrival to the
market. They assumed that /; in (3.4) is serially correlated and expressed it as

Ii=yo+ v(B) -1+ ty, 3.7

where v is a constant, v(B) is a lag polynomial and «, is white noise. Defining
Q = E[(y:— w)* | ] = 7*I; and using (3.7) we have

Q= 72y0 + Y (B)Re-1 + 70y,
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which has a similar structure to that of a GARCH model. Since I, is not
observable, Lamoureux and Lastrapes used daily trading volume, V3, as a proxy
for the daily information that flows into the market. When V; was included as
an extra variable in the GARCH(1, 1) model (2.7), its coefficient was highly
significant for all of the 20 stocks they considered. Also, inclusion of V; in A,
made the ARCH effects (coefficients «; and 3;) become negligible for most of
the stocks. To summarize, this empirical work supports the view that ARCH in
daily stock returns is an outcome of the time dependence in the news that flows
into the market.

To evaluate the role of news in the determination of volatility in the foreign
exchange markets, Engle, Ito and Lin (1990) provided a test of two hypotheses
— heat waves and meteor showers. The heat wave hypothesis states that the
major sources of disturbances come from within a market, while the meteor
shower hypothesis states that disturbances come from spillovers befween
markets. They used the intra-daily yen/dollar exchange rate in the Tokyo,
European, New York and Pacific markets. To test the two hypotheses, they
included the squared innovations from the other markets in the specification of
each A,. Coefficients of all of these variables were found to be highly significant,
thus lending support to the meteor shower hypothesis. In fact, they found that
the foreign news was more important than the past domestic news. In particular,
Japanese news had the greatest impact on the volatility of all markets except the
Tokyo market.

3.3. Nonlinear model interpretation

It is clear that one of the essential features of the ARCH model is
Cov(e?, e2-;) # 0, although Cov(e, &-;) = 0, for j # 0. In other words, ARCH
postulates a nonlinear relationship between ¢, and its past values. There are many
nonlinear time series models such as the bilinear, threshold autoregressive,
exponential autoregressive and nonlinear moving average models that can also
exhibit this property [see Tong (1990)]. For simplicity, we concentrate on the
bilinear model, and its relation to the ARCH model. A time series (e} is said
to follow a bilinear model if it satisfies [see Granger and Andersen (1978) and
Tong (1990)]

P r s
&= Zl bie—i+ 21 kZ bjrec_jus—i + us, 3.8)
iz =1 é=

where u, is a sequence of IID (0, 2) variables. The first two conditional moments
for this process are

P r s
E(e| ¥io1)= D) diee—i+ > bjxee—juus—k
i=1 j=1k=1
Var(e; | ¥;-1) = o2.
These conditional moments contrast with those of an ARCH process in which
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the conditional mean is, in general, a constant, but the conditional variance is
time varying. Their unconditional moments, however, might be similar. For
example, the bilinear model

& = baie-au—1 + uy,

has E(e) =0 and Cov(e? e?_;) = b310%. As this process is autocorrelated in
squares, it will exhibit temporal clustering of large and small deviations like an
ARCH process. In fact, a bilinear model is quite similar to an ARCH model, in
that it can also be represented as a varying coefficient model. Equation (3.8) can
be written as

&= Zl [p;+A4;@O)e—;+u
Jj=

m
= D) jiei—j+ Uy, say, (3.9)
i=1

where m =max(p,r), and A;(t) = Ek=1bjxte—x With ¢: =0, iZp+ 1, bjx =0,
J=2r+1 [see Tong (1990, p. 114)]. The basic difference between (3.2) and (3.9)
is that in the former, the coefficients are purely random, whereas in (3.9), the
varying coefficient part A;(¢) has a structure which is a linear function of the
lagged innovations ;.

There is yet another way of looking at the similarities and differences between
ARCH and bilinear models. Although both models take account of nonlinear
dependence, ARCH represents the dependence in a multiplicative fashion,

er=U f1(&-1,E-2, i Ur—1, Ur—2,...) (3.10)
= u;* fu, say,
while a bilinear model postulates an additive structure

& =J2(6-1,E-2, s thi—1, Ur-2, ... ) + Us (3.11)
= fa: + uy, say,

where f1(-) and f(-) are some well defined nonlinear functions. Hsieh (1989)
exploited these differences to discriminate between the two types of
nonlinearities. Higgins and Bera (1991) suggested a Cox nonnested procedure to
test these two models against each other.

From a practical point of view, these models have different implications.
Using a bilinear model we can improve the point forecast over standard ARMA
modeling, but cannot assess the accuracy of the forecast interval. On the other
hand, the ARCH specification makes it possible to forecast the conditional
variance without any additional gain in point forecastability. It is quite possible
that the data may be represented by a joint ARCH-bilinear model such as the
one suggested by Weiss (1986¢). Higgins and Bera (1989, 1991) developed simple
procedures for detecting the joint presence of ARCH and bilinearity.

The empirical results on this topic are somewhat mixed. Hsieh (1989) finds that
the ARCH model is able to account for the nonlinearities in the daily German
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mark, Canadian dollar and Swiss franc, but not in the British pound nor the
Japanese yen. The ARCH standardized residuals exhibited substantial
nonlinearity for the latter two currencies and, for the British pound, more
nonnormality (excess kurtosis) than the raw data. Diebold and Nason (1990)
addressed the issue of whether conditional heteroskedasticity actually exists in
exchange rate data or whether it is just a reflection of some misspecification in
the conditional mean of the model. They tackled the problem by estimating the
conditional mean through a nonparametric regression and testing the residuals
for the presence of ARCH. ARCH was found in the nonparametric residuals,
implying that conditional heteroskedasticity was not due to missepecification of
the mean. Higgins and Bera (1991) applied the Cox test to six weekly exchange
rates. For the Canadian dollar, the GARCH model was not rejected and for the
British pound, the bilinear was not rejected. For the other currencies, the French
franc, the German mark, the Japanese yen and the Swiss franc, both of the
models were found to be inadequate.

Lastly, we should mention an inherent problem in using a nonlinear
conditional mean specification to model financial data. For a nonlinear
conditional mean model to explain the sort of volatility observed in practice, the
variation in the conditional first moment would have to be enormous, implying
huge unexploited profit opportunities for the traders. Possibly, due to this
reason, models which are nonlinear in the mean have not become as popular in
analyzing financial data. The ARCH models do not have this drawback because
changes in volatility are represented by changes in the conditional variance,
linking volatility to a natural measure of risk.

3.4. Other interpretation

Continuing with the question of why ARCH is so prevalent in empirical studies,
there are a number of other interesting explanations, such as Mizrach’s (1990)
learning model and Stock’s (1988) time deformation hypothesis. Mizrach (1990)
developed a model of asset pricing and learning in which ARCH disturbances
evolve out of the decision problem of economic agents. He showed that errors
made by the agents during the learning process are highly persistent, and that the
current errors are dependent on all past errors. This leads the conditional
variance to have an ARCH like structure with a long lag.

Stock (1988) established the link between time deformation and ARCH
models. Any economic variable, in general, evolves on an ‘operational’ time
scale, while in practice it is measured on a ‘calendar’ time scale. And this
inappropriate use of a calendar time scale may lead to volatility clustering since
relative to the calendar time, the variable may evolve more quickly or slowly [see
Diebold (1986a)]. Stock (1988) showed that a time deformation model of a
random variable & can be approximated by

&= Ppe€—1 + vy, Ve | ¥,-1~N(@O, k),
where A= ao+ are?_;. Stock also established that when a relatively long
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segment of operational time has elapsed during a unit of calendar time, p, is
small and A is large, i.e., the time varying autoregtessive parameter is inversely
related to the conditional variance.

A number of researchers investigated the empirical relationship between
autocorrelation and volatility, see for example Kim (1989), Sentana and
Wadhwani (1990), Oedegaard (1991) and LeBaron (1992). Oedegaard found that
the first order autocorrelation of the Standard and Poor’s (S & P) 500 daily index
decreased over time, which he attributed to the introduction of new financial
markets, such as options and futures on the index. However, when ARCH was
explicitly introduced into the model, the evidence of time varying autocorrelation
became very weak. The other papers detected the simultaneous presence of
autocorrelation and ARCH, and found them to be inversely related. LeBaron
(1992) used the following model

ye=a+f(h)ye-1+ &
& | Vi1~ N(O» ht)
f(he)=bo + breMP2, (3.12)

where h; was specified as a GARCH(1, 1) model. The function f(- ) took account
of the changing autocorrelation parameter. For estimation, LeBaron set b, to the
sample variances of the various series he considered. Since,

M: __lll e“h‘/bZ
dh, b, ’

the coeflicient b; measures the influence of volatility on autocorrelation. For the
S & P 500 composite daily index from January 1928 to May 1990, the estimate
of b; was 0.36 with a t-value of 11.70. When the sample was divided into three
subsamples, the estimate of b; did not change very much. For other data series,
he used the weekly return for the S & P 500 index, the Center for Research and
Securities Prices (CRSP) value weighted index, the Dow index and IBM returns.
The general result was that lower correlations were connected with periods of
high volatility. As possible explanations, LeBaron mentioned nontrading and the
accumulation of news. Some stocks do not trade close to the end of the day and
information arriving during that period is reflected on the next day’s trading.
This induces serial correlation. At the same time, nontrading results in overall
lower trade volume, which has a strong positive relationship with volatility.
When new information reaches the market very slowly, for traders the optimal
action is to do nothing until enough information is accumulated. This leads to
low trade volume and high correlation. Finding the exact causes of serial
correlation and its relationship with volatility is still an open empirical problem.
The relationship noted in (3.12) requires further investigation and some other
models need to be examined.
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4. Extensions of the model

In the original exposition of the ARCH model, it was natural for Engle (1982)
to assume that the conditional variance function was linear in the squared errors
and that the conditional distribution was normal. He acknowledged, however,
that the linearity and conditional normality assumptions may not be appropriate
in particular applications. Subsequent empirical work has born this out. In this
section, we survey alternative formulations of the conditional variance function
and conditional distribution which have proven useful in applied research.

4.1. Nonlinear conditional variance

One of the first difficulties encountered with the linear ARCH model was that
the estimated o; coefficients were frequently found to be negative. To avoid this
problem Geweke (1986) and Milhoj (1987a) suggested the log ARCH model [see
also Pantula (1986)]

log(h) = a0 + o1 log(e?-;) + - + g log(e?-y). 4.1)

Taking the exponential of both sides of (4.1), A, =e(") is strictly positive, and
therefore, no inequality restrictions are required for the «i’s to ensure that the
conditional variance is strictly positive. To determine whether the linear model
(2.3) or the logarithmic model (4.1) provided a better fit to actual data, Higgins
and Bera (1992) proposed a nonlinear ARCH (NARCH) model, which still
requires non-negativity restrictions, but includes linear ARCH as a special case
and log ARCH as a limiting case. They specified the conditional variance as

he=[60(a?)® + d1(e7-1)° + - + dq(e?-4)°1"°, 4.2)

where 02>0, ¢; 20, §>0 and the ¢)s are such that Z9-¢¢;=1. The
motivation of the NARCH model can be seen by rearranging (4.2) to give

he-1_  (6®)°-1 (€24 -1
5 =d¢o 5 + &1 5

from which it is evident that the NARCH model is a Box-Cox power
transformation of both sides of the linear ARCH model. It is apparent that when
6=1, (4.3) is equivalent to the linear ARCH model and that as § = 0, (4.3)
approaches the log ARCH model (4.1). Higgins and Bera (1992) estimated (4.2)
with weekly exchange rates and found that & was typically significantly less than
one and much closer to zero, indicating that the data favored the logarithmic
rather than the linear ARCH model. Extensions of the above functional forms
to the GARCH process are straightforward.

A possible limitation of the functional forms described above is that the
conditional variance function A, is symmetric in the lagged &’s. Nelson (1991)
suggested that a symmetric conditional variance function may be inappropriate
for modeling the volatility of returns on stocks because it cannot represent a
phenomena known as the ‘leverage effect’, which is the negative correlation

2 8
+...+¢q%__l’ (43)
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between volatility and past returns. In a symmetric ARCH model, A; is not
affected by the sign of & ;, and therefore A, is uncorrelated with past errors. To
rectify this, Nelson began by defining & = n./h;, Where 7, is independent and
identically distributed with E(y;) =0 and Var(y,) = 1. He suggested that in the
general ARCH formulation

htzh("]t—l,---,'ﬂt—q,ht—l,---,ht—p), (4.4)

h: can be viewed as a stochastic process in which 5,.serves as the forcing variable
for both the conditional variance and the error. He then chose 4(-) in (4.4) to
produce the desired dependence. To avoid nonnegativity restrictions on
parameters, Nelson maintained the logarithmic specification (4.1) and proposed

q p
log(h:) = co + Z,l aig(ne-i) + 21 Bi log(h:- i), 4.5)
where
g(ne) =0+ y[|ne|— E|nel). (4.6)

The conditional variance (4.5), with (4.6), is known as exponential GARCH
(EGARCH). 1t is easy to see that the sequence g(»:) is independent with mean
zero and constant, if finite, variance. Therefore, (4.5) represents a linear ARMA
model for log(h,) with innovation g(y;). The properties of the EGARCH model
are determined by the careful construction of the function (4.6). These properties
are:

(1) The innovation to the conditional variance is piecewise linear in »,, with
slopes a:; (6 + ) when 1, is positive and «; (8 — ) when 9, is negative. This
produces the asymmetry in the conditional variance.

(2) The first term in (4.6) allows for correlation between the error and future
conditional variances. For example, suppose that v =0 and that § < 0.
Then a negative %, will cause the error to be negative and the current
innovation to the variance process to be positive.

(3) The second term in (4.6) produces the ARCH effect. Suppose that § =0
and y > 0. Whenever the absolute magnitude of #, exceeds its expected
value, the innovation g(,) is positive. Therefore, large shocks increase the
conditional variance.

Nelson (1991) fitted the EGARCH model to the excess daily return on the CRSP
value-weighted stock market index from July 1962 to December 1987. The
estimate of @ was —0.118 and had a standard error of 0.008, confirming a highly
significant negative correlation between the excess return and subsequent
volatility. For other applications of the EGARCH model see, for example,
Pagan and Schwert (1990) and Taylor (1990).

Building on the success of the EGARCH model to represent asymmetric
responses in the conditional variance to positive and negative errors, a series of
papers have proposed other ARCH models which allow a very general shape in
the conditional variance function. Although these models are parametric, and
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estimated by maximum likelihood, they are nonparametric in spirit because
the shape of the conditional variance function is largely determined by the
data itself. Glosten, Jagannathan and Runkle (1991) and Zakoian (1990)
independently suggested a conditional standard deviation of the form

q q
J/_'lt=ao+ Z O!,-+£‘t+—i— Z ai €, 4.7
i=1 i=1

where ¢/ = max{e,, 0} and &; = min{e,, 0} [see also Rabemananjara and Zakoian
(1993)]. The parameters are constrained by ap >0, o; 20, and o >0 for
i=1,..., g, to ensure that the conditional standard deviation is positive. Zakoian
referred to this formulation as a threshold ARCH (TARCH) model because the
coefficient of &-; changes when & —; crosses the threshold of zero. When &,_; > 0,
the conditional standard deviation is linear in &_; with slope «; and when
&-i < 0, the conditional standard deviation is linear in &_; with slope — «; . This
allows for asymmetry in the conditional variance in the fashion of EGARCH.

Gourieroux and Monfort (1992) proposed that a step function over the
support of the conditioning error vector €1 = (&1, ..., &1—4)’ can approximate
a highly nonlinear conditional variance function. Let A,,..., Ax be a partition
of the support of &. Gourieroux and Monfort considered a conditional variance
of the form

h=cot 3 5 aylages, 4.8
i=1 j=
where 14(&) is the indicator function of the set A4, which takes the value one
when & €4 and zero otherwise. They describe (4.8) as a qualitative TARCH
(QTARCH) model because the conditional variance is determined by the region
in R? in which &_, lies, rather than by the continuous values of the elements
of &_1.

Engle and Ng (1991) provided a summary of asymmetric ARCH models and
introduced several new models of their own. They concentrated on the
GARCH(1, 1) process and the functional relationship A, = h(e;~1), which they
term the ‘news impact curve’. They proposed the parametric models

he=ao+ ar(&-1+v)* + Bhe-1 4.9)
h = oo + ag (&~ I/hl/2 + ’Y) + Bhi—1 4.10)
he= o+ ar(e— +7h1/2) + Bh 1. 4.11)

In the standard GARCH(l, 1) model, while holding h,-, constant, A4, is a
parabola in & _; that takes its minimum at &_-; = 0. In the conditional variance
function (4.9), the introduction of the parameter + shifts the parabola
horizontally so that the minimum occurs at &, = —+. This produces asymmetry
because if, for example, vy < 0, then A, =h(—¢-1) exceeds h,=h(e,_;) for
&-1 > 0. The model (4.10) is similar to (4.9), except that the conditional variance
is quadratic in the standardized error &,- l/ht . In (4.11), the minimum of A,
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occurs at -y//3, which varies with the information set. Engle and Ng (1991) also

proposed a very flexible functional form, which is similar to the QTARCH
model but is piecewise linear over the support of & rather than a step function
as in (4.8). They characterized this model as ‘partially nonparametric’ (PNP).
They partitioned the support of &, into intervals, where the boundaries of the
intervals are {rm-,...,7-1, 0, 71,...,7m*}, and m~ is the number of intervals
below zero and m* is the number of intervals above zero. Engle and Ng then
specified

m* m-
hi=o+ Z 0:iPi(er—1 — i) + Z 6iNit(&-1 — T-i) + Bhi_y 4.12)
i=0 i=0
where the variables P;; and N;; are defined as

1 if Et-1> Ti 1 if - 1<T-i
it = d Ni= .
Pu {0 otherwise " {0 otherwise

From (4.12), A, will be linear with a different slope over each interval. For
example, if &-; is positive and lies in the interval (r;, 7,4+1), then the slope
coefficient is 6, + --- + ;. Engle and Ng chose the 7;’s to be multiples of the
unconditional standard deviation of the series.

Engle and Ng (1991) also conducted an experiment to compare the ability of
asymmetric ARCH models to represent the conditional variance of stock returns.
Using daily observations on the Japanese TOPIX stock index from January 1980
to September 1987, Engle and Ng fitted GARCH(1, 1) versions of the EGARCH
and TARCH models, and the models given by (4.9), (4.10) and (4.11). All of the
fitted models confirmed the presence of the leverage effect. But using a series of
diagnostic tests, which we describe in section 9, Engle and Ng concluded that the
simple parametric models (4.9), (4.10) and (4.11) significantly underestimated the
volatility produced by large negative errors. The EGARCH and TARCH
models, however, adequately represented this ‘negative size’ effect. Engle and Ng
also estimated the PNP model and used the fitted conditional variance function
as a baseline by which to compare the other asymmetric ARCH models. Relative
to the prediction of the PNP model, the three models given in (4.9), (4.10) and
(4.11), again underpredicted volatility for large negative &-; and overpredicted
volatility for large positive & _,. The fitted conditional variance functions of the
EGARCH and TARCH model were very close to the PNP’s, but the EGARCH
significantly overstated volatility for extremely large negative &._,. Although
based on only one data set, Engle and Ng’s results indicate that for a
parsimonious and highly parametric model, EGARCH can represent an
asymmetric conditional variance remarkably well. Whether any inadequacies in
the EGARCH functional form for representing the volatility of stock returns
justifies the additional computational effort of estimating a more flexible model
like the TARCH, QTARCH or PNP models, may largely depend on the
peculiarities of the individual data set and the ultimate purpose of the empirical
analysis.
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In the context of estimating risk primia, Pagan and Hong (1991) suggested
that no parametric functional form is sufficiently general to represent the diverse
types of data which display conditional heteroskedasticity. Using data from
French, Schwert and Stambaugh (1987) and Engle, Lilien and Robins (1987),
Pagan and Hong (1991) used a nonparametric kernel estimator of the conditional
variance and demonstrated that the nonparametric estimators give different
conclusions about the effect of the risk premium on asset returns than do the
standard parametric ARCH models. In Section 8, we will briefly discuss the
nonparametric approach suggested in Pagan and Hong (1991). Undoubtedly, as
rescarch on ARCH phenomena continues, new empirical regularities of
conditional heteroskedasticty will be discovered and new functional forms will
be put forward to model these regularities.

4.2. Nonnormal conditional distribution

As described in section 2.3, an attractive feature of the ARCH process is that
even though the conditional distribution of the error is normal, the
unconditional distribution is nonnormal with tails thicker than the normal
distribution. In spite of this property, early empirical work with ARCH models
for daily exchange rates indicated that the implied unconditional distributions of
estimated ARCH models were not sufficiently leptokurtic to represent the
distribution of returns. In the linear regression model with conditionally normal
ARCH errors, suppose that & and A, are estimates of the error and conditional
variance. Then the standardized residuals &/#4}’> should be approximately
N(0, 1). Hsieh (1988, 1989), McCurdy and Morgan (1988) and Milhgj (1987b),
however, demonstrated for a variety of currencies that the sample kurtosis
coefficient of the standardized residuals often exceeded three.

The frequent inability of the conditionally normal ARCH model to pass this
simple diagnostic test has led to the use of conditional distributions more general
than the normal distribution. Let = =&fhi’?=(y.—xi)[hi’> be the
standardized error. In this approach, the conditional distribution of 7, is
specified as

0| ¥eer ~ f(n,0), (4.13)

where 0 is a low dimension parameter vector whose value determines the shape
of the conditional distribution of 7,. In the conditionally normal ARCH model,
@ is absent and f(n) is simply the N(0, 1) density. Bollerslev (1987) was the first
to adopt this approach and specified f(y, §) as a conditional ¢ distribution, where
6, a scalar, is the degrees of freedom of the distribution. The conditional ¢
distribution allows for heavier tails than the normal distribution and, as the
degrees of freedom goes to infinity, includes the normal distribution as a limiting
case. Bollerslev suggested that a test for conditional normality could be
conducted by testing that the reciprocal of the degrees of freedom equals zero.
Using the daily rate of return in the spot market for the German mark and the
British pound from March 1980 to January 1985, Bollerslev estimated
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GARCH(1, 1) models with conditional ¢ distributions and rejected the hypothesis
of conditional normality. The sample kurtosis coefficients of the standardized
residuals were very close to the kurtosis coefficients of the ¢ distribution
evaluated at the estimated parameters. With the German mark, for example; the
sample kurtosis coefficient of the standardized residuals &/A;/ was 4.63, while
the implied kurtosis of the fitted ¢ distribution was 4.45, suggesting that the
conditional ¢ distribution adequately accounted for the excess kurtosis in the
unconditional distribution. Bollerslev presented similar results for the daily rate
of return on five S & P 500 stock indexes. Engle and Bollerslev (1986), Baillie
and Bollerslev (1989) and Hsieh (1989) also found that employing a conditional
t distribution helped account for the excess kurtosis in daily exchange rates.
Spanos (1991) demonstrated that if the observed data is assumed to have an
uncorrelated multivariate ¢ distribution, the conditional distribution of the error
also has a ¢ distribution, with an ARCH structure for the variance.

Other specifications of the conditional distribution of the ARCH process have
been suggested. Nelson (1991) employed a generalized error distribution (GED)
with his EGARCH model. The GED encompasses distributions with tails both
thicker and thinner than the normal, and includes the normal as a special case.
For a stock price index, Nelson found evidence of nonnormality in the
conditional distribution, but concluded that tails of the estimated GED were not
sufficiently thick to account for a large number of outliers in the data. Lee and
Tse (1991) suggested that not only may the conditional distribution be
leptokurtotic, but also asymmetric. They argued that for rates of return which
cannot be negative, such as nominal interest rates, the conditional distribution
should be skewed to the right. They used a distribution based on the first three
terms of the Gram-Charlier series, that allows for both thick tails and skewness.
Using interest rates from the Singapore Asian dollar market, Lee and Tse
estimated their model but failed to find any evidence of skewness.

As with parametric specifications of the conditional variance function, no
single parametric specification of the conditional density (4.13) appears to be
suitable for all conditionally heteroskedastic data. Applications in which none
of the above conditional distributions appear to be appropriate are often
encountered. For example, Hsieh (1989) found that a GARCH(], 1) model with
either a conditional ¢ or a conditional GED distribution could not adequately
represent daily returns on the British pound nor the Japanese yen. Hansen (1992)
recently suggested an approach to allow more flexibility in the conditional
distribution within a parametric framework. While conventional ARCH models
allow the mean and variance to be time varying, Hansen argues that other
properties of the conditional distribution, such as skewness and kurtosis, should
also be time varying and a function of the current information set. More
formally, Hansen proposed that the conditional distribution (4.13) should be
generalized to

Ne | ¥em1 ~ f(n, 00), (4.14)
where the parameters 6,, which determine the shape of the conditional density,
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are themselves a function of the elements of the information set ¥,_,. Hansen
refers to (4.14) as an autoregressive conditional density (ARCD) model.

To illustrate the use of an ARCD model, Hansen estimated a GARCH model
with a conditional ¢ distribution and time varying degrees of freedom for the
monthly excess holding yield on short-term U.S. Treasury securities. To allow
the tail thickness of the conditional distribution to be determined by the
information set, the degrees of freedom were parameterized as logistic
transformation of a quadratic function of the lagged error and the difference
between the one-month yield and the instantaneous yield. A likelihood ratio test
rejected a conditional ¢ distribution with constant degrees of freedom in favor
of the ARCD model. A time plot of the estimated degrees of freedom revealed
that the degrees of freedom varied considerably over time, with a mean of about
5, but frequently reaching 30 and 2.1, the upper and lower bounds imposed by
the logistic transformation.

5. Forecasting with ARCH models

A very important use of ARCH models is the evaluation of the accuracy of
forecasts. In standard time series methodology which uses conditionally
homoskedastic ARMA processes, the variance of the forecast error does not
depend on the current information set. If the series being forecasted displays
ARCH, the current information set can indicate the accuracy by which the series
can be forecasted. Below, we demonstrate how this is possible. Engle and Kraft
(1983) were the first to consider the effect of ARCH on forecasting. Baillie and
Bollerslev (1992) extended many of their results. The discussion below draws
heavily from these two papers.

5.1. Measurement of forecast uncertainty

We illustrate the effects of ARCH on the measurement of forecast uncertainty
in the context of predicting a univariate linear time series. Consider the
ARMA(k, I) process

¢ (B)y: = 0(B)e ;.1

where ¢(B)=1—¢1B— - — ¢xB*, 6(B) =1+ 6,B + --- + 6:B’, B is the backshift
operator and ¢ is a GARCH(p, q) process. We consider forecasting the value of
the process s periods from an origin ¢, which is given by

k il
Yi+s = Z DiVirs—i+ Z 0i€rvs—i+ Etxs.
i=1 i=1

The optimal predictor is the mean of y:.s conditional on the available
information up to period ¢, ¥;. Because E(e;.s| ¥:) = 0, the optimal predictor is

k {
E(Yess l ¥,) = Z;l i E(Yrrs—i l V) + Z}l 0:E(er45-: ! ¥,), (5.2)
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where:

(@) E(yi+5-1| %), for i < s, is given recursively by (5.2)
®) E(Vros-i| ¥)=Yrss-i, fori2s

(€) E(erss—i | ¥.)=0 for, i <s,

(d) E(eres-i|¥) = €r4s-i, for i 2s.

Expression (5.2) is the standard recursive relation for the optimal point forecast
of the conventional ARMA process, which can be found for example in Box and
Jenkins (1976, p. 129). Therefore, the presence of ARCH does not affect the way
in which the point forecast is constructed. This is because ARCH introduces
dependence in high order moments and only affects the uncertainty in the point
forecast.

To consider the effect of ARCH on the uncertainty of the point forecast, we
require an expression for the forecast error. Assuming the roots of
¢(B)=1—¢1B — - — ¢«B* lie outside the unit circle, the ARMA process (5.1)
can be inverted to give

Vies = Dy Yi€ras—is (5.3)
i=0

where v; is the coefficient of B’ in the expansion of ¢(B) '6(B). Using the

moving average representation, the optimal predictor is

E(,}’t+s"l’t)= Z Yi€t+s—i. (5-4)

Let e, be the forecast error from origin ¢ with forecast horizon s. Subtracting
(5.4) from (5.3), the forecast error
-1

s

et,s=y1+s—E(yt+s|‘I,t): Z Yi€t4s-i (5.5)
i=0

is seen to be a linear combination of the innovations from 7+ 1 to the horizon

t+s. The uncertainty in a forecast can be measured by the variance of the

forecast error conditional on the information ¥, used to construct the forecast.

Using (5.5), the conditional variance of the forecast error is

s—-1
Var(ey,s| ¥e) = 2, vPE(€Hs-i| ¥0). (5.6)
i=0

Expression (5.6) reveals how ARCH affects the conditional variance of the
forecast error. When ARCH is present, E(ef+s-i|¥,) will depend on the
elements of ¥, and will, in general, be time varying. In contrast, for a
conditionally homoskedastic model, in which E(e?.,-;| ¥:) = 0%, the variance
of the forecast error reduces to

s—1
Var(e,s | ¥:) =02 2, v7.
i=0
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In this case, the variance of the forecast error does not depend upon the elements
of the information set ¥,, but only on the length of the forecast horizon s.

To make (5.6) operational, for constructing prediction intervals for example,
it is necessary to evaluate the expectations E(e7+s_; | ¥;). This can be done by
using the ARMA(m, p) representation of the square of a GARCH(p, g) process
[see equation (2.12)]:

)2
2 Bivess—i+ Vres.

i=]1

m
efrs=ao+ 2 (ot + Bi)etes—i—
i=1
The conditional expectation is then seen to be
m P
E(€ls|¥) =0+ 2 (ai+ BIE(€ls—i| ¥) — 2} BiE(vi4s-i| ¥1), (5.7)
i=1 i=1

where:

(@) E(e}+s-i|¥y), for i <s, is given recursively by (5.7)
(b) E(€is—i| V) =elisi, fori>s

(©) E(vr45-i|¥:)=0, fori<s

(d) E(Vt+s_i|‘1’) = Vits—iy fori>s.

The expression for E(e?.s| ¥,) in (5.7) is completely analogous to the optimal
predictor E(¥:+s| ¥:) in (5.2).

As an example of constructing estimates of the variance of the forecast,
consider the stationary AR(1) process

V=11t &, 1)<,

where & is a GARCH(1, 1) process. The optimal point forecasts follow the
recursion

E(Ye+s | V)= 1E(Yras-1 | ¥, 1)

where the first period forecast is E(yr+1|¥:) = ¢1y:. Inverting the AR(1)
process, the coefficients in (5.4) are seen to be vy; = ¢ 1. Therefore, from (5.6), the
variance of the forecast error is

s—=1 i
Var(e,s | %)= )] ¢PEEfs-i| W), s 21,
iZo

where the expectations can be computed recursively by
E(elss| ¥) = a0+ (1 + B1)E(Elss—1 1 ¥r), s> 1,

with the initial expectation E(e?%, 1 | ¥:) = a0 + c1e? + Bahe.

To further demonstrate the effect of ARCH on the construction of forecast
intervals, in Figure 8 we present prediction intervals for the generated ARCH(4)
data that was displayed in Figure 6. Since the process has a constant conditional
mean of zero, the optimal point forecast of the series is simply zero. The
prediction intervals are then *2E(e?.|¥,)"?, where E(e?|¥,) is given in
(5.7). The information sets ¥i00 and W00 on which the intervals are based were
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Figure 8. Two standard error prediction intervals.

chosen because ¢ =100 was a tranquil period for the series and ¢ =400 was a
volatile period. Notice that for W¥io0, the prediction intervals increase
monotonically, indicating that uncertainty increases with the forecast horizon,
while for W¥400, the intervals decrease, indicating that certainty in the point
forecast increases with the forecast horizon. Although at first sight it may seem
peculiar that the accuracy of a forecast can increase as we forecast further into
the future, this phenomena is very plausible in the context of ARCH models. If
the forecast is constructed in a highly volatile period, an ARCH model will
convey that volatility is likely to persist for several periods. But as the forecast
horizon increases, the volatility is likely to return to its typical level, and
therefore, the expected accuracy of the point forecast actually increases as we
forecast further ahead. Also notice that for both information sets, the intervals
converge to *20, where o. is the unconditional standard deviation of the
process. In an important class of ARCH models, the conditional variances of the
forecast errors may not converge to the unconditional variance of the process.
We characterize this class of models in the next section.

5.2. Persistence in variance

When ARCH is present, current information is useful for assessing the accuracy
by which a process can be forecasted. It is interesting to consider how the
available information ¥, affects the forecast uncertainty as the forecast horizon
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s increases. For s > p, the conditional variance (5.7) of the innovation to the
forecast error reduces to

E(els| V) =0 + ﬁ_"}l (i + B)E(EHs-i| V), (5.8)

which is a linear difference equation for the sequence {E(e?+s | ¥ ) s=p+1. If the
roots of 1 —(oa + B1)Z— - —(am+ Bm)Z™ =1 — a(Z) — B(Z) lie outside the
unit circle, the solution sequence of (5.8) converges to

oo

lim E(e?s|¥i_1)= >
o (t+s| tl) l—ou—-'-—aq—Bl—"""ﬁp

which is the unconditional variance of the innovation. In this case, as the
forecast horizon becomes very large, the conditioning set provides no
information about the variance of &.s. If, however, the roots of
I —a(Z)— B(Z) lie on or inside the unit circle, this will not be the case. For
example, consider a GARCH(, 1) process with 1 — a(Z) — 8(Z) having a unit
root, implying «; + 81 =1. Then (5.8) reduces to

E(Ctzﬂ | V) =cao + E(C%H_l | ¥,).
which has the solution
E(ekes| ¥)) = sap + E(€2| ¥,).

Therefore, when o + 81 =1, the conditional variance grows linearly with the
forecast horizon and the dependence on the information set persists through
E (812‘ ¥y).

Engle and Bollerslev (1986) were the first to consider GARCH processes with
a(l)+ B(1)=1 as a distinct class of models, which they termed integrated
GARCH (IGARCH). They pointed out the similarity between IGARCH
processes and processes that are integrated in the mean. For a process that is
integrated in the mean, that is one that must be differenced to induce
stationarity, a shock in the current period affects the level of the series into the
indefinite future. In an IGARCH process, a current shock persists indefinitely in
conditioning the future variances. The IGARCH model is important because a
remarkable empirical regularity, repeatedly observed in applied work, is that the
estimated coefficients of a GARCH conditional variance sum close to one. For
example, Baillie and Bollerslev (1989) estimated GARCH(1, 1) models for six
U.S. exchange rates and found &; + §; ranging between 0.94 and 0.99 for the six
series. Bollerslev and Engle (1989) considered multivariate IGARCH processes
and defined a concept of co-integration in variance which they termed co-
Dpersistence. A set of univariate IGARCH processes are co-persistent if there
exists a linear combination of the processes which is not integrated in variance.
Nelson (1990) has cautioned that drawing an analogy with processes that are
integrated in the mean, however, may be somewhat misleading. As described in
section 2.3, Nelson (1990a) demonstrated that although IGARCH models are not
weakly stationary, because they have infinite variances, they can be strongly
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stationary. Processes that are integrated in the mean are not stationary in any
sense.

The consistent finding of very large persistence in variance in financial time
series is perplexing because currently no theory predicts that this should be the
case. Lamoureux and Lastrapes (1990b) argued that large persistence may
actually represent misspecification of the variance and result from structural
change in the unconditional variance of the process, as represented by changes
in ap in (2.7). A discrete change in the unconditional variance of a process
produces clustering of large and small deviations which may show up as
persistence in a fitted ARCH model. To illustrate this possibility, Lamoureux
and Lastrapes used 17 years of daily returns on the stocks of 30 randomly
selected companies and estimated GARCH(1, 1) models holding oo constant and
allowing «p to change discretely over sub-periods of the sample. For the
restricted model, in which o9 is constant, the average estimate of o; + 81 for the
30 companies was 0.978, while for the unrestricted model, in which «y is allowed
to change, the average estimate fell to 0.817. Lamoureux and Lastrapes also
present Monte Carlo evidence which demonstrated that the MLE of a; + 8; has
a large positive bias when changes in the unconditional variance are ignored.

6. Multivariate ARCH models

As economic variables are inter-related, generalization of univariate models to
the multivariate and simultaneous set-up is quite natural — this is more so for
ARCH models. Apart from possible gains in efficiency in parameter estimation,
estimation of a number of financial ‘coefficients’ such as the systematic risk (beta
coefficient) and the hedge ratio, requires sample values of covariances between
relevant variables. The motivation for multivariate ARCH also stems from the
fact that many economic variables react to the same information, and hence,
have nonzero covariances conditional on the information set. For simplicity, we
concentrate on two variables, and using our earlier notation as in (3.4a), let
Yie=pre + 118 vy

6.1)
Var = par + 121 v,

where yi1, and y»; are two time series, driven by the same directing process /1, and

Vi 0 1 C12
~N y .
(sz) [(0> (Clz 1 )]
2
(ylt) Y1, I’~N[(ﬁ”)’ Iz( T1 6‘127'217‘2)]' (6.2)
Y2 21, C127T172 73

This is the bivariate counterpart of (3.5) and provides a rationale behind higher
dimensional ARCH processes. As discussed in section 3.2, several special cases
can be derived from (6.2).

Then we have
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Let us now consider an N X 1 vector time series yr= (Y1r, ..., Yar)' . We can
express a general form of the multivariate GARCH model as

B | V-1~ N(u, Hy),

where p, is an N x 1 vector and H; is an N X N matrix. Of course, the conditional
distribution could be something other than normal. As in the univariate case,
one main problem is the specification of H;. In fact we will soon realize, the
problem is more serious here. Even if we confine ourselves to linear specifications
for multivariate ARCH, there are many choices.

To express H; in a vector form, we use the ‘vech’ notation which stacks the
lower triangular elements of a symmetric matrix in a column. A somewhat
general form of H; can be written as

q P
vech(H;) = vech(X) + 2, A; vech(e;-ie/-;)+ 2, Bi vech(H,-:), (6.3)
i=1 i=1

where & = (€11, ..., €nt)’, L is an N X N positive definite matrix and A; and B;
are N(N+ 1)/2x N(N + 1)/2 matrices. This is a direct generalization of our
earlier univariate GARCH(p, ¢) model given in equation (2.7). Representation
(6.3) is called the ‘vech representation’ of a multivariate ARCH model. For
N=2and p=g=1, (6.3) takes the form

2
A, o11 an ap apl|erf-
vech(H,) = |hiay| = |on2| + |G a2 @23} |E€1,0-182,0-1
h2 022 asy a2z Gz | €2,:-1

bin bz buis||hie-1
+|{bn b ba|lha.1|. (6.4)
b3t bsz bz k221

The two main problems concerning the specification of H; are that it should be
positive definite for all possible realizations and some exclusion restrictions
should be imposed so that the number of parameters to be estimated is not very
large. Formulation (6.3) will be difficult to estimate, for it has
NN+ 1)/2] [1+ [INWN+ 1)/2](p+ g)] parameters, which for the special
bivariate case (6.4) amounts to 21 parameters — still too large.

Engle, Granger and Kraft (1984) published the first paper on multivariate
ARCH models. They considered a bivariate ARCH model which was (6.4)
without the lagged A: components. For that model, they showed necessary
conditions for H; to be positive definite are

011> 0, 022 > 0, 011022 — 012 > 0,
an 20, m320, @31 20, a3 =20,
anas— a3 >0, 6.5)
anaiz -1 at >0, anas—ad >
Z

2 2
aza — 3 a2 20, a3ass —as;

[y

E

0
0.

-
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Note that in (6.3) and (6.4), each A;;,; depends on lagged squared residuals and
past variances of all the variables in the system. One simple assumption that
could be made to reduce the number of parameters is to specify that a
conditional variance depends only on its own lagged squared residuals and
lagged values. The assumption amounts to taking A; and B; to be diagonal
matrices. In that case, conditions in (6.5) reduce to

011>0, 022> 0, 61,022 — 052> 0

: (6.6)
@120, a3 20, anass—a% 2 0.

From (6.3), the ‘diagonal representation’ for p = ¢ = 1 can be expressed as
hij,t=Uij+aij8i,z_1£j,;-1 +bijh,'j,t_1 Lj=1,2,...,N 6.7)

This form was used by Bollerslev, Engle and Wooldridge (1988) for their analysis
of returns on bills, bonds and stocks, and by Baillie and Myers (1991) and Bera,
Garcia and Roh (1991) for hedge ratio estimation in commodity markets.

The diagonal representation appears to be too restrictive, and at the same
time, positive definiteness of the resulting H,, in general, is not easy to check and
also difficuit to impose at the estimation stage [see (6.6)] . Baba, Engle, Kraft and
Kroner (1990) suggested the following parameterization, known as the ‘BEKK
representation’, which is almost guaranteed to be positive definite

q p
Hi=X+ 2 AMeiel A+ D, B} H,_.B}, (6.8)
i=1 i=1

where 4;" and B/ are N x N matrices. If T is positive definite, then so is H,. For
N=2 and p=¢g=1, (6.8) will have only 11 parameters compared to the
21 parameters of the vech representation (6.4), as (6.8) now takes the form

* * 2
hie hize| _lou on2 4| an '[ €11 81,:—16‘2,t-1]
= * * 2
hu: hay 21 022 ayn  axn] |€1,r-182,0-1 €3,-1

I:al*l a;‘z]_i_[bfx bl*z]’[hu,t—l hlz,t—l:l[bl*l bl*z] 6.9)
Xlai an by b i1 hage-if|by b

By taking the vech of (6.8), it can be shown that under certain nonlinear
restrictions on A ,-*, B!, A; and B;, (6.3) and (6.8) are equivalent [see Baba,
Engle, Kraft and Kroner (1990).] The relationship is easily seen by comparing the
special cases (6.4) and (6.9).

Bollerslev (1990) introduced an attractive way to simplify H,. He assumed that
the conditional correlation matrix of & = (€1, ..., en¢)’ is constant and expressed

H; as
H,= diag(./hu,,, veey JhNN,t)R diag(,/hu,,, veey JhNN,t), (6.10)

where R is the time invariant correlation matrix. When N = 2, this representation
takes the form

T o N

0  Jha.lp 1 0 B2,
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where | p | < 1 is the correlation coefficient between €, and €2, and the individual
variances ki1 and h are assumed to be standard univariate ARCH(p,q)
processes, for example

q P
hupe=on + 21 i€l mi+ D Brikin-i. (6.12)
i= s

For positive definiteness of H; in this constant correlation representation, we
need 0;; > 0, aij =0, Bix 20,i=1,..,N, j=1,...,q, k=1,..., p. Many of the
recent applications of bivariate ARCH use this representation [see, for example,
Baillie and Bollerslev (1990); Baillie and Myers (1991); Bera, Garcia and Roh
(1990); Bollerslev (1990); Kroner and Claessens (1991) and Kroner and Sultan
(1991)]. However, it is quite obvious that constant correlation is a strong
assumption. Bera and Roh (1991) suggested a test for the constant correlation
hypothesis and found that the null hypothesis is rejected for many financial data
series.

None of the above forms take account of the motivation behind multivariate
ARCH discussed earlier. Diebold and Nerlove (1989) were the first to exploit the
theory that only a few factors influence all the variables ()i, ..., ¥~) and their
conditional variances. They suggested an one factor multivariate ARCH model
represented as

ye=NFi+m, (6.13)

where n: = (q1z, .- N2 ), Mie ~ (0, 0i), i =1, ..., N and the unobservable factor F;
is conditionally distributed as F:|¥.-; ~ N(0, A;). Then

Var(ytl‘lf,_l)=ht)\)\’ + diag(o11, ..., ONN) (6.14)

and we can specify a univariate GARCH process for A, The effect of the
common factor F; on y; is measured by \; (i =1, ..., N). Their application of this
model to seven weekly exchange rate series gave superior results compared to
seven separate univariate ARCH models.

Harvey, Ruiz and Sentana (1992) presented a more general unobserved
component model, that includes (6.13) as a special case, and allows for richer
dynamics in the mean of y;. They consider the model

Yi=Zwu+ Ane + ﬂt*

in which a is a m x 1 state vector that evolves according to the transition
equation

ar=Twy_1 +Te + &/,

where T; and Z, are observable matrices, and the m X 1 vector &;* and the N x 1
vector . are conditionally homoskedastic. Conditional heteroskedasticity is
introduced through the scalar processes € and 75;, which are assumed to follow
univariate ARCH processes. The state space formulation provides a convenient
representation for estimation and prediction by means of a Kalman filter.
Higgins and Majin (1992) applied a univariate version of this model to measure
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the time-varying volatility of both the latent ex ante real interest rate and the
market’s forecast errors of inflation from the observable ex post real interest
rate.

To discuss Engle’s (1987) multivariate ARCH model with a k-factor structure,

we start with a slight generalization of the BEKK representation (6.8), namely
k q P

H=X+7, [ Al e_iel-iAl+ B;’thiB?j:ls (6.15)
j=1 Li=1 =

i=1

where A]; and B{; are Nx N matrices and k < N. Engle obtained a very
parsimonious structure for H; by restricting the rank of A/ and Bf; to one [see
also Lin (1992)]. More specifically, he assumed that these matrices have the same
left and right eigenvectors, g; and f;, i.e.,

Ajj=aifig) and Bl = Bi;f;8)
with

L, $0 for j#=lI
f’g'—{l for j=1,

where f; and g; are N x 1 vectors, f,/=1,2, ..., N. Using these expressions for
A}'} and B}'} in (6.15), we have the k-factor GARCH(p, ¢) model

k q 4
Hi=L+ Zl g,-g;[zj alifieiel-ifj + Zl B%,-f;H,-,;f,]. (6.16)
Jj= i=

i=1

In the Diebold and Nerlove model, the factor is an unobserved latent variable,
while in the k-factor GARCH model, the j-th factor, Fj., is a linear combination
of the residuals, namely Fj = f}e,. Therefore,

Var(Fj | ¥,-1) = fiH,fj = h}: (say). 6.17)
Substituting (6.16) into (6.17), we have
q P
RE=fITf;+ 2 abFL i+ 2 Bhkhe-i
i=1 i=1

Therefore, each A}, has a GARCH(p, ¢) structure, j =1, ..., k. This enables us
to express (6.16) as

k
He=Z+ 2, gigjhj=fi T /)]
=

k
=Z*+ 2 gigihi, (6.18)
Jj=1
where
N k
L*=L~ Zl gigfiL fj.
~

Expression (6.18) demonstrates that the conditional variance of & is regulated
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completely by the conditional variance of the k factors. Also for k=1, we can
see the similarities between (6.14) and (6.18). Engle (1987), Kroner (1988), Lin
(1992) and Engle, Ng and Rothschild (1990) discussed other interesting
properties of the k-factor GARCH model. Two notable applications of this
model are Engle, Ng and Rothschild (1990) to explain the excess return for
treasury bills and Ng, Engle and Rothschild (1992) to study the behavior of stock
returns.

Lin (1992) examined the finite sample properties of various estimators, such
as maximum likelihood and two stage estimators, for the factor GARCH(1, 1)
model through simulation. Estimators were found to be, in general, unbiased.
And, as predicted by asymptotic theory, the maximum likelihood estimators
were most efficient. The major problems in estimation are devising methods for
finding the number of factors and the factor weights.

7. ARCH-M models

It is reasonable to expect that the mean and variance of a return move in the
same direction. Denoting the mean by u,, we can express this idea as

pe= %o+ 6g(h),

where g(h,) is a monotonic function of the conditional variance h,, with
g(ao) = 0. In finance models, dg(h;) represents the risk premium, that is, the
increase in the expected rate of return due to an increase in the variance of the
return. Existence of risk premia in foreign exchange markets and the term
structure of interest rates have been studied extensively. Most of the earlier
studies concentrated on detecting a constant risk premium. ARCH in the mean
(ARCH-M) models, first proposed by Engle, Lilien and Robbins (1987), provide
a new approach by which we can test for and estimate a time varying risk
premium. In the regression set-up, an ARCH-M model is specified as

ye=xi5+06gh) + &, (7.1)
where
& | ‘I’t—l ~N(0, ht)

and A, is an ARCH or GARCH process. The presence of 4, in the conditional
mean is the distinctive feature of this model.

To examine the properties of the ARCH-M model, we consider a simple
version of (7.1), namely

Yye=06h+ &,
where & | ¥;-1 ~ N(0, ;) and A; = ap + a1€?-1. We can then write
Vi = b + dar€7-1 + &,
where & follows an ARCH(1) process. From this expression, and using
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E(e?-1) = aof/(1 — at1), it immediately follows that

E()’t)=50to(1 420 )

- o1

which can be viewed in finance models as the unconditional expected return for
holding a risky asset. Similarly,

(6a1)*20
(1 -a)*(-3ed)’
In the absence of a risk premium Var(y:) = aof(1 — a1). Therefore, the second
component of Var(y,) is due to the presence of a risk premium which makes y,

more dispersed. Finally, the ARCH-M effect makes y; serially correlated, since
[see Hong (1991)]

Var(y) =

Za?ézao
20:38%0 + (1 — a1)(1 = 3e?)

o =Corr(yy, Ve-x)=af o1, k=2,3,....

p1 = Corr(ye, yi-1) =

From the expressions for p; and pa, it is easily seen that the admissible region
for (p1, p2) will be very restrictive. Bollerslev (1988) obtained similar results for
the GARCH process. ARCH-M models introduce some interesting problems in
terms of estimation and testing which will be discussed in the following sections.

In most applications, g(k:) = f ¢ has been used [see, for example, Domowitz
and Hakkio (1985) and Bollerslev, Engle and Wooldridge (1988)], although
Engle, Lilien and Robins (1987) found that g(h,) = log(h:) worked better in their
estimation of the time varying risk premia in the term structure. Pagan and Hong
(1991) commented that the use of log(/h,) is problematic since for A, < 1, g(h,)
will be negative and also when A, — 0, the effect on y, will be infinite.

8. Estimation

The most commonly used estimation procedure for ARCH models has been the
maximum likelihood approach. The log likelihood function of the standard
ARCH regression model

Ve | Y1~ N(x:t, ht)
is given by

T
10)=7 % 1),

~1I-—

where
1;(8) = const Ly (A 7 8.1
(@)= const. =3 08 =552 '

and = (¢',v’')’. Here £ and vy denote the conditional mean and conditional
variance parameters respectively. One attractive feature of this normal likelihood
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function is that the information matrix is block diagonal between the parameters
¢ and . To see this, note that the (i, /)th element of the off-diagonal block of
the information matrix can be written as

lT ZT; [as Zt ] =1T
t=1 i0yj

If A, is a symmetric function of the lagged errors in the sense of Engle (1982),
then the last expression in square brackets is anti-symmetric and, therefore, has
expectation zero. The ARCH, GARCH, log ARCH and NARCH models given
in (2.3), (2.7), (4.1) and (4.2) respectively, are all symmetric according to the
definition of Engle (1982).

The advantage of having this block diagonality is that, under the likelihood
framework, estimation and testing for the mean and variance parameters can be
carried out separately [see Engle (1982, p. 996), Bollerslev (1986, p. 317) and
Higgins and Bera (1992, p. 996)]. Most of the applied work on ARCH models
use the Berndt, Hall, Hall and Hausman (1974) algorithm (BHHH) to maximize
[(0). Starting from estimates of the r’th iteration, the (r+ 1)’th step of the
BHHH algorithm can be written as

eor-ene 5 () G

oo [ (3) (@] £

=1 \3y/ \dv/ ]

1 oh oh;
Ejl—— — 8.2
[th 13 a'YJ] ®-2)

i ™M=

M~
QJlQ;
e | S~

and

Q:lQ:

where the derivatives are evaluated at £\ and 4. The block diagonality of the
information matrix no longer holds for the ARCH-M model in (7.1) and the
asymmetric models like AARCH in (3.3) and EGARCH in (4.5). For these
models, the BHHH algorithm needs to be carried out jointly for both the
conditional mean and variance parameters.

For most applications, it is very difficult to justify the conditional normality
assumption in (8.1). Therefore, the log likelihood function /(§) may be
misspecified. However, we can still obtain estimates of ¢ and v by maximizing
1(0) and such estimators are called quasi maximum likelihood estimators
(QMLE). Weiss (1986a) was the first to study the asymptotic properties of the
QMLE of ARCH models. His important finding was that as long as the first two
conditional moments are correctly specified, £ and y will be consistently
estimated even if the conditional normality assumption is violated. To state the
asymptotic distribution of the QMLE 8 = (£’,4')’, let us denote

_ 1 21(60) _1 81(60)\ {91(80)\
A= E[aoao ] andB—-TE[(—ao )<_60 )], 8.3)

where 6, is the true value of the parameter. Then under certain regularity
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conditions

JTO - 00)—2— N@©,A'BA™Y)

and consistent estimators of A and B are given by

L 3%,(6) 1 & (3h(B)) (3@
23880’ d8-= T§1<80>(60>'

Robust inference about ¢ can be achieved using this result. If the normality
assumption is correct, 4 = B and valid inference can be drawn using either 4~*
or B~! as the covariance matrix estimator. Bollerslev and Wooldridge (1992)
generalized the univariate ARCH results of Weiss (1986a) to the multivariate
GARCH case under a different set of regularity conditions. Although the
specification of a univariate ARCH model in Weiss (1986a) was very general, he
assumed a finite fourth moment of the error term. As an example, for the
ARCH(2) model this condition requires [see Bollerslev (1986)]

3ai + 303 - 303 + 3atas + a2 < 1,

which might be difficult to justify in practice. For higher order ARCH and
GARCH models, the condition will restrict models to a small part of the
parameter space. Bollerslev and Wooldridge (1992) did not assume finiteness of
the fourth moment, but instead, they required /;(8) and its derivatives to satisfy
a uniform weak law of large numbers which are not easy to verify. Lumsdaine
(1991a) established the consistency and asymptotic normality of the QMLE of
the GARCH(1,1) and IGARCH(l,1) models under a different set of
assumptions. Her basic conditions are

ah, oh,\ {oh;
E[ao hi ] < oo and E[(ao)(ao) he } < o

and these are easy to verify. For simplicity, consider an ARCH(1) model

h= oo + er-y.

2
(2] -
6a1
might not exist, and yet

ohy 2 -2| _ 8?—1
E[(&xl) | =B T + Zaomer

may exist because here both the numerator and the denominator grow at the
same rate. In terms of the standardized variable e = &fJh, Lumsdaine’s
assumptions are that ¢ is IID and drawn from a symmetric and unimodal
density with 32 finite moments. Lee and Hansen (1991) obtained similar results
under the somewhat weaker condition that &, is stationary and ergodic with a

Then

© Basil Blackwell 1993



ARCH MODELS 351

bounded fourth conditional moment. Lumsdaine (1991a) and Lee and Hansen
(1991) showed that the QMLE for the IGARCH(1,1) model has the same
asymptotic distribution as that of the GARCH(1,1) model. This result is
important because it establishes that the difficulties of the unit root model is not
encountered with IGARCH.

Lee (1991) extended all these asymptotic dlstrlbutlon results to the
GARCH(1, 1)-M and IGARCH(l, 1)-M models. As discussed in Lee, these
models pose additional difficulties because unlike the GARCH model, the
conditional variance of a GARCH-M model is a nonlinear difference equation.
To see this, note from (7.1) that for a GARCH(1, 1)-M model

he= oo+ are?—1 + Bihe—1
=g+ o[ Ye-1— xE—0g(he-1)] > + Brhi-1.

To avoid the difficulties associated with nonlinear difference equations, Lee
(1991) used the fact that at the true parameter value, A, is a linear difference
equation.

Engle and Gonzalez-Rivera (1991) pointed out that although the QMLE is
consistent and asymptotically normal, it can be inefficient. They demonstrated
that the loss of efficiency due to misspecification could be severe when the true
distribution is asymmetric and a normal quasi likelihood function is used. They
suggested a semiparametric approach in which one maximizes the log likelihood
function /(9)=1/T L, ,(§), where the nonconstant part of /(f) in (8.1) is
replaced by

— 1 log(h:) + log(g(e/h{'?)). 8.4

Engle and Gonalez-Rivera (1991) used a nonparametric method to estimate the
function g(-). To do this, they started with an initial estimator of 8, obtained
&|h{’?, used these values to estimate g(-) and then maximized /(9) to get a
revised estimate of #. The procedure was repeated until it converged. Their
Monte Carlo results indicated that there is substantial gain in efficiency from
using the semiparametric method over QMLE.

Another attractive way to estimate ARCH models without assuming normality
is to apply the generalized method of moments (GMM) approach as advocated
by Rich, Raymond and Butler (1991) [see also Sabau (1987, 1988)]. For
simplicity, consider an ARCH(1) model and define the following two errors

&=y — xit
ve= €} — oo — 1€,
= (P — XY — @0 = 1 (Pe-1 — Xi-1§)%.
Then the GMM estimator is obtained from the following two moment conditions
E(e:|Z:)=0 and E(v¢| Z:) =0,

where z; is a set of predetermined variables. The asymptotic distribution of the
GMM estimator follows directly from the general formula in Hansen (1982).
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Weiss (1986a) and Pantula (1988) studied the asymptotic properties of least
squares estimators which also do not require a normality assumption. They
proved the consistency and asymptotic normality of such estimators. However,
as can be expected, least squares estimators are less efficient than GMM
estimators and MLE’s with a correct likelihood function. It would be interesting
to compare the finite sample properties of all of these estimators.

We previously mentioned the importance of correct specification of the
conditional variance function k.. All the forms of h, we discussed in Section 4
are fully parametric. Pagan and Hong (1991) argued that the existing parametric
forms are not very convincing due to the lack of optimizing theory in their
formulation. They advocated nonparametric estimation of A, as originally
suggested by Pagan and Ullah (1988). They even recommended estimating both
the conditional mean, m,, and the conditional variance, h;, nonparametrically
since misspecification in the conditional mean might exaggerate the variation in
h,. In the statistics literature, many nonparametric technigues are available. For
their empirical application, Pagan and Hong (1991) used the kernel method and
the Fourier series approximation of Gallant (1982). These procedures estimate
the first two conditional moments by relating them to the past values of y,. If
r lags of y: are chosen, then m, and A, can be estimated by using the formulae

T T
an= Z @it)i, and };t= Z wny,-z—rfztz,
ixt izt
where w;; are the kernel weights. For the Gaussian kernel
Xit
Wit = —F—,
Z it
i=1
I#1
where xic = exp{—] %=1 A5 2(¥i-s — ¥s-1)*), hs being the bandwidth [for details
see Pagan and Hong (1991, p. 60)]. The empirical applications of Pagan and
Hong (1991) showed the advantages of the nonparametric approach. They
plotted the nonparametric #, against y,—; and found a high degree of
nonlinearity which would be difficult to capture by simple parametric models.
Also, Cox nonnested tests for parametric versus nonparametric models rejected
the Engle, Lilien and Robins (1987) specification of the ARCH-M model for
excess holding yields on treasury bills. The nonparametric method does require
much larger data sets. Fortunately, we do have large data sets for economic and
financial variables where ARCH models are generally applied. Of course, results
from nonparametric analysis are not as easily interpreted in terms of response
coefficients as those obtained from a parametric method. However, at the very
least, nonparametric methods can point out deficiencies in the existing
parametric models and offer some guidance for modification.
Not much is known about the finite sample distribution of the different
estimators discussed above. Engle, Hendry and Trumble (1985), Bollerslev and
Wooldridge (1992) and Lumsdaine (1991b) reported some Monte Carlo results
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on the QMLE. For the GARCH(l, 1) model, Bollerslev and Wooldridge (1992)
found the QMLE of «; to be biased upward, the QMLE of 8, to be biased
downward, and the overall estimate of «; + 8; to be slightly biased downward.
This was consistent with the ARCH(1) results of Engle, Hendry and Trumble
(1985). Lumsdaine (1991b) reported that in small samples, QMLE’s are not
normally distributed and rather skewed. For example, she found §; to be skewed
to the right. This is similar to the downward bias observed by Bollerslev and
Wooldridge (1992). Lumsdaine (1991b) also observed some pile-up for the
estimator of B;. Surprisingly, the pile-up was at the zero boundary. In most
applications B; seems to take values above 0.5, so this may not be taken as a
small sample effect.

Geweke (1988a,b, 1989) argued that a Bayesian approach rather than the
classical one might be more suitable for estimating ARCH models due to two
distinct features of these models. First, as we noted earlier, some inequality
restrictions must be imposed on the parameters to ensure positivity of 4. In the
classical estimation framework, these restrictions are somewhat impractical to
impose. However, under the Bayesian paradigm, diffuse priors can incorporate
these inequalities. Second, most of the time the main interest is not in the
individual parameters, rather in 4;, which is a function of the parameters. Exact
posterior distributions and means of 4, can be obtained quite easily using Monte
Carlo integration with importance sampling. The recent introduction of Gibbs
sampling to the Bayesian econometrics literature might make the task even
easier. Geweke’s successful application to inflation and stock price data
demonstrated the viability of the Bayesian approach for estimating ARCH
models. Unfortunately, this approach has not been pursued by other researchers.

9, Testing

The introduction of ARCH to econometrics has led to many interesting testing
problems. The basic test for the ARCH model is testing for the presence of
ARCH, i.e., a test for the null hypothesis Ho: a1 =2 =+ =0ag=0 in (2.3).
Engle (1982) derived the LM statistic for testing Hp, which is computed as TR?,
where T is the number of observations and R? is the coefficient of multiple
determination from the regression of &7 on a constant and &7_y, ..., 824, &’s
being the OLS residuals from the model (2.1). Under H,, the LM statistic
asymptotically follows a x? distribution. The structure of the test is the same
as that of the Breusch and Pagan (1979) and Godfrey (1978) ‘static’
heteroskedasticity test in the regression model. As noted in Bera and Lee (1992),
this test is also a special case of the IM test applied to the regression model (2.1)
with an AR (g) error structure and can be viewed as a test for randomness of the
AR parameters ¢y, ..., ¢q. '

A convenient way of looking at a general test for ARCH is to give it a moment
test interpretation, the moment condition being

el

E(—— 1 |z,) =0, ©9.1)
xo
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where z; is some vector of variables. For Engle’s test, z: = (1, €7-1, €7-2, ..., €/—¢)-
If the alternative model is GARCH, as given in (2.7), then z, would be specified
as zo=(1,el 1,822, ...,60- 4, -1, ..., le—p). When estimated under Hp, z
becomes z. = (1, &7y, 821, ..., £2_,, &, ..., &). Therefore, the last p elements of
%: are redundant and a test for no conditional heteroskedasticity against an
ARCH(g) or a GARCH(p, q) will be identical [see Bollerslev (1986) and J. H.
Lee (1991)]. For the AARCH model (3.3), z:= (1, €7-1,6%2, ..., €7 g, &—181-2,
...y &—1€6t-¢) and the test is carried out by running a regression of étona
constant and the squares and cross products of &_;, i=1,2, ..., g [see Bera and
Lee (1992), and Bera, Higgins and Lee (1992)].

A complication arises when Hp is tested against an ARCH-M model given in
(7.1). The conditioning set z, is the same as in the ARCH case, namely
z=(1,€}-1,€%1,...,e2,). However, we note that when the null hypothesis of
no ARCH is imposed on the model, the nuisance parameter § is not identified.
This renders the information matrix to be singular under Hp, and thereby
invalidates the standard distribution of the LM test. However, note that for a
given value of 8, say 6% the LM statistic is perfectly well behaved and has the
form [see Domowitz and Hakkio (1985)]

6*2

2+ 6%

1
LM@Y = 157 7'2[2'2 -

-1
Z’X(X’X)'IX'Z] Z'v, (9.2)

where v is a T'x 1 vector with #-th element vy, = (£7/&o — 1) + (6*&/é0). The
second component of this LM test is due to the non-block diagonality of the
information matrix between the conditional mean and variance parameters. It is
clear that when 6* = 0, LM(6*) reduces to Engle’s test for ARCH. Any arbitrary
choice of é will lead to a suboptimal test.

The same problem is faced for the NARCH model (4.2). When
a1 =y = -+ = ag = 0 in (4.2), the parameter & becomes unidentified. For a fixed
value of 8, again say 6%, the LM statistic $(5*) can be computed as TR?, where
the R? is obtained by a regression of 7 on an intercept and

- *
(8% —
é
Therefore, in our conditional moment test framework

- [1 €0 -1  (eh9¥ - 1]
= N 6* 5 eeny 6* ,

Li=1,2,..,q

which is the Box-Cox transformation of the lagged squared residuals. It is
obvious that when 6* = 1, z, reduces to the conditioning set of Engle’s test. To
overcome the nonidentification of 8, Bera and Higgins (1992) followed the
procedure of Davies (1977, 1987) and suggested basing the test on a critical
region of the form
{S = sup S(8") > w}, 9.3)
pe.

where w is a suitably chosen constant. However, unlike S(6™), S does not have
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an asymptotic x2 distribution under the null hypothesis. It is clear that if x2
critical values are used, the type-I error probability of the test will be too high.
Davies (1987) provided an approximation to the p-value of the test as

e—S/ZS(p— 1)/2
2°72Tpf2

where V measures the variation in /S(8) over values of & corresponding to
different alternative hypotheses. This V can be estimated by

R
V= Zl | JSG;) - JSG;i-1) |,
i

where 8o and 6g are the lower and upper bounds for 8, and é;, 62, ...,6r-1 are
the turning points of /S(8). The second component in (9.4) can be viewed as
the correction factor to the standard x2 p-value due to the scanning across a
range of values of 6. Monte Carlo results and an empirical illustration presented
in Bera and Higgins (1992) suggest that the above procedure is more powerful
than the standard LM test for ARCH when the true process has 6 # 1. Bera and
Ra (1991) applied the same technique to the ARCH-M model and obtained
similar results. Hansen (1991) developed a simulation approach which
approximates the asymptotic null distribution of statistics which have the
structure of S. Andrews and Ploberger (1992) also considered the general
problem of testing when a nuisance parameter exists only under the alternative
hypothesis and derived asymptotically optimal tests in terms of weighted average
power in the class of all tests with a given significance level. Andrews (1993) used
this latter approach for testing the presence of conditional heteroskedasticity
with GARCH(1, 1) as the alternative model.

One drawback of using the LM test principle in testing Hp: oy =ap =+
=oag=0 is that it does not take account of the one-sided nature of the
alternative hypothesis, i.e., that the «;’s cannot take negative values. We can
expect some loss of power due to this omission, although the two-sided LM test
will have the correct size asymptotically. Demos and Sentana (1991) and Lee and
King (1991) suggested some one-sided versions of the LM test. Demos and
Sentana’s version of the one-sided LM test can be obtained as the sum of the
squared f-ratios associated with the positive coefficients of the OLS regression of
éfon 1, &_,, ..., -4, while Lee and King’s version is based on the sum of the
scores d/(8)/da;, i=1,...,q. Lee and King (1992) carried out a Monte Carlo
study of the finite sample power properties of the two-sided and their one-sided
LM statistics, and found that the one-sided version of the test has better power.

In the moment condition (9.1), the term etz/ao — 1 is essentially a result of the
normality assumption. If we consider a general log-density function of the
form (8.4), then effap—1 could be replaced by & (e Joo)-&f oo — 1, where
¢ = —g'[g is the score function. For the normal distribution ¢ (& o) = & Joro.
As in Engle and Gonzalez-Rivera (1991), the score function can be estimated
nonparametrically. As a general test for ARCH under nonnormality, we can
think of running a regression of ¢:& on z:. In our discussion above of the TR?

Prixi>S1+V 9.4
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type test statistics, we noted various tests by changing the independent variable
set z; with the same dependent variable #7. Now we can think of different
dependent variables corresponding to various nonnormal distributions. For
example, if we assume a double exponential distribution, we need to run the
regression of |&| on z,. This is known as the Glejser (1969) test for
heteroskedasticity. In the context of testing static heteroskedasticity and
autocorrelation in the regression model, Bera and Ng (1991) successfully used
such nonparametric tests and these could easily be adapted to ARCH models
[also see Pagan and Pak (1993)].

Any general test for nonlinear dependence may also detect conditional
heteroskedasticity. The BDS test of Brock, Dechert and Scheinkman (1987) is
frequently used in empirical work with ARCH models {see for example Hsich
(1989), Gallant, Hsieh and Tauchen (1991) and Higgins and Bera (1992)]. The
BDS test measures nonlinearity by the proportion of ‘m-histories’,
vy = s, Yesr1, ooy Ye+m—1}, Which lie in within a specified distance of one
another. Hsieh (1989) and Brock, Hsich and LeBaron (1991) demonstrated by
Monte Carlo experiments that the BDS test has good power against ARCH
alternatives.

All of the above tests are only for detection of the possible presence of
conditional heteroskedasticity and do not provide any information regarding the
form of the conditional variance function h;. As we mentioned earlier, correct
specification of A, is very important. The accuracy of forecast intervals depends
on selecting an A, which correctly relates the future variances to the current
information set. Also Pagan and Sabau (1987a) showed that an incorrect
functional form for A, can result in inconsistent maximum likelihood estimates
of the conditional mean parameters. This is more likely to happen when A; is
asymmetric or for the ARCH-M models. Most of the empirical papers indirectly
test for the correct specification of A and other accompanying assumptions by
studying the properties of the standardized residuals &'= &/h/’2. The basis of
considering &'is that under our setup

e =71—"{’75 | W1 ~ N(O, 1).
t

Therefore, if the model is correctly specified, & should behave as white noise.
The various diagnostic checks that are commonly used include testing the
normality of & and considering the sample autocorrelations of &F. These
diagnostics are helpful in detecting certain misspecifications, but we cannot
expect them to be very powerful tests.

Using the Newey (1985) and Tauchen (1985) principle of moment tests, Pagan
and Sabau (1987b) suggested a consistency test for ARCH models. The test is
based on the moment condition E[A:(e? — h:)] = 0. Therefore, the test could be
carried out by regressing £7 — A on a constant and A, and testing whether the
coefficient of A; is zero. However, if A, is symmetric and the model is not of the
ARCH-M type, then misspecificaton of A; will not lead to inconsistency and
consequently the test will not have any power.
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In most ARCH models, misspecification may not lead to inconsistency, but it
might make likelihood based inference invalid. In that case, misspecification can
be tested through the IM equality, i.e., by testing 4 = B which are defined in
equation (8.3). Bera and Zuo (1991) suggested such a test. One component of the
IM test can be calculated by running a regression of &4 — 6,2 + 3 on the cross
products of &%, where &"= &/A/’? is as above. This is essentially a test for
heterokurtosis, and it can also be viewed as a test for randomness of the
parameters in the specified A;.

Another simple test for an estimated ARCH model like (2.3) is derived in
Higgins and Bera (1992). The relevant null hypothesis for this is Hp: 6 = 1 in the
NARCH model (4.2). The LM statistic for testing Hp can be calculated by
running a regression of &? on z,, where

= (1, é%_l, ooy é‘zz_q, e — Ez log(ﬁ;))

with
d 2
T = Z &iét-i log(é;-i).
i=1

The test can be viewed as a diagnostic check of the adequacy of the ARCH
model (2.3) after it has been estimated. Starting from a different alternative
model, Hall (1990) derived a simple LM test for an estimated ARCH model. The
alternative distribution for his heteroskedastic normal model is that the
distribution is a member of the family with semiparametric probability density
functions considered by Gallant and Tauchen (1989). His test is based on the
possible correlations of &/, and &}A? with the information set. Simulation
results reported in his paper indicate that the LM test which uses all the
information under the null hypothesis has good finite sample properties in
moderate to large samples.

Engle and Ng (1991) proposed a battery of tests designed to detect
misspecification of a maintained conditional variance function. Let S; be a
dummy variaole that takes the value 1 when &,_, is negative, and zero otherwise.
Similarly, let S/ be a dummy variable that takes the value 1 when &, positive,
and zero otherwise. Engle and Ng suggested standardizing the residual with the
null &, regressing &? on an intercept, S;, S; &-, and S; &-1, and testing that
the coefficients on the three constructed regressors are zero using an F or TR?
statistic. The first regressor, S;, represents the sign bias test which is intended
to detect an asymmetric influence by the lagged negative and positive errors on
the conditional variance which may not be incorporated in the conditional
variance function specified under the null hypothesis. The second regressor,
St &-1, should be significant if the impact of large negative errors versus small
negative errors on the conditional variance is different from the impact implied
by the null 4. This component of the regression is called the negative size bias
test. The third regressor, S; &-1, represents the positive size bias test and should
detect different impacts of large positive errors versus small positive errors on the
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conditional variance. Engle and Ng point out that the components of the test can
be conducted individually if a particular form of misspecification is suspected.

The introduction of conditional heteroskedasticity in econometrics also lead to
another interesting problem. Diebold (1986b) demonstrated that the presence of
ARCH invalidates the standard asymptotic distribution theory of the sample
autocorrelations, and hence of the Box-Pierce and Box-Ljung test statistics for
serial correlation. For simplicity, consider the test for ¢; =0 in

=xik+ &

9.5
&= @16-1 + Uy, ©-3)

where u; ~ (0, 02) and Var(e,| ¥:-1) = a0 + a1€7-1. As we noted, having ARCH
of the above form is equivalent to ¢; being random or u; being heteroskedastic.
Then the problem is equivalent to testing for the significance of a regression
coefficient under heteroskedasticity. We know that the use of White’s (1980)
consistent estimator for the variance-covariance matrix provides asymptotically
valid inference in the presence of an unknown form of heteroskedasticity.
Therefore, a robust way to test ¢; = 0 is to run a regression of the OLS residuals
& on x; and &_1, and test the significance of the coefficient of &_ | using White’s
standard error. Wooldridge (1990) suggested exactly this procedure for testing
autocorrelation in the presence of ARCH [see also Davidson and MacKinnon
(1985), Bollerslev and Wooldridge (1992) and MacKinnon (1992)] . Note that the
standard LM approach for testing first order autocorrelation is to regress & on
x; and &_; and use a TR? statistic. The robust procedure involves two
regressions:

(1) Run &-; on x; and save the residuals as &_;.
(2) Compute TR? from running 1 on &&-1.

The statistic 7R? asymptotically follows a x} distribution under the null
hypothesis of no serial correlation. Steps (1) and (2) are equivalent to using
White’s consistent variance-covariance matrix estimator as mentioned above.
Monte Carlo results reported in Bollerslev and Wooldridge (1992) indicate that
the size of the robust version of the LM test is much closer to the nominal size
than the size of the standard LM test. Bera, Higgins and Lee (1992) derived LM
tests for autocorrelation which take account of specific forms of ARCH
disturbances. Of course, validity of such tests depend on the correct specification
of the ARCH process. In practice, the tests could be very useful by specifying
different forms of conditional heteroskedasticity and then testing for serial
correlation. Being fully parametric, this test could be expected to have higher
power when #; is specified correctly.

10. Epilogue

Research on modeling conditional first moments started many decades ago, and
that field is still very active. The problems currently being investigated, just
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to name a few, are structural change, different kinds of nonlinearities,
cointegration and finite sample properties of estimators and test statistics. It is
safe to say that most of the problems encountered in modeling the first moment
also transmits to ARCH, i.e., conditional second moment modeling. In this
survey paper, we have provided a brief account of these problems. For years to
come, researchers will be occupied with topics like structural change in ARCH,
co-persistence, asymptotic and finite sample statistical inference for ARCH, and
procedures robust in the presence of ARCH. We have also noted that ARCH
models have their own unique problems which are not present in modeling the
conditional mean. Gradually, we will also see more rigorous economic
foundations for ARCH models than those currently available. Therefore, the
frontiers of ARCH will keep on moving further, though possibly not at the
spectacular rate as we observed in its first decade of existence. The success of
ARCH might even tempt researchers to model higher order moments — the third
and fourth — in a systematic way. From that we might learn more about the
behavior of speculative prices, and economic variables in general, a tradition
started by Louis Bachelier almost a century ago.
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Glossary

AARCH: Augmented autoregressive conditional heteroskedasticity.
ARCD: Autoregressive conditional density.
ARCH: Autoregressive conditional heteroskedasticity.
ARCH-M: Autoregressive conditional heteroskedasticity in the mean.
EGARCH: Exponential autoregressive conditional heteroskedasticity.
GARCH: Generalized autoregressive conditional heteroskedasticity.
IGARCH: Integrated generalized autoregressive conditional
heteroskedasticity.
NARCH: Nonlinear autoregressive conditional heteroskedasticity
PNP ARCH: Partially nonparametric autoregressive conditional
heteroskedasticity.
QARCH: Quadratic autoregressive conditional heteroskedasticity.
QTARCH: Qualitative threshold autoregressive conditional
heteroskedasticity.
TARCH: Threshold autoregressive conditional heteroskedasticity.
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