Nominal Wage Contracts as a Commitment against Hyperbolic Discounting

Rhys ap Gwilym

Bangor University

July 2010
Economic agents with hyperbolic discount functions display time inconsistent preferences. In this paper, I show that for such agents fixed nominal wage contracts may represent a welfare enhancing commitment mechanism.
Nominal rigidities are essential in explaining empirical macro facts

BUT

micro-founded explanations of nominal rigidities remain controversial

e.g. menu costs, money illusion, asymmetric information
Motivations

1. Nominal rigidities are essential in explaining empirical macro facts.
 BUT
 micro-founded explanations of nominal rigidities remain controversial
 e.g. menu costs, money illusion, asymmetric information

2. Hyperbolic discounting is supported by strong experimental evidence.
1. Nominal rigidities are essential in explaining empirical macro facts. **BUT** micro-founded explanations of nominal rigidities remain controversial, e.g., menu costs, money illusion, asymmetric information.

2. Hyperbolic discounting is supported by strong experimental evidence.

3. Graham and Snower (JMCB 2008) show that in a model with hyperbolic discounting and nominal wage contracts, the long-run Phillips curve is significantly downward sloping.
Hyperbolic Discounting?

Choose between the following prospects:

A £ 50 today

B £ 100 on 25th May 2012

Choose between the following prospects:

A £ 50 on 25th May 2015

B £ 100 on 25th May 2017

Most people in experimental trials choose A in the first experiment and B in the second. Their choices are time inconsistent.
Choose between the following prospects:

A £50 today

B £100 on 25th May 2012
Choose between the following prospects:

A £50 today
B £100 on 25th May 2012
1. Choose between the following prospects:
 A. £50 today
 B. £100 on 25th May 2012

2. Choose between the following prospects:
Hyperbolic Discounting?

1. Choose between the following prospects:
 A. £50 today
 B. £100 on 25th May 2012

2. Choose between the following prospects:
 A. £50 on 25th May 2015

Most people in experimental trials choose A in the first experiment and B in the second. Their choices are time inconsistent.

Rhys ap Gwilym (Bangor University)

Hyperbolic Discounting

July 2010
Choose between the following prospects:

1. A £50 today
 B £100 on 25th May 2012

2. Choose between the following prospects:
 A £50 on 25th May 2015
 B £100 on 25th May 2017
Choose between the following prospects:

A £50 today
B £100 on 25th May 2012

Choose between the following prospects:

A £50 on 25th May 2015
B £100 on 25th May 2017

Most people in experimental trials choose A in the first experiment and B in the second.
Choose between the following prospects:

A £50 today
B £100 on 25th May 2012

Choose between the following prospects:

A £50 on 25th May 2015
B £100 on 25th May 2017

Most people in experimental trials choose A in the first experiment and B in the second.

Their choices are time inconsistent
Exponential discounting:
Discount factor $= e^{kt}$

Hyperbolic discounting:
Discount factor $= \frac{1}{1+kt}$
Present Value of Future Rewards

Exponential Discounting
Present Value of Future Rewards

Exponential Discounting
Present Value of Future Rewards

Hyperbolic Discounting
‘The interaction of staggered nominal contracts with hyperbolic discounting leads to inflation having significant long-run effects on real variables’
‘The interaction of staggered nominal contracts with hyperbolic discounting leads to inflation having significant long-run effects on real variables’

- Marginal utility of consumption:
‘The interaction of staggered nominal contracts with hyperbolic discounting leads to inflation having significant long-run effects on real variables’

- Marginal utility of consumption:
- Marginal disutility of labour:
Employment cycling effect
1. Employment cycling effect

2. Discounting effect
1. Employment cycling effect

2. Discounting effect

- Under exponential discounting, the first effect dominates
1. Employment cycling effect

2. Discounting effect

- Under exponential discounting, the first effect dominates
- Under hyperbolic discounting, the second effect dominates
Hyperbolic discounters with no commitment mechanism supply less labour than is optimal.
Hyperbolic discounters with no commitment mechanism supply less labour than is optimal.

Nominal rigidities lead to higher labour supply in a model with hyperbolic discounting and positive inflation.
Hyperbolic discounters with no commitment mechanism supply less labour than is optimal.

Nominal rigidities lead to higher labour supply in a model with hyperbolic discounting and positive inflation.

Therefore, fixed nominal wage contracts may be optimal if they enable agents to commit their future selves to a higher labour supply.
The Model

- Dynamic general equilibrium model (no stochastics)
The Model

- Dynamic general equilibrium model (no stochastics)
- Monopolistically competitive labour market, perfectly competitive goods market

Quasi-hyperbolic discounting:
\[\text{Discount factor } = \beta \delta^t > 0 \]

Households can choose whether to supply their labour:
(a) flexibly,
(b) according to a binding fixed real wage contract,
(c) according to a binding fixed nominal wage contract.
The Model

- Dynamic general equilibrium model (no stochastics)
- Monopolistically competitive labour market, perfectly competitive goods market
- Quasi-hyperbolic discounting:
 \[\text{Discount factor} = \beta \delta^t \quad t > 0 \]
The Model

- Dynamic general equilibrium model (no stochastics)

- Monopolistically competitive labour market, perfectly competitive goods market

- Quasi-hyperbolic discounting:
 \[\text{Discount factor} = \beta \delta^t \quad t > 0 \]

- Households can choose whether to supply their labour
The Model

- Dynamic general equilibrium model (no stochastics)
- Monopolistically competitive labour market, perfectly competitive goods market
- Quasi-hyperbolic discounting:
 \[\text{Discount factor} = \beta \delta^t \quad t > 0 \]
- Households can choose whether to supply their labour
 (a) flexibly,
The Model

- Dynamic general equilibrium model (no stochastics)
- Monopolistically competitive labour market, perfectly competitive goods market
- Quasi-hyperbolic discounting:
 \[\text{Discount factor} = \beta \delta^t \quad t > 0 \]
- Households can choose whether to supply their labour
 (a) flexibly,
 (b) according to a binding fixed real wage contract,
The Model

- Dynamic general equilibrium model (no stochastics)
- Monopolistically competitive labour market, perfectly competitive goods market
- Quasi-hyperbolic discounting:
 \[\text{Discount factor} = \beta\delta^t \quad t > 0 \]
- Households can choose whether to supply their labour
 - (a) flexibly,
 - (b) according to a binding fixed real wage contract,
 - or (c) according to a binding fixed nominal wage contract.
The representative firm faces a Dixit-Stiglitz (1977) production technology:

\[y_t = \left[\int_{h=0}^{1} l_t(h) \frac{\theta - 1}{\theta} \, dh \right]^\frac{\theta}{\theta - 1} \]

The firm’s cost minimisation implies that each household faces the following demand for its labour service:

\[l_t(h) = w_t(h)^{-\theta} y_t, \]

where \(w_t(h) \) is the real wage set by household \(h \).
The Model: Household Decisions

Each household, h, maximises its inter-temporal utility subject to its budget constraint and demand for its labour:

$$\begin{align*}
\text{Max}_{c_t, l_t, B_{t+1}} & \quad U_t(h) = \ln(c_t) - \frac{l_t^{1+\eta}}{1 + \eta} + \beta \sum_{i=1}^{\infty} \delta^i \left[\ln(c_{t+i}) - \frac{l_{t+i}^{1+\eta}}{1 + \eta} \right] \\
\text{subject to} & \quad c_s + \frac{B_{s+1}}{P_s} = w_s l_s + \frac{T_s}{P_s} + \frac{R_s B_s}{P_s} \\
& \quad l_s = w_s^{-\theta} y_s
\end{align*}$$
Time inconsistency implies that an individual household will have an incentive in the future to change any plan made in the current time period.
The Model: the First Strategic Dimension

- Time inconsistency implies that an individual household will have an incentive in the future to change any plan made in the current time period.

- Therefore, the household cannot commit itself to a plan beyond the current period.
The Model: the First Strategic Dimension

- Time inconsistency implies that an individual household will have an incentive in the future to change any plan made in the current time period.

- Therefore, the household cannot commit itself to a plan beyond the current period.

- However, its choices this period will influence future decisions.
The Model: the First Strategic Dimension

- Time inconsistency implies that an individual household will have an incentive in the future to change any plan made in the current time period.

- Therefore, the household cannot commit itself to a plan beyond the current period.

- However, its choices this period will influence future decisions.

- We must, therefore, model the choices of an individual household as a strategic game between successive incarnations of that household - its present and future selves.
The Model: Labour Supply

Solving this intra-household game under each possible contracting option gives labour supply, consumption and savings choices:

(a) flexible wage setting:

\[w_t = \frac{\theta}{\theta - 1} \frac{l_t^\eta}{\lambda_0} \]

N.B. Numerator = marginal disutility of labour, discounted hyperbolically
Denominator = income, discounted exponentially
Solving this intra-household game under each possible contracting option gives labour supply, consumption and savings choices:

(a) flexible wage setting:

\[w_t = \frac{\theta}{\theta - 1} \frac{l_t^n}{\lambda_0} \]

(b) fixed real wage contract:

\[w^* = \frac{\theta}{\theta - 1} \frac{l_t^{1+\eta} + \beta \sum_{i=1}^{\infty} \delta^i l_{t+i}^{1+\eta}}{\sum_{i=0}^{\infty} \lambda_i l_{t+i}} \]

N.B. Numerator = marginal disutility of labour, discounted hyperbolically
Denominator = income, discounted exponentially
The Model: Labour Supply

Solving this intra-household game under each possible contracting option gives labour supply, consumption and savings choices:

(a) flexible wage setting:

\[w_t = \frac{\theta l_t^\eta}{\theta - 1 \lambda_0} \]

(b) fixed real wage contract:

\[w^* = \frac{\theta l_t^{1+\eta} + \beta \sum_{i=1}^{\infty} \delta^i l_{t+i}^{1+\eta}}{\theta - 1} \frac{\sum_{i=0}^{\infty} \lambda_i l_{t+i}}{\sum_{i=0}^{\infty} \lambda_i l_{t+i}} \]

(c) fixed nominal wage contract:

\[W^* = \frac{\theta l_t^{1+\eta} + \beta \sum_{i=1}^{\infty} \delta^i l_{t+i}^{1+\eta}}{\theta - 1} \frac{\sum_{i=0}^{\infty} \lambda_i l_{t+i}}{\sum_{i=0}^{\infty} \lambda_i \overline{P}_{t+i}} \]
The Model: Labour Supply

Solving this intra-household game under each possible contracting option gives labour supply, consumption and savings choices:

(a) flexible wage setting:

\[w_t = \frac{\theta l_t^\eta}{\theta - 1 \lambda_0} \]

(b) fixed real wage contract:

\[w^* = \frac{\theta}{\theta - 1} \frac{l_t^{1+\eta} + \beta \sum_{i=1}^{\infty} \delta^i l_{t+i}^{1+\eta}}{\sum_{i=0}^{\infty} \lambda_i l_{t+i}} \]

(c) fixed nominal wage contract:

\[W^* = \frac{\theta}{\theta - 1} \frac{l_t^{1+\eta} + \beta \sum_{i=1}^{\infty} \delta^i l_{t+i}^{1+\eta}}{\sum_{i=0}^{\infty} \lambda_i l_{t+i} P_{t+i}} \]

N.B. Numerator = marginal disutility of labour, discounted hyperbolically
Denominator = income, discounted exponentially
Each household must choose which type of contract to sign:

- Either contract represents an effective commitment mechanism which helps to mitigate the effects of time inconsistency.
Each household must choose which type of contract to sign:

- Either contract represents an effective commitment mechanism which helps to mitigate the effects of time inconsistency.

- Commitment to a contract allows others an opportunity to under-cut.
Each household must choose which type of contract to sign:

- Either contract represents an effective commitment mechanism which helps to mitigate the effects of time inconsistency

- Commitment to a contract allows others an opportunity to under-cut

 i.e. another game to solve
Number of households (cohorts): $2 \rightarrow \infty$
The Model: Options for Development

- Number of households (cohorts): \(2 \rightarrow \infty\)

- Length of contracts: exogenously set \((2 \rightarrow \infty \text{ periods})\)
 OR endogenously determined
The Model: Options for Development

- Number of households (cohorts): $2 \rightarrow \infty$

- Length of contracts: exogenously set ($2 \rightarrow \infty$ periods)
 OR endogenously determined

- Role of government: exogenous inflation rate
 OR endogenise government as an active player in the game