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Abstract

A new multivariate Archimedean copula estimation method is pro-
posed in a non-parametric setting. The method uses the so called
Geometrically Designed splines (GeD splines), recently introduced by
Kaishev et al. (2006 a,b) [10] and [11], to represent the cdf of a ran-
dom variable Wθ, obtained through the probability integral transform
of an Archimedean copula with parameter θ. Sufficient conditions for
the GeD spline estimator to posses the properties of the underlying
theoretical cdf, K(θ, t), of Wθ, are given. The latter conditions allow
for defining a three-step estimation procedure for solving the result-
ing non-linear regression problem with linear inequality constraints.
In the proposed procedure, finding the number and location of the
knots and the coefficients of the unconstrained GeD spline estimator
and solving the constraint least-squares optimisation problem, are sep-
arated. Thus, the resulting spline estimator K̂(θ̂, t) is used to recover
the generator and the related Archimedean copula by solving an ordi-
nary differential equation. The proposed method is truly multivariate,
it brings about numerical efficiency and as a result can be applied with
large volumes of data and for dimensions d ≥ 2, as illustrated by the
numerical examples presented.

Keywords: Archimedean copula, generator, Kendall’s process, B-
spline, geometrically designed regression splines, shape preserving.

1 Introduction

Recently, considerable attention has been paid to the problem of inference
about copulas. The monographs by [3], [16] and [13] summarize to some
extent the activities in this area. In broad terms, a copula function is a mul-
tivariate distribution function with uniform marginals. It is used as a linking
block between the joint cumulative distribution function (cdf) F (x1, . . . , xd)
of a vector of random variables X = (X1, . . . , Xd) and its marginal cdf’s
F1(X1), . . . , Fd(Xd). This probabilistic interpretation of copulas is justified
by the famous Sklar’s theorem which states that, under some mild conditions,
there exists a unique copula function C(u1, . . . , ud) such that

(1) F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

holds. For the joint density f(x1, . . . , xd) of X one easily gets from (1) that
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f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))
d∏

j=1

fj(xj)

where fj(·), j = 1, . . . , d are the marginal densities and c(·, . . . , ·) denotes the
copula density

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . . ∂ud

, ui ∈ (0, 1), i = 1, . . . , d.

In general, estimation of the joint cdf F (x1, . . . , xd) in (1) involves estima-
tion of both the copula C and the marginals Fj(·), j = 1, . . . , d. Depending on
the degree to which the copula and the marginals are assumed to be known,
parametric or non-parametric estimation methods have been developed. In
terms of parametric inference, the Maximum Likelihood could be adopted
whenever feasible. An alternative, simpler approach, called Inference Func-
tion for Margins (IFM), (see [13]) involves a two-step procedure where one
first estimates the parameters of the marginal distributions and then substi-
tutes them to maximize the likelihood of the copula. On the other hand, if,
in contrast to the copula, the marginals can not be specified parametrically,
a semiparametric approach has been suggested and implemented quite re-
cently by [2]. The authors show that plug-in sieve MLE works and produces
asymptotically efficient estimators for the parametric part. They also show
that prior restrictions on the marginal distributions can be incorporated in
order to achieve efficiency gains when constraints hold. The non-parametric
estimation of the marginals has also been paid due attention. In [12] the cop-
ula density estimation has been dealt with whereas, [17] consider estimation
of both the copula and its density by using Bernstein polynomials to smooth
out the empirical copula.

A particular class of copulas, called Archimedean copulas, have recently
gained considerable popularity as a dependence modelling tool. It involves
a non-parametric component φ(·), called generator, which is a function of
one variable and completely describes the dependency structure of the entire
d-dimensional vector X. This brings about essential simplification with re-
spect to the inference for Archimedean copulas. To see this, recall that the
Archimedean copula is defined as (see e.g. [16], Theorem 4.6.2)

(2) C(u1, . . . , ud) = φ−1(φ(u1) + · · ·+ φ(ud))
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where the generator function φ(·) is a continuous, strictly decreasing convex
function on (0,1) such that φ(1) = 0 and φ−1(.) is completely monotonic, i.e.

(3)
(−1)idi

dxi
φ−1(x) ≥ 0, i = 1, ..., d.

If φ(0+) = ∞ the generator is strict, otherwise if φ(0+) < ∞ it is called
non-strict. Major measures of association, such as Kendall’s tau (τ) and
Spearman’s rho (ρ), do not depend on the marginals and can be directly
expressed through the generator (see e.g. [16]). From (2), it can be seen
that the generator is only determined up to a multiplicative positive con-
stant. Thus, as seen from (2), in order to estimate an Archimedean copula
one needs to be able to estimate the generator φ(·), based on a sample of
observations on X. The solution of this estimation problem substantially
depends on the parametrization of φ(·). A summary of the existing most
popular Archimedean copulas and their generators (including the Clayton,
Ali-Mikhail-Haq, Gumber, Frank and many other families) can be found in
[16] and [3]. These generators typically give a limited description of the de-
pendence structure between the random variables X1, . . . , Xd, since they are
characterized via one (or two) dimensional parameter θ. Although estima-
tion in this case is simpler, there is a scope for more richly parameterized
generators which allow for better flexibility in modelling the copula C. The
recent paper by [18] is, to our knowledge, the only one that tries to make the
generator more flexible via local interpolation of existing ”textbook” germs
of generators. However, this approach still has some limitations in its flexi-
bility since it would in general demonstrate a bias towards the chosen germs
of generators.

In practice, one would like to be given a flexible family of generators
without too much of a bias induced in their choice. A possible approach
to increasing the flexibility of the generator φ and hence of C, is to use
spline functions in their representation. An attempt in this direction is the
paper by [14] who uses a penalized smoothing spline to represent the function

λ(·) = φ(·)
φ′(·) and then estimates its parameters via a MCMC algorithm in a

Bayesian framework. The author has noticed that approximating λ(·) instead
of φ(·) is more convenient since λ(·) is uniquely determined, regardless of the
multiplicative positive constant selected in the definition of the generator.
However, the proposed smoothing splines involve high number (usually 20-30
according to [14]) equidistant knots and a penalty parameter, which leads to a
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high dimension of the estimation space and hence to increasing complexity of
the subsequent MCMC Bayesian parameter estimation. Another drawback of
this approach is that one needs to perform thousands of simulations from the
posterior distribution of the parameters and average them in order to produce
a resulting model. This can be prohibitively time consuming, especially for
large data samples and parameter dimensions. An alternative approach could
be to express the generator φ(·) directly as a spline function of a fixed degree
and to consider its coefficients and knots as unknown parameters θ. Then,
the requirements for the spline φθ(·) to be a generator would translate in
some shape-preserving constraints on its unknown parameters. In this case
it could be argued that the resulting copula density is a parametric density
and hence the constrained maximum-likelihood method could be applied to
achieve asymptotic efficiency when estimating the generator. In order to
illustrate the corresponding details of such a maximum-likelihood approach,
let us consider the case of d = 2. Then, (2) becomes

Cθ(u1, u2) = φ−1
θ (φθ(u1) + φθ(u2))

and we have

cθ(u1, u2) =
∂2Cθ(u1, u2)

∂u1∂u2

= −φ
′′
θ (Cθ(u1, u2))φ

′
θ(u1)φ

′
θ(u2)

φ
′
θ(Cθ(u1, u2))3

, u1, u2 ∈ [0, 1]

where the derivatives of φθ(u) are with respect to u. Given a sample of
n i.i.d. copies of the dependent uniform (0, 1) random variables (u1i, u2i) ,
i = 1, ..., n, the likelihood function is

(4) L(θ) =
n∏

i=1

cθ(u1i, u2i)

and it (or its logarithm, the log-likelihood function) has to be maximized with
respect to the parameter vector θ, under some shape-preserving constraints on
θ. Unfortunately, under this direct free-knot spline approximation approach,
the actual maximization in (4) is very difficult to implement numerically
and is computationally very expensive since this becomes a multi-extrema
constrained, non-linear optimization problem in possibly high dimension in-
volving inversion of the spline generator. Moreover, there is a singularity of
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the φ
′
θ(·)

/
φθ(·) values at 0 and at 1. These difficulties lead to a prohibitive

computational burden when the sample size n and/or the number of knots
increase. The latter case is typical if a smoothing penalty is introduced in
order to avoid oversmoothing. In addition, it must be said that although the
problem formally may seem as a parametric one, the dimension of the pa-
rameter containing the spline coefficients (and possibly the knots) typically
increases with the sample size so that the spline fit is more a non-parametric
than a parametric likelihood fit. The parameters involved in the spline-based
likelihood function do not have any statistical meaning.

The difficulties in calculating the ”parametric” spline-based ”maximum-
likelihood” estimator of φθ(·) motivates alternative approaches to estimating
Archimedean copulas. In this paper, we propose a minimum-distance type
Archimedean copula estimation method which utilizes ideas from Computer
Aided Geometric Design.

The structure of the paper is as follows. In Section 2, we introduce
our new approach to the Archimedean copula estimation problem which is
based on the application of the so called Geometrically Designed splines (see
[10] and [11]). Section 3 considers briefly a goodness-of-fit testing proce-
dure which could be applied to the proposed spline estimator. In Section
4 some bivariate and higher dimensional numerical examples are presented
and discussed.

2 GeD spline estimation of Archimedean cop-

ulas

In this section, we formulate a new approach to the Archimedean copula
estimation problem. It utilizes the so called Geometrically Designed Re-
gression Splines (abbreviated as GeD Splines or GeDS) that have first been
developed by Kaishev et al. (2006 a,b) [10] and [11] for the context of un-
constrained, variable-knot spline regression estimation. We consider the fol-
lowing Archimedean copula estimation problem.

Let (X11, . . . , Xd1), . . . , (X11, . . . , Xdn) be n ≥ 2 independent observa-
tions of the random vector X = (X1, . . . , Xd), with a joint distribution
function given as in (1), but assuming that its copula Cθ(u1, . . . , ud) is a
parametrized Archimedean copula, defined as in (2) with a generator φθ(.)
and that, Fi(xi), i = 1, . . . , d, are some known marginals. Under the lat-
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ter assumption of known marginals we will equivalently use the notation
(U11, . . . , Ud1), . . . , (U1n, . . . , Udn) to denote the probability integral trans-
forms Ui = Fi(Xi), i = 1, . . . , d, of the original observations. Then, we
can consider the random variable

Wθ = Cθ(U1, . . . , Ud) = φ−1
θ (φθ(U1) + · · ·+ φθ(Ud))

with cdf K(θ, t) = P (Wθ ≤ t).
A simple argument which appears in [7] shows that if we define

Wj =
1

n

n∑
i=1

1(U1i ≤ U1j, . . . , Udi ≤ Udj), j = 1, . . . , n,

where 1(·) is the indicator function of the event (·), then Wj can be considered
pseudo observations of the random variable Wθ. The empirical version of its
cdf, K(θ, t), is then defined as

Kn(t) =
1

n

n∑
j=1

1(W(j) ≤ t),

where W(j), j = 1, . . . , n, are the ordered values of Wj, j = 1, . . . , n. In fact,
Wj, j = 1, . . . , n, can be viewed as a sample of observations from K(θ, t).
The empirical process

Kn(t) =
√

n{Kn(t)−K(θ, t)}
called the Kendall’s Process has been explored in the two-dimensional case
(d = 2), by [7]. In the general case (d ≥ 2), under some mild conditions,
Kn(t) has been shown by [1] to converge to a zero mean Gaussian process
with a certain covariance function. These authors have also established the
following useful representation

(5) K(θ, t) = t +
d−1∑
i=1

(−1)i{φθ(t)}i

i!

di

dxi
φ−1

θ (x)|x=φθ(t),

where it is assumed that

(6)
{φθ(t)}i

i!

di

dxi
φ−1

θ (x)|x=φθ(t) → 0 as t → 0+ for all i = 1, ..., d− 1.
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The following properties of the cdf K(θ, t) follow from the properties of
φθ(.) (see also [16], Chapter 4):

1) K(θ, 0) = 0, K(θ, 1) = 1

2) K(θ, t) > t, t ∈ (0, 1)

3) K ′(θ, t) > 0, t ∈ (0, 1)

Let us note that the inequality in 2), which holds for any d ≥ 2, follows
from (5), noting that, for d ≥ 2, each term in the summation is positive by
the requirement (3) and therefore, K(θ, t)− t > 0, t ∈ (0, 1). This important
inequality seems not to have been recorded in the literature for the case
d > 2. Obviously, we also have that 0 < t < K(θ, t)d=2 ≤ K(θ, t)d=3 ≤ . . .
which suggests that K(θ, t) becomes more ’rectangular’ as the dimension d
increases.

2.1 Estimating the cdf K(θ, t)

Our approach to estimating the Archimedean copula Cθ(u1, . . . , ud) is to
approximate K(θ, t) with a spline function, Kα(t; tk,m) of order m (degree
m− 1), defined on the set of 2m + k knots

tk,m = {0, . . . , 0 < tm+1 < · · · < tm+k < 1, . . . , 1}
i.e., to assume that K(θ, t) admits the representation

Kα(t; tk,m) = α′Nm(t) =

p∑
i=1

αiNi,m(t), t ∈ [0, 1]

where α = (α1, . . . , αp)
′ is a vector of unknown coefficients and Nm(t) =

(N1,m(t), . . . , Np,m(t))′ are p = m+k B-splines of order m on the set of knots
tk,m. The extended vector of unknown parameters θ, includes the coefficients
α, the number of internal knots, k, and their locations tm+1, . . . , tm+k, i.e.,
θ = (α1, . . . , αp, k, tm+1, . . . , tm+k). Then, based on the empirical cdf Kn(t)
we define the estimator of θ as a minimum distance estimator, i.e., one that
minimizes the distance between Kn(t) and Kα(t; tk,m), for a suitably chosen
distance measure. Note that the properties 1)-3) of K(θ, t) must also be
met by its spline estimator Kα(t; tk,m). Thus, it is not difficult to see that
the requirements 1)-3) with respect to Kα(t; tk,m) translate into constraints
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on the unknown parameters θ. This is made more precise by the following
Lemma, which gives (sufficient only) conditions for the spline Kα(t; tk,m) to
reproduce the properties 1)-3) possessed by the underlying cdf K(θ, t).

Lemma 2.1 The spline Kα(t; tk,m) satisfies Properties 1)-3) if the following
constraints hold:

1) α1 = 0 < α2 < α3 < · · · < αp = 1.

2) αi > ξi, i = 1, . . . , p.

where ξi = ti+1+...ti+m−1

m−1
, i = 1, . . . , p are the so called Greville abscissae,

defined on the set of knots tk,m.

Proof It is not difficult to see that the first part of Property 1), i.e. Kα(0; tk,m) =∑p
i=1 αiNi,m(0) = 0 holds since α1 = 0, the B-splines N2,m(t), . . . , Nm,m(t) de-

fined on tk,m, vanish at t = 0 and the remaining B-splines Nm+1,m(t) = · · · =
Np,m(t) = 0 by definition (see [4], Chapers 9,10). Similarly, Kα(1; tk,m) = 1
follows noting that Nm+k−1,m(1) = · · · = Nk+1,m(1) = 0, Np,m(1) = 1 and
αp = 1. Property 2) follows noting that αi > ξi, i = 1, . . . , p imply

Kα(t; tk,m) =

p∑
i=1

αiNi,m(t) >

p∑
i=1

ξiNi,m(t) = t,

where in the last equality we have used the identity

p∑
i=1

ξiNi,m(t) = t

referred to as the linear precision property of B-splines.
Finally, Property 3) holds, since up to a multiplicative positive constant,

∆αi =

{
(αi − αi−1)/(ti+m−1 − ti) if ti < ti+m−1

∆αi−1 if ti = ti+m−1
,

i = 2, . . . , p are the coefficients of the derivative of the spline Kα(t; tk,m),
which itself is a spline of order m− 1 and ∆αi > 0 means that K ′

α(t; tk,m) >
0, t > 0 holds.
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The problem of estimating an Archimedean copula can now be formu-
lated as consisting of two subproblems. The first one is to find a minimum
distance spline estimator K̂(θ̂, t) of K(θ, t). The second one is, by using
K̂(θ̂, t), to estimate the generator φθ(.) and its related Archimedean cop-
ula Cθ(u1, . . . , ud). The first of these two problems can now be specified as
follows. Given the sample of observations, Wj, j = 1, . . . , n, find

(7) min
θ

n∑
j=1

{ j

n
−

p∑
i=1

αiNi,m(W(j))}2

subject to the constraints

(8) 0 = α1 < α2 < · · · < αp = 1

(9) αi > ξi, i = 1, . . . , p

(10) 0 < tm+1 < · · · < tm+k < 1,

where ξi are the Greville abscissae.
The constraints (8) and (9) are a consequence of Lemma 2.1. The con-

straints (10) are obvious.
Let us note that, in general, (7) is a non-linear least-squares optimization

problem and (8), (9) and (10) are linear inequality constraints on the param-
eter vector θ. It is known that even unconstrained free-knot least-squares
splines are virtually impossible to find (see e.g. [4]). For a detailed account
on the related difficulties we refer to [15]. The constraints (8), (9) and (10),
make the minimization in (7) even more problematic.

2.2 The GeD spline Archimedean copula estimation
procedure

In order to overcome the difficulties mentioned above, we propose the fol-
lowing three-step Archimedean copula estimation procedure. The first two
steps deal with solving the constrained minimization problem (7). In the
third step, the generator and its related Archimedean copula are estimated.

Step 1) Ignoring constraints (8) and (9), find a set of knots t∗k,m and

spline coefficients α∗, such that K̂α∗
(
t; t∗k,m

)
is a variable-knot least square
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GeD spline estimate of Kn(t), t ∈ [0, 1], i.e K̂α∗
(
t; t∗k,m

)
is a (sub)optimal

solution to (7).
Step 2) If α∗ does not satisfy the constraints (8) and (9), then for the

fixed optimal knots t∗k,m, from step 1, re-solve (7) with respect to α subject

to (8) and (9) to obtain the constraint (sub)optimal solution, K̂α̂

(
t; t∗k,m

)
of

(7). Otherwise, K̂α∗
(
t; t∗k,m

)
coincides with K̂α̂

(
t; t∗k,m

)
and one proceeds with

step 3.
Step 3) Substitute the estimated cdf, K̂α̂

(
t; t∗k,m

)
, from step 2, for K(θ, t)

in the expression (5), due to [1] and solve the ordinary differential equa-
tion (5) in order to express the estimator of the generator, φ̂θ̂(t), in terms

of K̂α̂

(
t; t∗k,m

)
. Then, using the definition (2) obtain an estimate of the

Archimedean copula Ĉθ̂(u1, . . . , ud).

In order to construct the GeD spline estimator K̂α∗
(
t; t∗k,m

)
of step 1,

the method developed by Kaishev et al. (2006 a, b) [10] and [11] for the
unconstrained regression context can be used. An essential ingredient of this
method is the very close relationship between a spline regression function
and its so called control polygon, with vertices whose y-coordinates are the
regression coefficients and the x-coordinates are the Greville abscissae. The
method involves a two-stage procedure. In the first stage, a variable-knot,
least-squares linear spline fit to the data set

{
j
n
,W(j)

}n

j=1
is constructed. This

fit is viewed as the initial position of the control polygon of a smoother higher
order (m > 2) spline curve. In the second stage, the optimal set of knots t∗k,m

of this higher order (m > 2) smooth spline curve, K̂α

(
t; t∗k,m

)
is found, so

that it preserves the shape of the initial control polygon and then this curve
is fitted to the data,

{
j
n
,W(j)

}n

j=1
to adjust its position (i.e., to find α∗) in the

unconstrained LS sense. In this way, it is ensured that the m-th order smooth
LS fit K̂α∗

(
t; t∗k,m

)
follows the shape of the initial control polygon, and hence

the shape of the data. This procedure simultaneously produces quadratic,
cubic, or higher order splines and the LS fit with the minimum residual
sum of squares is chosen as the final fit which recovers best the underlying
unknown cdf K(θ, t). The two stages of this approach have been given a
formal interpretation as certain optimization problems with respect to the
variables k, tk,m, α and m (see [10]). Hence, the approach produces a solution
which does not necessarily coincide with the globally optimal unconstraint
solution to (7), under the free-knot non-linear optimization approach. As
illustrated by the numerical examples presented in Kaishev et al. (2006 a,
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b) [10] and [11], it produces LS spline fits which are characterized by a small
number of non-coalescent knots and very low mean square errors. Thus, the
unconstrained GeD spline regression fits are shown to be nearly optimal (see
the examples in Kaishev et al., (2006 a, b) [10], [11] and to enjoy some very
good large sample properties, such as asymptotic normality. The latter allow
for the construction of asymptotic confidence intervals illustrated in [10].

Step 1 of the GeD spline Archimedean copula estimation procedure pro-
posed above has similar remarkable numerical efficiency (even for very large
sample size n) typical for the GeD spline regression method. As illustrated
in Section 4, due to the intrinsic shape preserving properties of the uncon-
strained GeD spline fit, K̂α∗

(
t; t∗k,m

)
, from step 1), in most cases, especially

for large data samples (n ≥ 500), directly meets the constraints (8), (9) and
(10) and step 2 can be omitted. In general, as the optimal number of knots
k and their locations t∗k,m found in step 1 are assumed fixed, step 2 is a linear
least squares problem with respect to the α-as, involving only the simple
linear constraints (8) and (9), and as a result it is not numerically expensive.
The implementation of step 3 is somewhat more involved, since it requires
the solution with respect to φθ(t) of the ordinary differential equations (5).
However, as illustrated in Section 5, it is again extremely numerically efficient
and takes a few seconds on a standard PC. The two-dimensional (d = 2) and
multidimensional cases (d > 2) have been given separate treatment, which
we provide in the next section.

2.3 Recovering the generator and its related copula

In the two-dimensional Archimedean copula case, d = 2, (5) simplifies to

K(θ, t) = t− φθ(t)

φ
′
θ(t)

,

and step 3 of the Archimedean copula GeD spline estimation procedure yields
directly the following estimator of the generator

(11) φθ(t) = exp
(∫ t

0

1

s− K̂α̂(s; t∗k,m)
ds

)
.

The Archimedean copula estimator, Ĉθ̂(u1, u2) is then easily obtained
using the Mathematica built in function FindRoot in order to invert the
estimated generator φ̂θ̂(t), following definition (2).
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In the general, multivariate case (d > 2) we consider first the three-
dimensional Archimedean copula estimation, d = 3. In this case, following
step 3 and applying the change of variables ηθ(t) = t− φθ(t)

φ
′
θ(t)

, equation (5) can

be rewritten as the first order differential equation

(12) K̂α̂

(
t; t∗k,m

)
= ηθ(t)− 1

2
(t− ηθ(t))η

′
θ(t),

with initial condition ηθ(0+) = 0. In the case d = 4, following step 3, equation
(5) can be rewritten in terms of ηθ(t) as

(13)

K̂α̂

(
t; t∗k,m

)
= ηθ(t)−1

2
(t−ηθ(t))η

′
θ(t)+

1

6
(t− ηθ(t))

2η
′′
θ (t)−1

6
(t−ηθ(t))η

′
θ(t)

(
1+η

′
θ(t)

)
,

with initial conditions ηθ(0+) = 0, η
′
θ(0+) = 0. It should be noted that con-

dition (6) is essential in order to remove the singularity in the point t = 0.
Despite the deceivingly simple form of equation (12), which is transformed
by the substitution t − ηθ(t) = ζ(t) into an Abel’s equation of the second
kind, it seems impossible to solve it analytically and obtain an explicit ex-
pression for φ̂θ̂(t). Equation (13) is even more difficult to solve analytically.
However, numerical solutions of both (12) and (13) are easily obtained with
the Mathematica system, applying the NDSolve built in function. There are
no principle difficulties to put through this approach, even for dimensions
d > 4, but we abstain from doing this here. The corresponding solution η̂θ̂(t)
can be used to obtain the estimator for the generator

(14) φ̂θ̂(t) = exp(

∫ t

0

1

s− η̂θ̂(s)
ds).

The Archimedean copula estimator can then be obtained as

(15) Ĉθ̂(u1, . . . , ud) = φ̂−1

θ̂
(φ̂θ̂(u1) + · · ·+ φ̂θ̂(ud)),

whereby, for the inversion of φ̂θ̂(·) we use the Mathematica built in function
FindRoot, which is a reliable one-dimensional root-finder. The three-step
Archimedean copula estimation procedure described above has been imple-
mented in Mathematica and its numerical performance is illustrated in Sec-
tion 4.
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Let us note that our GeD spline Archimedean copula estimation proce-
dure yields the estimator for the Kendall’s tau

τ̂ =
2dK̃(θ̃, t)− 1

2d−1 − 1

(compare [8] and note the typographical error in [1], p. 198) where K̃(θ̃, t)
is a spline of degree m + 1 obtained by integrating the GeDS Archimedean
copula estimator K̂(θ̂, t) over the interval (0, 1).

The next section is devoted to some goodness of fit considerations.

3 Goodness of fit testing

In principle, it should be possible to perform a goodness-of-fit test of the
null hypothesis H0 : C(u1, u2, . . . , ud) is an Archimedean copula versus the
alternative that it is not an Archimedean copula. General theoretical treat-
ment of this problem is very difficult and, to the best of our knowledge, is
still considered as on of the important open problems in the area of inference
about copulas. However, using the approach we have outlined, it should be
possible to use the bootstrap approach to test the important hypothesis H0.
The idea is to compare the distance between the Ĉθ̂(u1, . . . , ud) estimator
from (15) and the empirical copula estimator (the Deheuvel’s estimator)

Ĉn(u1, . . . , ud) =
1

n

n∑
i=1

d∏

k=1

1(Uik ≤ uk)

using some sup-norm or a weighted norm. For example, the following statistic
considered in [9] could be used:

Tn =

√
n max

tl=0,1,...,n−1,l=1,2,...,d
max
i=0,1

∣∣∣∣Ĉn(
t1
n

, . . . ,
j

n
, . . . ,

td
n

)− Ĉθ̂(
t1
n

, . . . ,
j + i

n
, . . . ,

td
n

)

∣∣∣∣
When the observed value of Tn is greater than a threshold, the null hy-

pothesis should be rejected.
In order to implement this test and find appropriate p values for the test

statistics Tn, one can apply the following algorithm, suggested by [9] for a
related problem.
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Step 1 Estimate θ following (7) based on the data sample.
Step 2 Generate N random samples of size n from Ĉθ̂(.) and, for each of

these samples, estimate θ by following (7), and determine the value of Tn.
Step 3 Estimate the critical value of the test, at level α based on Tn, by

computing T(b(1−α)Nc), and estimate the p value corresponding to the observed
value of the statistic Tn, using 1

N

{
j : T(j) ≥ Tn

}
, where T(1) ≤ · · · ≤ T(N)

denote the ordered values of the test statistics calculated in Step 2.
The properties of this procedure are currently under investigation.

4 Numerical results

In this section, we illustrate the numerical performance of the Archimedean
copula estimation procedure developed in Sections 2 and 3 on several exam-
ples.

4.1 The two-dimensional case (d = 2)

We start with an example, considered by [14], in which n = 100 data

points
{

j
100

,W(j)

}100

j=1
are simulated from a two-dimensional Frank copula

with Kendall’s τ = 0.3 (parameter of the generator θ = 2.92). Applying the
proposed three step GeD spline Archimedean copula estimation procedure,
on step 1 we obtain the quadratic GeD spline estimate K̂α∗

(
t; t∗2,3

)
, with α∗ =

(0.0459, 0.296, 0.7121, 0.977, 1.0018) and knots t∗2,3 = {0, 0, 0, 0.2344, 0.6367, 1, 1, 1},
presented in the left panel of Fig. 1. Step 2 of the procedure yields K̂α̂

(
t; t∗2,3

)
with α̂ = (0, 0.3211, 0.6974, 0.9873, 1), given in the right panel of Fig. 1. As
can be seen on this example with n = 100 data points, α∗ and α̂ for the un-
constrained and the constrained spline approximations, are very close. This
effect becomes more pronounced for larger data sets as will be illustrated
in Fig. 5. Another advantage of the resulting quadratic GeDS approxima-
tion K̂α̂

(
t; t∗2,3

)
, is the small number of internal knots, k = 2, and B-spline

coefficients, p = 5, compared to 20 equidistant internal knots, 24 B-spline
coefficients and a penalty parameter estimated by [14] via a complex pro-
cedure involving thousands time consuming iterations. The presented GeD
spline approximation K̂α̂

(
t; t∗2,3

)
is obtained for 0.78 seconds on a standard

PC (Pentium IV, 1.6Ghz, 512 RAM).
In the left panel of Fig. 2, we illustrate the true and estimated Frank

copula generator, obtained on step 3 of the proposed Archimedean copula

15



Figure 1: Simulated data points, n = 100, from a two-dimensional Frank cop-
ula, the true underlying cdf K(2.92, t) (dashed line), the unconstrained GeDS
estimate K̂α∗

(
t; t∗2,3

)
(continuous line in the left panel) and the constrained

GeDS estimate K̂α̂

(
t; t∗2,3

)
(continuous line in the right panel).
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GeD spline estimation procedure, using (11). Contour plots of the true Frank
copula and its estimated version, resulting from step 3, are presented in the
right panel of Fig. 2. The contour plots of the estimated copula, Ĉθ̂(u1, u2),
are obtained, applying the FindRoot Mathematica built-in function to invert
the estimated generator, φ̂θ̂(t). As can be seen from Fig. 2, both the gen-
erator and the copula are recovered with a very good accuracy with a very
few parameters, dimθ = 5 + 1 + 2 = 8. Note that the actual dimension of
θ, reflecting the number of free parameters, is 6, since the first and the last
B-spline coefficients are fixed to 0 and 1 respectively.

Our second example aims at illustrating the performance of the procedure
for reasonably small, n = 50, and large, n = 500, data samples. Data
points

{
j
n
, W(j)

}n

j=1
are simulated from a two-dimensional Clayton copula

with Kendall’s τ = 0.3 (parameter of the generator θ = 0.86). The quadratic
GeD spline estimate K̂α∗

(
t; t∗1,3

)
with one internal knot, t∗4 = 0.6094 and

α∗ = (−0.0615, 0.7608, 0.9697, 1.0093), obtained in step 1, based on n = 50
data points, is presented in the left panel of Fig. 3. In step 2, the constrained
GeD spline estimate K̂α̂

(
t; t∗1,3

)
, given in the right panel of Fig. 3, is obtained

and its B-spline coefficients are α̂ = (0, 0.7103, 0.9999, 1). As can be seen,
even with n = 50 data points, α∗ and α̂ for the unconstrained and the
constrained spline approximations, are still reasonably close. The resulting
GeD spline approximation K̂α̂

(
t; t∗1,3

)
is obtained for 0.31 seconds.

In the left panel of Fig. 4, the true and estimated Clayton copula genera-
tor in the case of n = 50 data points are presented. Contour plots of the true
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Figure 2: Left panel: The true Frank copula generator with Kendall’s τ = 0.3
(dashed line) and its GeD spline estimate (continuous line); Right panel:
Contour plots of the true Frank copula (dashed line) and the estimated copula
(continuous line).
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Figure 3: Simulated data points, n = 50, from a two-dimensional Clayton
copula, the true underlying cdf K(0.86, t) (dashed line), the unconstrained
GeDS estimate K̂α∗

(
t; t∗1,3

)
(continuous line in the left panel) and the con-

strained GeDS estimate K̂α̂

(
t; t∗1,3

)
(continuous line in the right panel).
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Figure 4: Left panel: The true Clayton copula generator with Kendall’s τ =
0.3 (dashed line) and its GeD spline estimate (continuous line); Right panel:
Contour plots of the true Clayton copula (dashed line) and the estimated
copula (continuous line).
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Clayton copula and its estimated version, resulting from step 3, are given in
the right panel of Fig. 4. Here again both the generator and the copula are
recovered with good accuracy and only 4 free parameters (α2, α3, k, t4).

For the case of n = 500, the graph of the estimated unconstrained
cdf K̂α∗

(
t; t∗3,3

)
with α∗ = (0, 0.2248, 0.6075, 0.8607, 0.9999, 1) and t∗3,3 =

{0, 0, 0, 0.2447, 0.4463, 0.6532, 1, 1, 1}, is plotted in the left panel of Fig. 5.
In this case, K̂α∗

(
t; t∗3,3

)
is obtained for 2.70 seconds and it coincides with the

constrained cdf K̂α̂

(
t; t∗3,3

)
. In the right panel of Fig. 5, the corresponding

true and estimated Clayton copula generator are presented and as can be
seen, the accuracy of the estimate, φ̂θ̂(t), has improved compared to the case
n = 50.

4.2 The multivariate case (d > 2)

Our multivariate examples illustrate the performance of the method for di-
mension d > 2. In particular, we consider here the cases d = 3 and d = 4. In
order to highlight the numerical efficiency of the proposed methodology we
have used samples

{
j
n
,W(j)

}n

j=1
of size n = 2000 which were simulated from

a three- and four-dimensional Clayton copula with Kendall’s τ = 0.3.
In the case d = 3, the quadratic constrained GeD spline estimate K̂α̂

(
t; t∗3,3

)
with three internal knots, t∗3,3 = {0, 0, 0, 0.1953, 0.3618, 0.5861, 1, 1, 1} and B-
spline coefficients α̂ = (0, 0.2909, 0.6711, 0.8953, 0.9999, 1), is presented in the
left panel of Fig. 6. Using the spline estimate, K̂α̂

(
t; t∗3,3

)
, the differential
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Figure 5: Left panel: simulated data points, n = 500, from a two-dimensional
Clayton copula, the true underlying cdf K(0.86, t) (dashed line), the uncon-
strained GeDS estimate K̂α∗

(
t; t∗3,3

)
(continuous line); Right panel: The true

Clayton copula generator (dashed line) and its GeD spline estimate (contin-
uous line).
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equation (12) is solved and its solution, η̂θ̂(t), is used to estimate the un-
derlying generator, following (14). The true and estimated Clayton copula
generator are presented in the right panel of Fig. 6. As can be seen, the true
underlying generator is almost perfectly recovered. It has to be noted that
the GeD spline approximation K̂α̂

(
t; t∗3,3

)
is obtained for 10.61 seconds and

solving (12) takes 0.05 seconds.
For the case of d = 4 and n = 2000, the graph of the estimated quadratic

constrained cdf K̂α̂

(
t; t∗4,3

)
, where α̂ = (0, 0.3406, 0.6902, 0.8534, 0.9536, 0.9999, 1)

and t∗4,3 = {0, 0, 0, 0.155, 0.2887, 0.426, 0.5556, 1, 1, 1}, is plotted in the left

panel of Fig. 7. The spline estimate K̂α̂

(
t; t∗4,3

)
is obtained for 13.20 seconds

and the corresponding solution of the differential equation (13) is obtained
in 0.06 seconds. In the right panel of Fig. 7, the corresponding true and
estimated Clayton copula generators are presented. As can be seen, the
estimate, φ̂θ̂(t), can not be visually distinguished from the true underlying
Clayton copula generator.

Analysing the presented examples, it has to be noted that with the in-
crease of the dimension, d, the shape of the cdf K(θ, t) becomes more rect-
angular and therefore, more knots are needed in order to approximate it
using splines. The constraints (8) and (9) come into play when the num-
ber of data points is relatively small, as seen from Fig. 3. In addition,
in the two-dimensional case, d = 2, for small data samples, n ≤ 200, one
may attempt to solve the optimization problem (7) subject to the con-

19



Figure 6: Left panel: simulated data points, n = 2000, from a three-
dimensional Clayton copula, the true underlying cdf K(0.86, t) (dashed line),
the constrained GeDS estimate K̂α̂

(
t; t∗3,3

)
(continuous line); Right panel:

The true Clayton copula generator (dashed line) and its GeD spline estimate
(continuous line).
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Figure 7: Left panel: simulated data points, n = 2000, from a four-
dimensional Clayton copula, the true underlying cdf K(0.86, t) (dashed line),
the constrained GeDS estimate K̂α̂

(
t; t∗3,3

)
(continuous line); Right panel:

The true Clayton copula generator (dashed line) and its GeD spline estimate
(continuous line).
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Figure 8: Left panel: simulated data points, n = 50, from a two-dimensional
Clayton copula, the true underlying cdf K(0.86, t) (dashed line), the globally
optimal estimate K̂α̂opt

(
t; t1,3opt

)
(continuous line); Right panel: The true

Clayton copula generator (dashed line) and its globally optimal spline esti-
mate (continuous line).
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straints (8), (9) and (10) directly using a non-linear optimization proce-
dure in order to find the globally optimal spline estimate of K(θ, t). For
example, using the NMinimize built-in Mathematica function, in the case
of n = 50 data points simulated from a two-dimensional Clayton copula,
the globally optimal constrained solution to (7) is found in 82.73 seconds
and α̂opt = (0, 0.8267, 0.9844, 1), topt

4 = 0.7118. This optimal solution does
not differ significantly from the the quadratic GeD spline estimate α̂ =
(0, 0.7103, 0.9999, 1), t∗4 = 0.6094, obtained in 0.31 seconds using the pro-
posed three-step GeD spline Archimedean copula estimation method. The
closeness of the two spline estimates, K̂α̂opt

(
t; t1,3opt

)
and K̂α̂

(
t; t∗1,3

)
, can also

be seen comparing the right panel of Fig. 3 with the left panel of Fig. 8. The
coresponding two spline estimates of the generator are hard to distinguish
from one another, as seen comparing the left panel of Fig. 4 with the right
panel of Fig. 8. However, the globally optimal solution to (7) is obtained at
a much higher computational cost.

In the case of n = 100 data points simulated from a two-dimensional
Frank copula, the globally optimal constrained solution to (7) is found in
569.97 seconds, compared to 0.78 seconds using the proposed GeD spline
Archimedean copula estimation method and the two estimates are again very
close. The direct approach of solving (7) becomes infeasible for d > 2, i.e.
when higher number of internal knots is required, and for large data samples,
e.g. n ≥ 500.
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5 Conclusions

The proposed method of estimating multivariate Archimedean copulas has
been demonstrated to efficiently recover the underlying generator even for
dimensions d > 2. To the the best of our knowledge this multivariate feature
of the proposed procedure is unique and opens the scope for truly multi-
variate applications of Archimedean copulas in a variety of practical areas.
Its extremely good numerical efficiency makes the method applicable for es-
timating dependence based on large volumes of data combined with high
dimensions.
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