

Counterparty, Funding, and Wrong-Way Risks in derivatives markets

Mihail Turlakov

City University Seminar February 2013

Overview

Counterparty risk and Credit Valuation Adjustment (CVA)
 Funding risk and Funding Valuation Adjustment (FVA)
 Wrong-Way Risk (WWR) in derivatives

□ A simple trading-desk model of WWR in CVA and FVA

- ✓ basic economics of WWR for FX
- ✓ WWR for CVA and FVA

Some thoughts about collective behaviour of financial markets
 Open questions

Counterparty risk and CVA

CVA is the cost of protection on the value of a derivative contract

- \checkmark formally $CVA = (1-R) \int_0^T EE^*(t) dPD(0,t)$
- $\checkmark informally \quad CVA \sim CDS_{Counterparty} * CallOptionPrice(MtMofDerivative)$
- □ Counterparty risk viewed as a network problem

Funding risk and FVA

Secured and unsecured markets

- ✓ Basic funding cash securities (a) secured covered bond (b) unsecured standard bond
- ✓ Derivatives traded with or without collateralisation
- □ Money markets and derivatives markets
 - ✓ Short-dated (money markets) versus long-dated (derivatives markets)
 - ✓ Different markets strongly coupled via balance sheets of the firms
 - FVA is the <u>own cost of funding of the expected positive exposure of the</u> derivative contract

FVA~FundingSpread * CallOptionPrice(MtMofDerivative)

Conversion of CVA into FVA

- General law of transformation of risks
 - The different type of risks do not disappear but transform into each other not quite the law of the conservation of energy(risks)?
- □ Example of the risk transformation make the contract collateralised
 - ✓ CVA transforms (mostly!) into FVA

□ Central Counterparties - the push by regulators

- ✓ CVA versus FVA better or worse?
- ✓ Encumbered assets
- ✓ Bankruptcy(CVA and credit losses) versus solvency (FVA and funding squeeze)?

The consistent view of CVA+FVA?!

No double counting

✓ DVA(Debit Valuation Adjustment) is equivalent to FBA (Funding Benefit Adjustment)

Deep re-examining of Black-Scholes framework/derivation

- ✓ Theoretical arguments by J. Hull, A. White (2012) "Is FVA a cost for Derivatives desks?"
 - FVA is not a cost not charging funding on a corporate loan? ROE (return-on-equity) view from corporate finance
 - Assumptions of Black-Scholes derivation liquidity of funding and hedging instruments not important?
- ✓ CVA+FVA is derived from Black-Scholes equivalent framework C. Burgard, M. Krjaer (2011)
- The headlines debate "Academics versus Bankers!"
- □ CVA/FVA unique price or economic value for the firm?

Overview

Counterparty risk and Credit Valuation Adjustment (CVA)
 Funding risk and Funding Valuation Adjustment (FVA)
 Wrong-Way Risk (WWR) in derivatives

□ A simple trading-desk model of WWR in CVA and FVA

- ✓ basic economics of WWR for FX
- ✓ WWR for CVA and FVA

Some thoughts about collective behaviour of financial markets
 Open questions

Wrong-way risk (real life examples)

Wrong-way risk is the tendency of both the exposure and the likelihood of default to increase at the same time

- <u>The Bad WWR</u> -Mortgages mortgage lenders face WWR from borrowers. The more the borrower owes, the more likely he will default on its debt.
- <u>The Good WWR</u> CEO's
 compensation in company's
 shares CEO faces WWR. In the
 case of underperformance, CEO
 looses on the value of the shares
 and more likely to be
 fired/replaced/"defaulted"

- •
- The Ugly WWR Are Wrong-way or Right-way risks priced in practice?

WWR models: the review

... many models already but not yet practical enough?!

"Exposure given default" Models

- for sovereign or corporate, FX example (A. Levy, 1999, JP Morgan)
- pricing in the Ccy devaluation scenario given the default
- calibration of Ccy devaluation amount is possible, if quanto CDS is quoted

Stochastic/Dynamic Credit Models (recent talks by T. Hulme, A. Green)

- assume stochastic dynamics for hazard rate
- pricing in the cross-gamma of the credit-'risk factor' correlation
- many parameters not well-defined (credit-FX/rate correlations, credit vol too high, etc)

Joint distribution models

- Gaussian copula (Redon, Finger, Iacono, Buckley et al, Rosen, etc)
- not always easy to apply to a portfolio
- historical correlation? Correlation between time-to-default and exposure?
- Hazard rate as a function of exposure (Hull-White, 2011)

Basic economics of <u>WWR for FX</u> (foreign exchange)

Emerging Markets – in financial crises and/or recessions, corporate and sovereign defaults as well as downgrades are accompanied by severe declines in local currency values

- numerous historical examples (South-East Asia, Russia, in 1998, 2007, etc)
- one-sided quite certain effect due to capital outflows reaction in the global financial system

Structural/institutional and specific counterparty risks can be wrong- or right-way risks 11

Exposure given default Model (A. Levy, 1999, JP Morgan)

WWR for a sovereign counterparty

• the exposure conditional on default

 $E[FX(t)|sovereign default] = RV_s \overline{FX(t)}$

- RV_s - residual value factor for the currency upon default

WWR for a corporate counterparty

- default under the condition of the unfavourable asset move in Merton's bankruptcy model $RV_c = 1 + \rho \sigma_{FX} N^{-1} (0.5Q_c(t)) \sqrt{t}$
- $t \leq 4y$ so that longer maturities have fixed reasonable

 $Q_{c}(t)$ is the default probability of the counterparty

 ρ is the asset-FX correlation (use equity-FX correlation?)

Exposure given default Model – new development 🧼 SBERBANK CIB (M.Turlakov, to be published in "RISK", 2013)

"Everything should be made as simple as possible, but not simpler" Albert Einstein

The main assumption –

the stressed WWR scenario is mainly determined by the conditions of the sovereign default

Calculate EPE (expected positive exposure) including WWR

```
EPE_{WWR} = P(sov|Cpty) * EPE^{stressed} + (1 - P(sov|Cpty)) * EPE
```

 $P(sov|Cpty) = \lambda P(sov)$

How to determine *P(sov|Cpty)* (the reminder about Bayes' theorem)

Bayes' theorem

the relationship between conditional and unconditional probabilities

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Apply Bayes' theorem to counterparty's default

- P(Cpty), P(sov) unconditional probabilities determined from CDS quotes
- we are interested in the probability of the country's default given the counterparty's default

$$P(sov|Cpty) = \frac{P(Cpty|sov)P(sov)}{P(Cpty)}$$

Systematic coupling parameter to a sovereign

lets define "systematic coupling parameter" between counterparty and its sovereign $\lambda = \frac{P(Cpty|sov)}{P(Cpty)}$

counterparties can be assigned this coefficient based on how systematically coupled to sovereign

- $\lambda \ll 1$ weakly coupled (sovereign's counterparty's defaults are independent)
- $\lambda \gg 1$ strongly coupled, systematic, but obviously $\lambda P(sov) < 1$

the model is simple $P(sov|Cpty) = \lambda P(sov)$

- the stressed scenario of WWR occurs proportionally to time-dependent inferred from sovereign CDS P(sov)
- only one intuitive coupling parameter per counterparty (not a correlation parameter!)

 $EPE_{WWR} = EPE + \lambda P(sov)(EPE^{stressed} - EPE)$

Example: cross-currency swap

WWR for FVA (funding valuation adjustment)

Bilateral FVA assumed

WWR for FVA can be very important in the stress scenario

collateralised exposures can cause large liquidity/funding stress

WWR for FVA - the same idea of pricing in the default scenario explicitly

 $E_t[FundSpread * fMtM] = FundSpread * fMtM_t +$

 $\lambda P_t(sov) = (FundSpread^{stressed} = fMtM^{stressed} - FundSpread = fMtM)_t$

Overview

Counterparty risk and Credit Valuation Adjustment (CVA)
 Funding risk and Funding Valuation Adjustment (FVA)

Wrong-Way Risk (WWR) in derivatives

□ A simple trading-desk model of WWR in CVA and FVA

- ✓ basic economics of WWR for FX
- ✓ WWR for CVA and FVA

Some thoughts about collective behaviour of financial markets
 Open questions

Collective behaviour of financial markets (1) - networks between optimizing but confused agents

- ❑ Networks view of financial markets (Andrew Haldane, Bank of England)
 - ✓ Rethinking the financial network (2009)
 - \checkmark The dog and the frisbee (2012)
- □ Interesting comparisons of financial crises and their regulation with
 - □ SARS and various diseases epidemics
- Characteristics of the financial network
 - ✓ Complexity simplify?
 - ✓ Connectivity
 - ✓ Feedback
 - ✓ Uncertainty
 - ✓ Homogeneity harmful? Natural complex systems are multi-scale and heterogeneous
- **Stable and not stable at the same time**???

Collective behaviour of financial markets (2) - simpler analogies from physics

Financial crises are similar to collective phase transitions in physics

- ✓ Trigger
 - ✓ Physics sources of condensation, dirt, impurities, etc
 - ✓ Finance special event, coincidence of events
- ✓ Strong interaction between agents/particles the condition for a phase transition
 - Physics sufficiently strong interaction between particles versus thermal(or quantum) noise. For instance, in water freezing, interaction between water molecules versus the temperature/noise
 - Finance strongly coupled (via leveraged obligations) counterparties versus natural activity/liquidity, i.e. Leverage in the system

SBERBANK CIB

Collective behaviour of financial markets (3) - simpler analogies from physics

- 1st type of phase transition everybody having the same trouble
 - ✓ 2011 in Europe (1987, 1998, etc) freezing of funding market
- 2nd type everybody has opposite positions (MtM) and uncertainty
 - ✓ 2007 in USA and later all over the world uncertain valuation of CDOs and strong network intercoupling
 - ✓ blocking of OTC market spin-glass transition everybody is uncertain and "frustrated"
- **3** 3rd type future crisis? Complex or simple crisis?
 - □ Central Counterparties and FVA
 - □ Intercoupling of Money Markets and Derivatives Markets
 - Intercoupling between Developed and Emerging Markets

□ Is CVA/FVA like a tax or a fair-value price?

- Does CVA change appropriately traders' (market participants) behaviour?
 - ✓ reserving for counterparty losses, weakening the network links?
 - $\checkmark\,$ CVA hedging- feedback loops and strengthening the network links?
- □ Banking versus Shadow banking regulations?
- □ Why is Financial system so complex?
- □ CVA or FVA? FVA to be regulated?

Summary

Only simple models in derivatives makes sense, especially after 2007

 \checkmark Financial markets change faster than models and regulations

Big transformation is happening in derivatives markets

✓ Exciting and confusing time!

CVA and FVA are especially at the centre of controversy, conflicts, turbulence, regulations, and opportunities