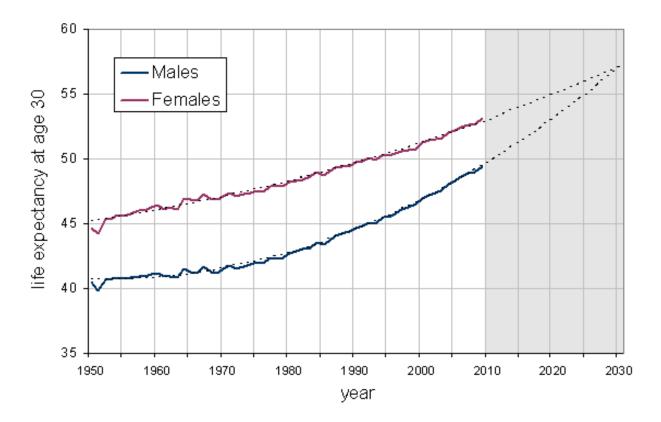


Gender convergence in human survival and the postponement of death

Les Mayhew David Smith Cass Business School Longevity 8 Waterloo, Canada September 2012

Gender convergence in human survival

- It is generally accepted that women live longer than men and people in general are living ever longer
- But are the improvements seen the same for both men and women?
- If death is being postponed which age groups are benefiting and are there gender differences?
- Can we identify reasons for the patterns observed and are they the same in each country?



Life expectancy at age 30

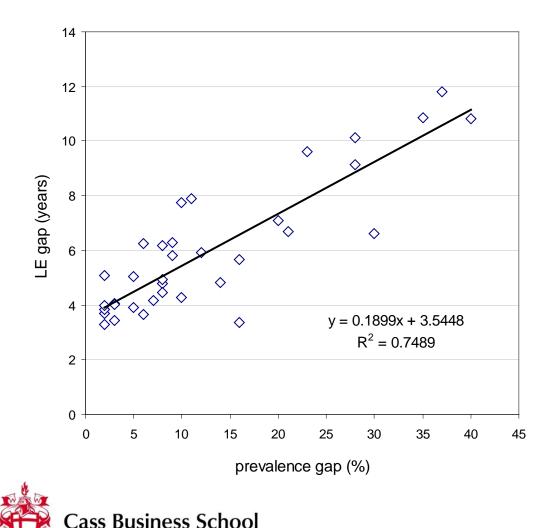
- We concentrate on life expectancy for people aged thirty to remove the distortions of:
 - More boys than girls die in the first year of life which skews studies of life expectancy at birth
 - The male 'mortality hump' in in early adult years caused by accidents and dangerous sports
- Our main focus of results is on England and Wales but we cross-reference our findings with other countries

Life expectancy at age 30 in England and Wales– males and females

Long established trend with gap a maximum of 5.7 years in 1970 compared with 3.8 years in 2009. Trend lines suggest convergence in 2030 at 57.1 years

Comparative figures – four countries

		England and			
	Life expectancy at 30 (yrs)	Wales	France	Japan	Sweden
А	Females 2009	53.2	55.1	57.9	55.1
	Males 2009	49.4	48.8	51.4	51.4
В	Gender gap (yrs)	3.8	6.3	6.5	3.7
	Gap as % of male life expectancy	7.7	12.9	12.6	7.2
	improvement relative to (C) (years)	-1.9	-1.2	0	-1.9
С	Maximum gender gap since 1950 (years)	5.7	7.5	6.7	5.6
	as % of male life expectancy	13.3	16.4	13.3	10.9
	year in which occurred	1969	1987	2003	1983
D	Minimum gender gap since 1900 (years)	2.5	2.6	3.1	0.5
	as % of male life expectancy	7.1	7.2	7.8	1.3
	year in which occurred	1909	1903	1951 ⁽¹⁾	1922


Table 1: Comparative life expectancy at age thirty in selected countries by gender(source: HMD).(Note (1): Japanese data unavailable before 1947)

Relationship with smoking

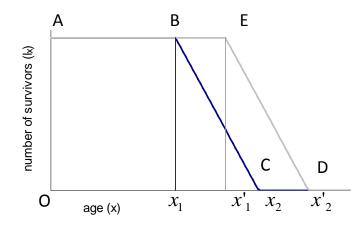
- One in six of all deaths in E&W are smoking related 60% of these men. Death takes form of COPD and heart disease and lung cancer
- In 1948, 82% of males smoked some form of tobacco and 65% smoked cigarettes, compared with 21% today. Female rates peaked at about 40% before declining to 20%
- Mortality rates depend on tobacco consumption, quitting rates and lifetime exposure. It is not inconsistent for mortality rates to continue rising whilst smoking prevalence is falling
- Death from Coronary heart disease (CHD) declining thanks to reductions in major risk factors, such as smoking, blood pressure and cholesterol.
- Effective treatments for heart disease such as coronary artery surgery, angioplasty, statins, and other medications also help
- Using data from 37 countries we found that the gender gap in life expectancy at age 30 was highly correlated with differences in smoking prevalence

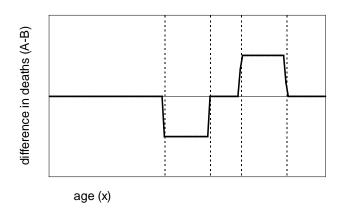
Relationship between gap in life expectancy and gender difference in smoking prevalence

UNIVERSITY LON

Sources: HMD and World Health Organisation Tobacco Free Initiative, 2011

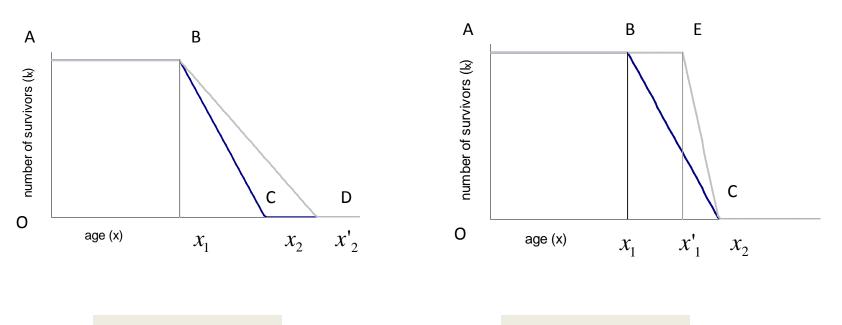
Swedish case


- Cigarette smoking in most European countries took off after the first world way and became increasingly entrenched in the second
- In Sweden tobacco was mainly consumed in the form of 'snus'; moreover Sweden was neutral in both world wars
- The gender gap in life expectancy fell over many decades and reached a low point of only 6 months in 1922


Can the gap be closed?

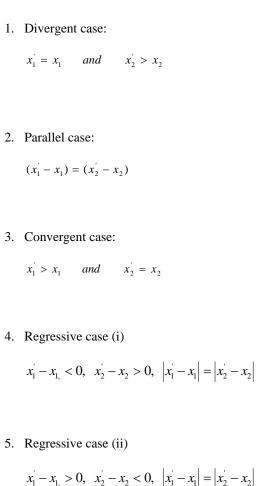
- A ceased smoker at age 30 can expect to live 10 years extra and at age 60 three years extra.
- If the remaining 20% of smokers ceased smoking then, crudely, this would add another two years to the life expectancy of the whole population
- Fewer people working in hazardous industry, fewer industrial or other accidents, increasing similarity in employment between genders in other aspects
- Stubborn gaps remain, for example males lose more years living in deprived areas than females and so closure not guaranteed
- For this reason too early to say male life expectancy will converge with that of females

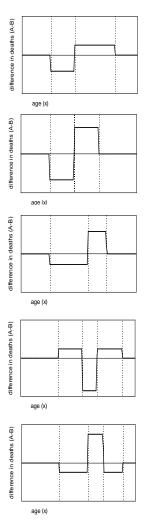
Simplified model of human survival



Simplified survival curve at two points in time

Change in pattern of deaths at either snapshot


Other cases (in brief)



Divergent case

Convergent case

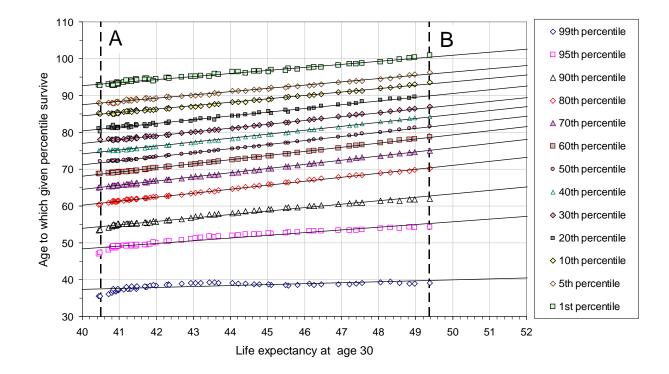
Postponement of death

A. Trough - age at the lowest point in wave

B. Peak - age at the highest part of wave

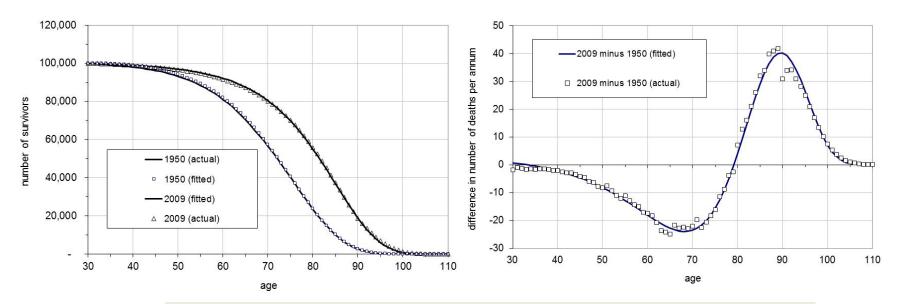
C. Trough to peak age range - B minus A (years)

D. Pivot age - age at which difference in deaths is zero

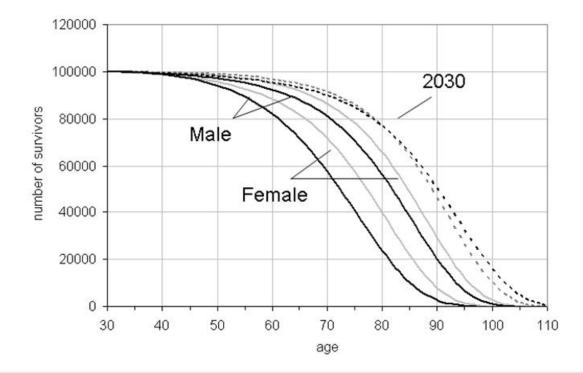

E. Pivot to peak - B minus D (years)

F. Trough to pivot- D minus A (years)

G. Amplitude below zero- difference in deaths at trough age


H. Amplitude at peak - difference in deaths at peak age

Obtaining survival function at different points in time


We regress age to which each percentile lives on life expectancy at age 30. We project the regression forward and extract data points. We then fit Gompertz-Makeham equation and extract projected survival curve

1950 to 2009 – fitted survival and death postponement

The example to the left is based on males in 1950 and 2009. The chart to the right shows the difference in deaths with age based on 100,000 lives. Actual data points and fitted curves shown.

Trends in survival based on projected improvements in life expectancy

When we project survival forward the gap that is evident in 1950 is noticeably smaller by 2009 and almost vanishes by 2030

Remaining differences to 2030

year	mode	mean	standard deviation	median	IQR
1950	75	70.4	11.9	71	17
1960	75	70.5	11.9	71	16
1970	76	71.1	11.9	72	16
1980	77	72.3	11.9	73	16
1990	79	74.0	12.0	75	16
2000	82	76.2	12.2	78	15
2010	85	79.2	12.5	81	16
2020	89	82.6	12.8	84	15
2030	93	87.0	13.5	89	16

(b) Females

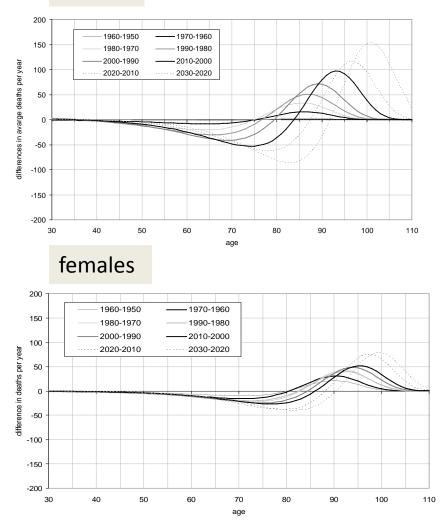

year	mode	mean	standard deviation	median	IQR
1950	80	74.7	12.3	76	16
1960	81	75.4	12.2	77	16
1970	82	76.4	12.2	78	16
1980	83	77.7	12.2	79	15
1990	85	79.1	12.1	81	15
2000	86	80.6	12.0	82	15
2010	88	82.1	11.9	84	15
2020	90	84.3	11.9	86	14
2030	92	86.5	11.9	88	15

Table 7(a) and (b): Modal age of death, mean and standard deviation, median and inter-quartile range (IQR) for each year by gender

- Mean, modal and median ages of age of death converge with time
- By 2030 males marginally higher values but standard deviation and IQR based on age of death slightly greater

Characteristic waves showing postponement of death at 10 year intervals

Wave amplitude increasingly higher among males showing more and more deaths being postponed each decade

Greater shift in pivot age between decades in males compared with females (77 to 92 compared with 80 to 90)

Pace of change among females has been far more gradual but life expectancy started from a higher base

Conclusions

- Smoking rather than genetic differences are far more important cause of differences in life expectancy at age 30
- At least 30m life years lost as a result of smoking in England and Wales since 1950
- With reduction in smoking prevalence, gender differences are reducing as males catch up with females
- Females start from a higher base and so progress slower. Changes in females lifestyles a possible contributory factor. However, full convergence not guaranteed and nor what happens thereafter
- Gender quality in life expectancy has significant implications for social policy and pensions, especially if fewer years spent living alone at end of life
- In countries where smoking prevalence is high and large differences between males and females, expect shorter lives and large gender differences (e.g. middle-east, China, India)

Questions?

Mayhew, L. D' Smith (2012) Gender convergence in human survival and the postponement of death. Cass Actuarial Research Paper No. 200 http://www.cass.city.ac.uk/__data/assets/pdf_file/0019/136243/200ARP.pdf

Mayhew, L. and D. Smith (2011) Evaluating a new method of projecting populations based on human survival patterns. Forthcoming Population Studies

Mayhew, L. and D. Smith (2011) Human survival at older ages and the implications for longevity bond pricing. The North American Actuarial Journal (NAAJ)–Vol 15(2). <u>http://www.soa.org/library/journals/north-american-actuarial-journal/2011/no-2/naaj-2011-vol15-no2.aspx</u>

Mayhew, L. (2009) Increasing Longevity and the economic value of healthy ageing and working longer. Commissioned report for HMG Cabinet Office Strategy Unit. http://www.hmg.gov.uk/media/33715/economicsofageing.pdf