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A comparative study of parametric mortality projection models 
 

 
 
 
Abstract 
 The relative merits of different parametric models for making life expectancy and annuity value 
predictions at both pensioner and adult ages are investigated.  This study builds on current published 
research and considers recent model enhancements and the extent to which these enhancements address the 
deficiencies that have been identified of some of the models.  The England & Wales male mortality 
experience is used to conduct detailed comparisons at pensioner ages, having first established a common 
basis for comparison across all models.  The model comparison is then extended to include the England & 
Wales female experience and both the male and female USA mortality experiences over a wider age range, 
encompassing also the working ages. 
 
Key words and phrases: Mortality forecasting; binomial response models; age-period effects; age-period-
cohort effects; forecast statistics; model and forecast comparison; back-fitting 
 
1. Introduction 
 
 In this paper, we contribute to the debate on the relative merits of various 
extrapolation models used as a means of projecting future mortality rates.  We focus, in 
particular, on comparing the key indices of life expectancy and annuity value predictions, 
as computed by the cohort method.  In formulating our approach, we establish a common 
basis for comparison across models, and this means that noteworthy differences in the 
predicted indices of interest may be directly attributable to the choice of model predictor 
structure. 
 The details of the models and methodology are set out systematically in Section 2, 
which is supported by technical Appendices, A & B, for completeness.  The models 
include a group of 4 parametric predictor models based on, and including the Lee & 
Carter (1992) bilinear structure, with the optional inclusion of a second pair of age-period 
components and the capture of cohort effects; together with a further group of 8 linear 
parametric predictors based on Cairns et al. (2009) and including extensions due to Plat 
(2009). 
 A comparative study of the models, using the England & Wales 1961-2007 male 
mortality experience, restricted to pensioner ages is reported in Section 3.  The age 
restriction is imposed in order to accommodate the models due to Cairns et al. (2009), 
denoted by M5-M8, and which are designed for use at pensioner ages only.  Results based 
on the different stages of model building are set out in Section 2 and are presented 
pictorially.  Diagnostic checks on each model and the accompanying random walk period 
index model are conducted by monitoring residual plots.  Life expectancy and annuity 
model predictions are examined for robustness by systematically truncating the time span 
of the data at the two extremities, before repeated modelling. 
 In Section 4, the age restriction imposed in Section 3 is lifted and further 
comparative studies are reported.  These are again conducted following the different 
stages set out in Section 2, using both the England & Wales and USA mortality 
experiences for each gender and involving a wider age span that includes the working 
ages as well as pensioner ages. 
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 A detailed discussion of the issues arising is presented in Section 5, followed by a 
summary in Section 6. 
 
 
2.  Methodology  
 
2.1 Data array 
 We denote a rectangular mortality data array, partitioned into unit square cells of 
size one year by 
 
    1 2 0 1, , :  age , ,... ,  period , ,...,xt xt xt k nd e x x x x t t t t    

where 
 xtd  - reported number of deaths 

 xte  - matching initial exposures to the risk of death 

 xt  - 0/1 weights to indicate empty or omitted data cells 

 
When initial exposures are required for analysis and only central exposures are available, 
as in this paper, we approximate the initial exposures to the risk of death by adding half 
the matching reported numbers of deaths to the central exposures (e.g. Section 2.2, Forfar 
et al. 1988). 
 
2.2 Model structures 
 We target and project the probability of death xtq  throughout.  A common basis 

for comparison across all models is established by using the log-odds function to link xtq  

to the parametric predictor structure xt  in all cases, so that, typically, for any model H 

 

 : log
1

xt
xt

xt

q
H

q


 
  

. 

 
The log-odds function is also chosen because of the historical ties with the early actuarial 
work of Perks (1932). 
 The following predictor structures are compared 
 
 : xt x x tLC       

 
 1 : xt x x t t xH          

 
 (0): xt x x t x t xM           

 
 
 (1) (1) (2) (2)2 : xt x x t x tLC          
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  (1) (2)5 : xt t tM x x      

 
  (1) (2)6 : xt t t t xM x x         

 
    (1) (2) (3)7 : xt t t t t xM x x b x           

 
    (1) (2)8 : xt t t c t xM x x x x          

 
 

    (1) (2) (3)5* : xt x t t tM x x x x           

 

    (1) (2) (3)6* : xt x t t t t xM x x x x     
        

 

      (1) (2) (3) (4)7* : xt x t t t t t xM x x x x b x      
         

 

      (1) (2) (3)8* : xt x t t t c t xM x x x x x x     
         

 
where   

         
1 1

+ 2 21 1
max ,0 ,  ( ) ,   

k kx x

i x i x

x x x x b x x x i x x i
k k 

 
        

 
   

and cx  is a pre-determined  constant. 

 For a discussion of the first 3 predictor structures, LC, 1H  and M, together with 

 
 0 : xt x t t xH                     (1) 

 
which we shall have occasion to refer to, see Renshaw and Haberman (2006).  The 
structures are nested in the sense that  

1LC H M  ; 0 1H H M  . 

We note that various studies using the LC model applied to the probability of death xtq  

have been presented by Cossette et al. (2007) and by Haberman and Renshaw (2008). 
 The predictor LC2 is a natural extension to LC and has been discussed by Lee 
(2000) and by Renshaw and Haberman (2003).  For these two structures 

2LC LC . 
 The 4 structures M5–M8 are due to Cairns et al. (2008a,b,c; 2009).  We note that 
a re-parameterised version of M5 features prominently in Cairns et al. (2006).  The 4 
extensions, M5*–M8* are motivated by Plat (2009) who specifically introduces M6*.  
We note that the Cairns et al. (2009) structures, denoted by M5–M8, are retrieved by 
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eliminating the terms in x  and  x x
 , and reversing the sign of  x x .  We also 

note that these structures satisfy the relationship 
5* 6* 7*M M M  . 

 
 
2.3 Model fitting 
 For consistency across models and in common with standard generalised linear 
modelling (GLM) practice, we choose to fit each structure by minimising the binomial 
deviance 
 

 ,Dev y q
   

, ,

1
2 2 log 1 log

1 1
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xt xt xt
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    . 

 
This is equivalent to maximising the log-likelihood function based on the assumption 

 ~ , ,  . . .xt xt xtD bin e q i i d  

subject to the application of the 0/1 prior weights xt . 

 Initial estimates for x , ensuring that the parameter set  x  represents a static 

life table (on the log-odds scale), are given by 
 

 
1

ˆ log xt
x xtt

xt xt xtt

d

e d
 


 

   


. 

 
 While the structure of the reference model 0H , expression (1), is linear in the 

parameters, fitting this model is complicated by the relationship 
cohort = period – age. 

For this reason, and noting that 

0 1 0 0 0 0,  ,  6*,  7*,  8*H H H M H M H M H M      

we apply a two stage-fitting strategy when fitting the models 1H , M, 6* 8*M M : 

treating ˆx  as an offset when estimating the other parameters.  For a fuller discussion of 

the issues involved, we refer the reader to Renshaw and Haberman (2009). 
 The first 3 predictors LC, 1H  and M, which are non-linear in the parameters, are 

fitted using the algorithm reported in Renshaw and Haberman (2006), subject to modified 
updating relationships based on the binomial deviance.  Similarly, the LC2 predictor, 
which is also non-linear in the parameters, is fitted using an obvious expansion of the 
suitably adjusted LC fitting algorithm (Brouhns et al. (2002), Renshaw and Haberman 
(2003)).  Finally, given the linear nature of the remaining 4 predictors M5*–M8*, these 
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may be fitted using the GLM facilities in standard statistical packages, subject to the 
declaration of ˆx  as an offset, when required. 

 
2.4 Parameter constraints 
 For the 4 nonlinear structures, we set the following constraints 
 
 

1
: 1,  0x t

x

LC     

 
11 : 1,  0x t

x

H     

 
1

(0): 1,  0x x t
x x

M        

 
 

1 1

(1) (2) (1) (2)2 : 1,  0x x t t
x x

LC         . 

 
Other choices are possible without affecting the subsequent model projections.  Also as a 
precaution, we set the additional constraint 0x x    for 1H  and M, (see Renshaw and 

Haberman (2009)). 
 For models M5–M8 and M5*–M8* the GLM constraints are listed in Appendix A 
and are adjusted to conform to the Cairns et al. (2009) constraints as detailed in Appendix 
A. 
 
2.5 Model diagnostics 
 We denote the optimum value of the deviance 
 

  ˆ,Dev y q
,

ˆ
xt

x t

d , with scale parameter estimate 
,

ˆ ˆ
xt

x t

d   

 
where   is the number of degrees of freedom supported by the model structure and data.  
In assessing the goodness of fit of the different models, we make extensive use of 
diagnostic residual plots on fitting the various model structures, using the scaled deviance 
residuals 
 

   ˆ ˆˆxt xt xt xtr sign y q d   . 

 
 
2.6 Model dynamics 
 For models LC2, M5–M8 and M5*–M8*, we follow Cairns et al. (2006; 
2008a,b,c) in using a multivariate random walk, with a vector of drift parameters  , to 
drive the dynamics of the multiple period indices, so that 
 
  1 1 2,  , ,..., ;  ~ , ,  t t t n tt t t t N          0 CC  
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where t  is the vector of period indices and C  the Cholesky factorisation matrix of the 

variance-covariance matrix   (see Appendix B).  For LC, 1H  and M we apply the 

univariate version of the random walk, thereby establishing consistency with the other 
models. 
 The parameters   and   are estimated by ordinary least squares (OLS), and the 
component residuals t̂  are plotted against t as a diagnostic check on the goodness of fit.  

The residuals are standardised before presentation. 
 
2.7 Indices of interest 
 In terms of the key indices of interest, we consider life expectancies and level 
immediate annuities, computed by the cohort method, thereby allowing for the future 
evolution of mortality rates.  We focus on the most recent period nt , for which data are 

available, and so consider individuals aged x at that time.  The indices are computed, 
respectively, as 
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where 
 

     1 1 1x xt xl t q l t     

 
with a discount factor v and survivor index (representing the probability of survival from 
age x to age x t  on the basis of the mortality experience of the cohort aged x in year nt ) 

   , ,: 0,  0 1.
n nx t x tS t t S    We note that both of these indices do not require the time 

series modelling of the main cohort index, when it is present in the model being 
considered. 
 
2.8 Prediction intervals 
 Based on the findings reported in Renshaw and Haberman (2009), we simulate 
prediction intervals (fan charts) for the indices of interest using the following algorithm, 
which makes full allowance for the forecast error generated by the multivariate random 
walk (Appendix B) 
 
Algorithm 
 For simulation m = 1,2,…,M 

1. randomly sample *
mz  from ( , )mulN 0 I  

For j = 1,2,…,J  

2. compute * *ˆ ˆ
n nt j t mj j    Cz    

3. compute *
, ,nx j t j mq    

4.   Compute the indices of interest. 
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 For example, in Step 3, for M5–M8: on taking into account the reversal in the sign 
of the prescribed 2nd period index age modulating coefficient, we use 
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, *
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5 : log
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; 

 
with equivalent, although more complex expressions for M5*–M8*. 
 
2.9 Topping-out by age 
 Projected mortality rates 
 
  , : 1,2,...,  

nx j t j k kq j x x x x     , 

 
restricted (above) by kx , are available for the computation of the indices of interest by 

cohort trajectory.  In order to implement topping-out by age, projected log mortality rates 
are extrapolated further along the age axis up to age ( )kx  , using the differencing 

formula 
 
    ,log 1

nj x j t ju q a bj cj j      ; 1, , 1,...,k k kj x x x x x x x       , 

 
which requires 1,   and the specification of  ,  

k kx x x x xu u u    .  This technique has been 

proposed by Renshaw and Haberman (2009), as a variant of the widely used demographic 
method introduced by Coale and Kisker (1990). 
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2.10 A basis for comparison 
 The following common features provide a basis for comparing model predictions: 

 Model fitting is on the basis of optimising the binomial deviance (likelihood). 
 The mapping of the predictor structure xt  to xtq  involves the same link function. 

 The period indices, however many, are modelled as a multivariate random walk 
with drift with the appropriate number of components. 

 Topping out by age, is applied consistently, by choosing ,,  
nt xq     at the outset. 

 A common approach (across models) is used to simulate prediction intervals for 
the indices of interest. 

 
 
 
3. Study: England & Wales 1961-2007 male mortality experience, ages 55-89 
 
 In this section, we conduct a comparative study between the models, following 
the key elements presented in Section 2 and highlighting the salient features to emerge.  
A more detailed discussion is reserved for Section 5. 
 
3.1 The data 
 We focus on the numbers of recorded deaths and matching population sizes 
exposed to the risk of death, as compiled by the UK Government Actuary’s Department 
(GAD) for the England & Wales male mortality experience.  The data are cross-classified 
by individual calendar year 1961-2007 and individual age last birthday 0-89.  The data 
are truncated at age 55 from below so that, for this study, we consider models M5–M8 to 
be appropriate (rather than M5*–M8*). 
 
3.2 Objectives 
 The purpose of this study is twofold: (1) to compare predictions of the indices of 
interest (Section 2.7), that are dependent on future mortality rates, using the different 
model structures (Section 2.2) under the basis for comparison outlined in Section 2.10; 
and (2) to examine the predictions for robustness.  We aim to achieve these objectives by 
comparing predictions for individuals aged 60, 65, 70, 75 (abbreviated 60(05)75) subject 
to systematic biennial data deletions at either end of the period span.  Thus, in the first of 
two exercises, data covering the periods 1961 to 1985, 1987, …, 2007 (abbreviated 
85(02)07) are successively retained, and predictions made for the most recent retained 
year nt  (which is thus successively 1985, 1987, …, 2007).  In the second exercise, 2007 

predictions are compared having truncated the data at the front-end on a successive 
biennial basis, prior to modelling: so that we model the data for the periods 1961-2007, 
1963-2007, …, 1983-2007, (abbreviated 61(02)83). 
 
3.3 Model diagnostics 
 For the full period 1961 to 2007 only, model diagnostics in the form of residual 
plots are presented separately, for each model, in Figs 1-8.  The layout of each figure is 
similar, with the deviance residuals plotted respectively against period, age and cohort 
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presented in the upper row of panels.  (The remaining panels in these figures relate to the 
respective model dynamics, which we shall discuss in Section 3.5).  In respect of these 
residual plots, we note the following: 

 The capture of period effects by all 8 models (upper LH panels, Figs 1-8). 
 The capture of cohort effects by models 1H , M and M6-M8 (upper RH panels, 

Figs 3, 4, 6-8).  Models LC, LC2 and M5 fail to capture this appreciable effect 
(upper RH panels, Figs 1, 2, 5).  It is of interest to note that the discontinuity in 
these plots coincides with the influenza pandemic following the Great War.  Also, 
in common with other studies involving these data, we have zero weighted the 
data cells for the cohort year of birth 1886: see Renshaw and Haberman (2006). 

 The capture of age effects by LC, LC2, 1H  and M (centre panels, Figs 1-4), the 

failure of M5 adequately to capture all of the age effects (centre panel Fig 5), and 
the mild residual ripple age effect which suggests that not all of the age effects are 
captured by M6-M8 (centre panels Figs 6-8). 

 
The accompanying Akaike Information Criteria (AIC), Bayes Information Criteria (BIC), 
and Hannan-Quinn Criteria (HQC), together with their respective rankings across models 
(in brackets), read as follows: 
 

 LC LC2 H1 M M5 M6 M7 M8 
AIC -12679(7) -11446(6) -10608(3) -10588(2) -15245(8) -10805(5) -10380(1) -10733(4) 
BIC -12989(7) -11973(6) -11132(3) -11111(2) -15498(8) -11270(5) -10968(1) -11197(4) 
HQC -12794(7) -11642(6) -10802(3) -10782(2) -15339(8) -10977(5) -10598(1) -10905(4) 

 

The indices take the form  g d  where   denotes the maximum log-likelihood, d 

denotes the dimension of the parameter space, with respective penalty functions 

  ,g d d     ,
0.5 log xtx t

g d d    and     ,
log log xtx t

g d d   .  We note the 

closeness in value of the matching 1H  and M statistics.  We note also that each of these 3 

Criteria leads to the same ranking of models – with the best 3 fitting models being M7, M 
and 1H . 

 
3.4 Further model details 
 Additional details associated with the fitting of LC, LC2, 1H  and M, are presented 

in Fig 9.  These include the respective age modulating indices, and the 1H  and M fitted 

cohort indices (centre and lower RH panels, Fig 9).  In the case of model M, it is also 
apparent from the plotted cohort index, that zero weights have been allocated to the first 
and last 3 cohort years prior to modelling: a feature applied consistently throughout when 
fitting this model.  For these models, it is possible to smooth the age modulating indices 
as illustrated (using the S-plus super smoother), in order to avoid the possibility of any 
localised age induced anomalies being carried forward when projecting mortality rates.  
In a pilot study, smoothing was not found to make a material difference when depicting 
the simulated indices of interest reported in this paper, and hence, it has not been applied. 
 Additional details associated with the fitting of M5-M8 are presented in Fig 10.  
These include graphs of the prescribed age modulating functions forming the upper row 
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of panels, the fitted cohort indices t x   for M6-M8 in the second row of panels, and the 

deviance profile used to determine in value of the constant cx  for M8.  We note the 

following: 
 For models M6-M8, the close agreement between cohort index patterns (Fig 10) 

and the matching patterns reported in Cairns et al. (2009) based on a slightly 
reduced data set. 

 For M8, the choice of 89cx   is sensitive to the choice of age range and, in this 

case, it has been restricted to the age range of the data. 
 
 
3.5 Model dynamics 
 Details of the components of the period index random walk time series for the 
respective models, including time series residual plots and forecasts, are depicted in the 
second and subsequent rows of Figs 1-8, with a separate row for each component.  The 
number of components involved is as follows: 

 
Model LC LC2 H1 M M5 M6 M7 M8 

# components 1 2 1 1 2 2 3 2 
 

Irrespective of the number of components, it is convenient to refer to the first component 
as the primary component.  For models M5-M8, which are characterised by more than 
one component, comparison of the ordinate scales of the component time series forecasts 
(RH panels, Figs 5-8), indicates the dominant role played by the primary component over 
the secondary component in the construction of mortality rate forecasts.  This feature 
extends to the dominance of the secondary component over the tertiary component in the 
case of M7.  In the case of period indices with multiple components, the ranking of the 
components in this way does not extend to the case of LC2.  With respect to these panels, 
we note the following important features: 

 The close agreement between period index patterns (Figs 1, 4-8) and the matching 
patterns reported in Cairns et al. (2009), in all cases. 

 The characteristic feature of random walk (component) projections, which are 
generated by extrapolating the straight line drawn through the first and last 
(component) values of the time series. 

 The downwards trend in the dominant primary period component (2nd row RH 
panel, Figs 1-8), across all models. 

 The pattern of irregularities in the primary component residuals (2nd row LH 
panel, Figs 1-8) which, with the possible exception of LC2 (Fig 2), is the same for 
all models, subject to differences in the orientation of this pattern, relative to the 
abscissa. 

 Supporting quantile-quantile (Q-Q) time series component residual plots, for each 
model, checking for normally distributed residuals, which are presented in 
Appendix C. 

 The pattern in primary period component is linear in the case of 1H , M and M6 

(Figs 3, 4, 6), but, in all of the other cases, exhibits curvature: a feature reflected 
in the orientation of the matching residual patterns.  We observe that these 
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features are preserved when the data are truncated at either age extremity prior to 
repeat analysis. 

 For models M5-M8, the forecast trend in the secondary period component (3rd row 
RH panel, Figs 5-8) is variable in direction across the models.  Further, the nature 
of the associated prescribed age modulating function (upper LH panel, Fig 10) 
with its change of sign means that the contribution to the forecast mortality rate 
switches direction at the mid-point of the age range. 

 For model M7, the tertiary period component forecast is controlled by the age 
modulating function (upper central panel, Fig 10) which changes sign twice and 
hence switches direction twice, at points which depend on the width of the age 
range. 

 
 
3.6 Predictions 
 First, we present the evolving biennial 85(02)07 life expectancy (Fig 11a) and 4% 
fixed rate annuity value (Fig 11b) predictions and prediction intervals, computed using a 
cohort trajectory, for individuals aged 60(05)75, and the 8 different models.  The plotted 
points are generated by computing and recording the 5, 50 (median) and 95 percentiles 
(cumulative probabilities) of the simulated predicted values of the index in question, 
under the 12 4 8 384    different period-age-model combinations.  The predicted 
values relate to the cohorts at the selected ages in years 1985, 1987, …, 2007.  The 
simulated percentiles are plotted against the abscissa and arranged systematically, (here 
the ordinate scale should be ignored).  Given the nature of this back-fitting exercise, 
involving the modelling of data from periods 1961-1985, 1961-1987, …, 1961-2007, the 
associated forecasts are derived from time series of increasing length.  Topping-out by 
age is conducted by setting 99 0.5q   throughout.  Referring to Figs 11a&b, we note the 

following important features: 
 The similarity of matching LC and LC2 predictions, subject to comparatively 

wider prediction intervals in the case of LC2.  Measures of relative dispersion in 
the prediction intervals across models are discussed at greater length in Section 5. 

 The similarity of matching 1H  and M predictions, noting the greater irregularity 

of prediction in the case of model M at age 60. 
 The marked differences in location between matching 1H  and M predictions on 

the one hand and the LC and LC2 predictions on the other hand:  this is directly 
attributable to the capture (or non-capture) of demonstrable cohort effects present 
in the data, compounded by the mild curvature in the period index in the case of 
the LC and LC2 models. 

 The general pattern of alignment of the matching 1H , M and M6 predictions, all 3 

of which are associated with linear primary period indices. 
 The general pattern of alignment of matching M5, M7 and M8 predictions, all 3 of 

which are associated with a mild degree of curvature in the respective primary 
period index.  Although M7 and M8 are seen to capture the known strong cohort 
effects present in the data (residual plots Figs 7&8), we note that this is not 
reflected in the predictions when compared with M5 which does not capture the 
known cohort effects. 
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 The contribution from the 2nd component forecast under M6 is opposite in trend 
direction to that of the 2nd component forecasts under M5 and M7 (Figs 5-7), and 
was found to remain so throughout the back fitting exercise.  The 2nd component 
forecast under M8 (Fig 8) was found to change trend direction during the course 
of the back fitting exercise. 

 
 Secondly, we present the respective 2007 simulated life expectancy and 4% fixed 
rate annuity value 5, 50 and 95 percentile predictions (Figs 12a&b), computed along 
cohort trajectories, for individuals aged 60(05)75, and the different models, having first 
subjected the data to the biennial front-end truncations 61(02)83.  These predictions 
relate to the cohorts at the selected ages in 2007, based on models fitted to data for the 
periods 1961-2007, 1963-2007, …, 1983-2007.  Referring to Figs 12a&b we note the 
following important features: 

 The static nature (vertical alignment) of the median predictions for M and M6, 
contrasting with the mild steady reduction in median predictions with reducing 
front-end data spans for LC, LC2, M5, M7, and M8 together with the reversal of 
this trend for 1H . 

 The mild tapering of prediction intervals with decreasing period span, in a counter 
intuitive direction, for all models. 

 The similarity of the matching LC and LC2 predictions which contrast with the 
marked increased matching 1H  and M predictions, attributable to the known 

strong cohort effects which are present in these data (as noted earlier). 
 The approximate alignment of matching M5, M7 and M8 predictions, with no 

apparent increase in the median predictions as a consequence of capturing the 
cohort effect under M7 and M8 when contrasted with M5. 

 
 
3.7 Prediction error in retrospective study 
 This section is motivated by Booth et al. (2006).  In a further investigation, all 8 
models are fitted to a truncated version of the England & Wales male mortality 
experience, restricted to the period 1961-1982 (ages 55-89), and the 1982 predicted life 
expectancies and 4% annuity values are calculated for individual ages 65(01)80 by the 
cohort method (using the same time series models and same topping out procedure by 
age).  Then, using the actual raw mortality rates for the period 1983-2007, the same 
calculations are repeated and the errors (predicted – actual) in the life expectancy and 
annuity indices of interest calculated.  We have chosen 1982 as the pivotal year in these 
calculations because it is approximately half-way through the period for which we have 
data available.  The errors, plotted against an individual’s age are displayed in the various 
panels in Fig 13a, with life expectancy represented in the LH panels and annuities in the 
RH panels.  We note the following 

 The positive nature of these errors for M6, with the implication of overstated 1982 
predictions.  Otherwise, we note that the 1982 predictions are understated to 
varying degrees by the remaining 7 models: with LC2 and M5 being the worst 
performing of the 8 models being considered. 
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 We have also calculated the errors in the log death rates (predicted – actual) for 
the domain bounded by ages 60-89, period 1983-2007 and year-of-birth 1894-1923, 
inclusive of the log death rates used to construct Fig 13a.  The resulting mean errors, 
calculated by averaging the errors respectively for age, period and year-of-birth for all 8 
models are displayed systematically in Fig 13b.  We note the following 

 The negative nature of the average errors for M6, with the implication of 
understated 1982 predictions (consistent with the findings above).  Otherwise, we 
note that the average errors are overstated to varying degrees for the other 7 
models. 

 Model LC2 and M5 are the worst performing models under these criteria. 
 
 
 
4. Extending the age range, ages 20-89 
 
 In this section, we conduct similar comparative studies between models using a 
wider age range.  In order to accommodate this, we switch from models M5–M8 to the 
respective age augmented versions M5*–M8* as defined in Section 2 (which are 
motivated by the work of Plat (2009)).  In addition, we choose to omit our findings for 
models M and M8*.  On using model M, we find that the pattern in the simulated life 
expectancy and annuity predictions under biennial back-fitting becomes increasingly less 
cohesive as the age of the individual in question is reduced: evidence of the start of this 
process is to be found in Figs 11a&b at age 60.  In the case of model M8* we find that the 
deviance profile used to determine the age modulating index  cx x  sets the value of cx  

at the lower extremity of the age range (in the cases investigated) leading to predictions 
which are out of kilter with all of the other models.  We comment that these two models 
are the only ones where the cohort index is multiplied by an age modulating factor. 
 
4.1 Objectives, scope of reporting 
 For the comparative studies reported next, we again follow the detailed modelling 
procedures laid out in Section 2.  We restrict the detailed reporting of our findings (out of 
practical necessity due to the lack of space) to the depiction of life expectancy and 4% 
annuity values predictions under the systematic deletion of the most recent data available; 
however, full details are available from the authors on request.  In order to broaden the 
investigation, we analyse each of following data sets in turn  

 
Country Gender Period Ages 

E&W male/female 1961-2007 20-89 
USA male/female 1961-2006 20-89 

 
 In all 4 (country – gender) studies, the diagnostic marginal residual plots against 
calendar year, age and year of birth, consistently indicate that all 6 models adequately 
capture both period and age effects but that there are appreciable cohort effects associated 
with all 4 data sets, which remain un-captured on using LC, LC2 and M5* modelling.  
The AIC, BIC and HQC statistics using the full age ranges for all 4 studies are reported 
individually below.  
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 The dynamics are again conducted by modelling the period indices as a 
multivariate random walk time series with the requisite number of components, listed as 
follows 

 
Model LC LC2 H1 M5* M6* M7*

# components 1 2 1 3 3 4 
 

The dominance of certain period index components over others, in the sense described in 
Section 3.5, continues to apply, as follows 

 
Classification Component Models 

Primary 1st All 
Secondary 2nd and 3rd  M5*, M6*, M7* 
Tertiary 4th  M7* 

 
Other aspects of the time series, such as the linearity or otherwise of the primary time 
series components, are reported below. 
 Model predictions are compared and reported by depicting the statistics of interest 
for a range of ages subject to the systematic biennial deletion of the most recently 
available crude mortality rates in all 4 cases.  The same topping-out criteria as reported in 
Section 3.6 are set. 
 
4.2 England & Wales mortality experiences 
 Here, we present predictions for the life expectancy and 4% annuity values for 
individuals aged 40(05)75, subject to the systematic biennial deletion of the most recently 
available data involving the time span 1993(02)07, for both males (Fig 14a) and females 
(Fig14b).  The accompanying Akaike Information Criteria (AIC), Bayes Information 
Criteria (BIC), and Hannan-Quinn Criteria (HQC), together with their respective rankings 
across models (in brackets), computed on the basis of the full period span 1961-2007 read 
as follows: 
 

 LC LC2 H1 M5* M6* M7* 
AIC -23218(6) -20790(4) -19383(3) -23074(5) -18945(2) -18272(1) 
BIC -23782(6) -21704(4) -20294(3) -23711(5) -19722(2) -19189(1) 
HQC -23420(6) -21117(4) -19710(3) -23302(5) -19223(2) -18600(1) 

E&W males 
 

 LC LC2 H1 M5* M6* M7* 
AIC -22498(6) -19309(4) -19022(3) -20625(5) -18205(2) -17453(1) 
BIC -23062(6) -20224(4) -19933(3) -21262(5) -18982(2) -18370(1) 
HQC -22700(6) -19637(4) -19348(3) -20853(5) -18483(2) -17782(1) 

E&W females 
 
 We note that each of these 3 Criteria leads to the same ranking of the models – 
with the best 3 fitting models being M7*, M6* and 1H . 

 Before commenting in detail on Figs 14a&b, we note that, as a general feature of 
these and other similar figures, the outline slope of the prediction intervals, stacked 
according to the data period used, is indicative of the predicted rates of improvement in 
mortality by age (over the period concerned).  This feature highlights the differential rates 
of mortality improvement predicted across ages. 
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 For the male mortality experience (Fig 14a), we have observed that the primary 
period index is linear throughout the back-fitting exercise for 1H  but exhibits curvature, 

to varying degrees, for other 5 models.  We note the following: 
 The close agreement between matching LC and LC2 predictions. 
 The shifted location of 1H  predictions, capturing the strong cohort effects, 

compared with the matching LC/LC2 predictions which are not designed to 
capture this effect. 

 The seemingly regressive effect of the capture of cohort effects on predictions 
under M6* and M7* compared with the non-capture of cohort effects under M5*. 

 The conservative nature of the predictions at pensioner ages 60(05)75 using M6* 
compared with using M6 (Figs 11a&b): this feature is associated with the 
appreciable curvature in the primary period index using M6* compared with the 
linear nature of this time series component using M6 (Fig 6). 

 
 For the female mortality experience (Fig 14b), we have observed that the primary 
period index is linear throughout the back-fitting exercises for LC, LC2 and 1H  but 

exhibits curvature for the other 3 models.  We note the following: 
 The close agreement between matching LC and LC2 predictions. 
 The generally small shift in location of the 1H  predictions relative to matching 

LC/LC2 predictions with the exception of the earlier 1993(02)99 predictions at 
pensioner ages 65(05)75. 

 The seemingly regressive effect of the capture of cohort effects on M6* 
predictions at younger ages 40(05)55 compared with matching M5, LC and LC2 
predictions, coupled with an almost zero rate of mortality improvement at ages 
40(05)55. 

 The seemingly regressive effect of the capture of cohort effects on M7* 
predictions for ages 40(05)50. 

 A comparison of matching predictions between Fig 14a and Fig 14b is indicative 
of the differences between male and female mortality predictions (noting that the 
same abscissa scales apply to matching panels).  

 
 
4.3 USA mortality experiences 
 In this section, we present the equivalent USA predictions for the life expectancy 
and 4% annuity values, subject to the systematic biennial deletion of the most recently 
available data involving the time span 1993(02)05,06, for males (Fig 15a) and females 
(Fig15b).  Note data for the year 2007 were not currently available for inclusion in the 
studies.  The accompanying Akaike Information Criteria (AIC), Bayes Information 
Criteria (BIC), and Hannan-Quinn Criteria (HQC), together with their respective rankings 
across models (in brackets), computed on the basis of the full period span 1961-2006 read 
as follows: 
 

 LC LC2 H1 M5* M6* M7* 
AIC -60289(6) -43599(4) -40035(3) -52240(5) -29720(2) -29406(1) 
BIC -60848(6) -44505(4) -40938(3) -52866(5) -30482(2) -30305(1) 
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HQC -60489(6) -43923(4) -40359(3) -52464(5) -29993(2) -29728(1) 
USA males 

 
 LC LC2 H1 M5* M6* M7* 

AIC -37012(5) -32290(4) -29235(3) -38453(6) -28084(2) -26694(1) 
BIC -37571(5) -33196(4) -30138(3) -39079(6) -28846(2) -27593(1) 
HQC -37213(5) -32615(4) -29559(3) -38678(6) -28357(2) -27016(1) 

USA females 
 
 We note that each of these 3 Criteria leads to the same ranking of the models – 
with the best 3 fitting models being M7*, M6* and 1H . 

 In presenting predictions for the USA male mortality experience (Fig 15a), we 
have allocated zero weights to all of the time series components prior to 1968, thereby 
ensuring that the primary period component is essentially linear (with negative slope) 
throughout the back-fitting exercises for each model.  On assessing the situation in the 
case of the USA female experience (Fig 15b), we have decided not to allocate the zero 
weights.  Then, the patterns in the primary period components, across models, are best 
described as mildly meandering about a negative linear slope.  There are no strong 
curvilinear patterns of the type encountered when modelling the England and Wales male 
mortality experience (e.g. Figs 1, 5). 
 For the male experience (Fig 15a) we note the following features 

 The near identical patterns in matching LC and LC2 predictions and prediction 
intervals for all ages. 

 Similarly the near identical patterns in matching M6* and M7* predictions and 
prediction intervals for all ages. 

 The shifted location of 1H  predictions compared with matching LC/LC2 

predictions for pensioner ages 60-75, meaning that 1H  predictions are higher. 

 
 For the female experience (Fig 15b) we note the following feature 

 The striking similarity of matching prediction patterns across models, largely 
irrespective of the capture or non-capture of cohort effects, with the possible 
exception of ages 40 and 45 (e.g. 1H  relative to LC etc.). 

 
By comparing matching predictions for males and females (Fig 15a vs. Fig 15b), we note 
the following features 

 The differential locations of matching predictions by gender with their obvious 
interpretation. 

 The relative shallower stacking angle of predictions for males relative to females 
(each age) which is indicative of a faster rate of mortality improvement for males 
than for females. 

 
 
5. General discussion 
 
In this section, we look at a number of more general issues arising from these 
investigations. 
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5.1 Under the basis for comparison established in Section 2.9, differences in model 
predictions are directly attributable to the differences in the parametric predictor 
structures xt .  While other such bases for comparison are possible: for example, by using 

Poisson response models with central exposures and a log link function throughout, 
(targeting the force of mortality in the first instance), or by simply replacing the log-odds 
link with the complementary log-log link function throughout, such possibilities 
(although worthy of exploration) do not affect the comparative aspects of our specific 
findings. 
 
5.2 Classification of predictor structures is possible based on the presence ( 1H , M, 

M6–M8 or M6*–M8*) or absence (LC, LC2, M5 or M5*) of the provision for capturing 
cohort effects.  Then given the capture of demonstrable cohort effects (reflected in the 
relevant residual plots), we contend that this should feed through in the form of 
differential median predictions in the indices of interest across models, especially when 
anticipated on the basis of external evidence (e.g. Willets (2004) and Renshaw and 
Haberman (2006) in the case of the England and Wales mortality experiences).  We 
suggest that this should be added to the list of criteria for assessing model performance. 
  
5.3 Classification of predictor structures is also possible based on the type of 
provision given to the incorporation of age effects into the predictor structure.  Thus, 
whereas the LC, LC2, 1H  and model M structures include specific provision for capturing 

the main age effect ( x ), the M5-M8 structures do not. Instead, for these structures, age 

effects are determined solely through the pre-specified age modulating functions and, as 
such are designed to be applied to data sets with relatively short age spans.  Then, the 
consequences of not fully allowing for age effects are reflected in the patterns of residuals 
when plotted against age (Figs 5-8). 
 For short age spans, it is possible to correct for this effect by moving to a set of 
models, intermediate to M5-M8 and M5*–M8*, by including the main age effects term 

x  but not the accompanying period effects term, controlled by the age modulating 

function  x x
 , as suggested by Plat (2009).  The effect of doing just this on the 

simulated predictions depicted in Figs 11a&b is to leave the respective M5-M8 prediction 
patterns visually unchanged, with the exception of M6, when the median predictions 
become more conservative and more comparable with the depicted M5 median 
predictions and patterns.  The detailed plots are omitted. 
 
5.4 The question of how best to generate time series forecasts in the presence of mild 
curvature in the primary period index remains an issue for further consideration.  Given 
the unsatisfactory performance of a 2nd order differencing ARIMA process in this role 
despite providing a good fit for a period index with mild curvature (Renshaw and 
Haberman (2009) Section 4.12), the retention of 1st order differencing ARIMA in 
combination with a rolling ‘optimum fitting period’, of the type investigated in Cairns et 
al. (2008c), would appear to be the best option.  For further discussion of these issues in 
the context of LC modelling and the England & Wales male mortality experience, see 
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Renshaw and Haberman (2009) Section 3.10, and, for a more general discussion Denuit 
and Goderniaux (2005). 
 
5.5 The life expectancy and level immediate annuity predictions reported in these 
studies are computed exclusively by the cohort method, and, as such, only require 
mortality rate predictions restricted to the upper triangular region bounded by the latest 
period nt , the upper age ( 89)kx   and the limiting cohort 1nt x  (subject to any prior 

triangular data deletion in the lower RH corner of the data array).  As such, the 
computation of these predictions does not require the extrapolation of the cohort index 

t x   (where this is present in the model). 

 If mortality rate predictions are required in the lower triangular region bounded by 
the limiting cohort 1nt t , the lower age 1x , and the outer period 1n kt x x  , it becomes 

necessary to extrapolate the cohort index (where applicable).  This is done by Cairns et 
al. (2008a,b) for M6-M8 and M under the assumption that the dynamic of the cohort 
index is independent of the dynamic of the period components.  By design, for models 
M6 and M7, the mapping of the cohort index as the independent residuals of a regression 
model (Appendix A) can be used as justification for doing this.  However there is no 
equivalent justification for treating the cohort index independently of the period index for 
model M (or 1H ) and so we suggest that this should be avoided. 

 
5.6 For the evolving 1985(02)07 life expectancy prediction intervals (as in Fig 11a), 
we depict the matching measures of relative dispersion in Fig 16, where 

95th.percentile - 5th.percentile
relative disperion = 

50th.percentile
. 

Here the values are displayed in descending sequence for each age 60(05)75 and each 
model separately: matching the detail of Fig 11a.  We note the following 

 The individual profile (reduction) trends in relative dispersion as further data 
become available for analysis, for all ages and models with little exception. 

 The degree of relative dispersion and the ordering of the profile trends by age are 
relatively similar for M5-M8 and 1H . 

 The degree of relative dispersion is smaller under LC while the ordering of the 
profile trends by age is largely the reverse of that under M5-M8 and 1H . 

 The two sets of outliers for LC2, which are consistent with the narrowing of the 
two most recent LC2 matching sets of prediction intervals in Fig 11a.  

 There is little separation of the relative dispersion profile trends by age under M 
and the individual profile patterns by age are more diffuse than for the other 
models examined. 

 
5.7 The reason for the mild tapering of the simulated prediction intervals subject to 
the biennial front-end prior data deletions 1962(02)83 (Figs 12a&b) in a counter intuitive 
direction, in all cases, remains unexplained.  One hypothesis is that where there is 
curvature in the time trends this could be regarded as a switch from one underlying 
downward linear slope to a different downward linear slope.  For predictions based on the 
most recent data (and hence shorter time series), the model estimates are based on data 
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that are less distorted by the earlier trend, leading to less uncertainty in the predictions.   
A comparison with the pattern of theoretically constructed prediction intervals subject to 
the same pattern of front-end data deletions, possible for LC modelling in combination 
with a random walk time series (Denuit (2007) would be of interest in this respect.  Such 
a theoretical study, requiring mortality data above age 89, lies outside our present remit. 
 
5.8 Cairns et al (2009), (2008a) make a number of criticisms of model M as part of 
their wider comparative study using the England & Wales male mortality with the shorter 
age range.  These points have also been made by Plat (2009).  We discuss each in turn. 

1. Reported situations in which the age modulating factor ˆ
x  of the (primary) period 

index in model M changes sign part way along the age range leading to possible 
unwelcome consequences for mortality rate predictions.  This possibility is 
trivially avoided by imposing the constraint (1) 0  x x    on the fitting algorithm.  

See Renshaw and Haberman (2009) for further discussion.  The potential for this 
to happen is also present when fitting LC or 1H  and can be countered in the same 

way. 
2. The rate of convergence when fitting M is slow, indicating the determination of a 

stationary point in a flat region of the likelihood (deviance).  We note that our 
two-stage approach to model fitting, differs from that assumed by Cairns et al. 
(2009) and, as such, converges more rapidly since we do not update x  in the 

core of the fitting algorithm at each cycle.  Likewise, the rate of convergence 
improves still further when either the cohort index age modulating factor (0)

x  is 

predetermined, as for 1H , or the period index age modulating factors x  is 

predetermined as discussed in Renshaw and Haberman (2009). 
3. Reported situations in which ‘the parameter values jump to a set of values that is 

qualitatively quite different from the pervious year’s estimates’ (Cairns et al 
(2008a)).  We have not encountered this phenomenon during our extensive data 
trimming exercises involving the England and Wales male mortality experience.  
However, it has been necessary to restrict the period index age modulating factor 
post 2005 in our analysis of these data (Renshaw and Haberman (2009)). 

4. A lack of stability in the cohort index predictions associated with data trimming 
exercises.  This concern is superseded since we do not believe that the modelling 
of the cohort index as a time series, separate from the period index time series, 
can be justified. 

5. A lack of stability in mortality rate predictions associated with data trimming 
exercises.  We have not experience this effect in our analysis of the England and 
Wales male mortality experience (ages 55-89). 

 
 Finally, as reported at the beginning of Section 4, we can add to this list the 
observation that the pattern in the simulated life expectancy and annuity predictions 
under biennial back-fitting becomes increasingly less consistent as the age of the 
individual in question is reduced below age 60.  As a consequence of this and some of the 
other findings reported above, we propose that the model 1H  rather than M should be 

used for making predictions.  However, we note that the parameter patterns for model M 
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which are obtained on fitting the England and Wales mortality data using the full age 
range 0-89, and are depicted in Renshaw and Haberman (2006), are particularly 
informative. 
 
 
6. Summary 
 
 In the literature, it has been pointed out that, in order to assess whether any 
stochastic mortality model is a good model or not, it is important to consider certain 
criteria against which the model can be tested.  Following Cairns et al. (2008a), we 
consider the following key criteria: 
 

1. The model should be consistent with historical data; we have shown that some of 
the models investigated provide a good fit with historical data. 

2. Parameter estimates and model forecasts should be robust relative to the period 
of data and range of ages employed; the empirical studies presented in this paper 
support this criterion. 

3. Forecast levels of uncertainty and central trajectories should be plausible and 
consistent with historical trends and variability in mortality data; the 
methodology leads to smooth estimates which are plausible and consistent with 
historical trends. 

4. The model should be straightforward to implement using analytical methods or 
fast numerical algorithms; all the computations have been implemented using 
standard GLM software packages. 

5. The model should be relatively parsimonious; in the presence of cohort effects, 
the models have a relatively simple model structure. 

6. It should be possible to use the model to generate sample paths and calculate 
prediction intervals; the proposed method utilizes parametric bootstrapping and 
gives bootstrap prediction intervals for future mortality rates and life expectancy 
(and annuity values) that are calculated on a cohort basis. 

7. The structure of the model should make it possible to incorporate parameter 
uncertainty in simulations; the proposed method makes it possible to use 
parametric bootstrapping and for each bootstrap sample, the model parameters 
can be estimated. 

8. At least for some countries, the model should incorporate a stochastic cohort 
effect; the model structures readily incorporate a stochastic cohort effect. 

9. The model should have a non-trivial correlation structure; there is a non-trivial 
correlation structure. 

10. The model is applicable for the full age range; a subset of the models has been 
applied to the England and Wales and US mortality experiences over a wide range 
of adult ages. 

 
 Our conclusions can be summarised as follows: 

 We have focused on life expectancy and annuity value interval predictions: 
comparing results using various parameterised predictor structures.  The 
predictions are computed by cohort trajectory and do not require the extrapolation 
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of the cohort index when it is present in the model structure.  The interval 
predictions are generated by simulating the error in the period index time series. 

 Models 1H  and M do not support the independent time series forecasting of the 

cohort index. 
 By design, the representation of the cohort index in models M6/M6* and M7/M7* 

as the i.i.d. normally distributed residuals of a regression model (albeit subject to 
residual patterns in practice), can be used as justification for using a random walk 
time series with zero drift in order to forecast future values of the index: as such, 
the index should necessarily be trend free. 

 The presence of a mild degree of curvature in the primary period index time series 
poses projection problems for some of the models. 

 Structures building on 0H , which comprise all three age-period-cohort main 

effects, are fitted in two stages. 
 Certain problems that have been identified with using model M as the means of 

making predictions are resolved by using the simpler structured model 1H . 

 Model M5 would appear to be lacking in structure when it comes to the capture of 
age effects. 

 The LC2 life expectancy and annuity value predictions are essentially the same as 
the matching LC predictions. 

 The investigations with the England & Wales and US mortality experiences for 
the full adult age range indicate that the best 3 fitting models are M7*, M6* 
and 1H . 

 For the indices of interest, the capture of demonstrable cohort effects present in 
the data should be reflected in the level of their predicted values, thereby adding 
to the list of criteria above. 
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Appendix A 

(Parameter constraints for M5–M8 / M5*–M8*) 
 

Structure # constraints Fitting constraints Cairns et al. constraints 
5M  0 - - 

M5* 3 (1) (2) (3)
min max max 0     - 

M6/M6* 2 (2)
min max 0    See below 

M7/M7* 3 (2) (3)
min max max 0      See below 

8M  2 min max 0    0t x
t x

 


  

M8* 2 max max 1 0     0t x
t x

 


  

 
 
M6: Regress t x   on  t x , so that 

   2
1 2 ;  ~ 0,  . .t x t x t xt x N i i d            

thereby estimating  1 2,  ,  t x    , followed by the mapping  

t x t x   ,  (2) (2)
2t t   ,   (1) (1)

1 2t t t x      . 

For M6*, as above, subject to the change (2) (2)
2t t   . 

 

M7: Regress t x   on  t x  and  2
t x , so that 

     2 2
1 2 3 ;  ~ 0,  . .t x t x t xt x t x N i i d               

thereby estimating  1 2 3,  ,   t x     , followed by the mapping  

 t x t x   ,  (3) (3)
3t t   ,   (2) (2)

2 32t t t x       

      
1

2 2(1) (1)
1 2 3

1 kx

t t
i x

t x t x i x
k

    


 
       

 
 . 

For M7*, as above, subject to the change  (2) (2)
2 32t t t x      . 

 
 Under the transformation of t x   into the residuals of a linear regression model, by 

construction, 
 0,  ( ) 0t x t x

t x t x

t x  
 

     

for all 4 cases, with additionally 

  2
0t x

t x

t x  


   for M7 and M7*. 

 
For M8 & M8* the mapping is obvious. 
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Appendix B 
(Multivariate random walk with drift) 

 
Denote a multivariate time series 
 : 0,1,2,...,t t n  

with first order differences 
 1 : 1,2,...,t t t t n    y . 

For the random walk with drift 
 t t  y .     , , , ,  all 1 mt t t   y . 

 
Refer to the multivariate Gaussian model 
  Y GA      ,  are n m,  is n 1,  is 1 m   Y G A  

for which 

Y

11 21

12 22

1 2n n

y y

y y

y y

 
  
   

  

,  G

1

1

1

 
 
 
 
 
 

, A  1 2    

and  ,N  0  , so that 

  G G n,   G Y  1 2y y   ,    0
1

n

i it in i
t

y y


    
 

   . 

Then the OLS estimates 

      1

0
ˆ

in i n      A G G G Y , with  ˆ ˆ ˆ 1n    . 

The matrix of residuals 

  ˆˆˆ it i ity r      Y GA  , so that 

2
1 1 2 1 3

2
1 2 2 2 3

2
1 3 2 3 3

ˆ ˆ

t t t t t
t t t

t t t t t
t t t

t t t t t
t t t

r r r r r

r r r r r

r r r r r
 

 
 
 
     
 

     

  
  
  

. 

 
Forecasting: successive substitution gives 
 1 1...

n n n n nt j t j jj              t t t . 

Then, taking expected values, the j-step ahead forecast, from nt  (= n), is 

 |
ˆ

n n nt j t t j     . 

For the mean square error forecast: 
 | 1 1

ˆ ...
n n nt j t j t j j             t t t  

and 

      | | |
ˆ ˆ ˆ

n n n n n n n nt j t t j t j t t j t j tMSEF E j         
     
 

. 



Model LC: deviance residual plots

Model LC: period index random walk

Fig 1. England & Wales 1961-2007 male mortality experience, ages 55-89.
Binomial responses, log-odds link, target q(x,t), predictor LC.
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Model LC2: deviance residual plots

Model LC2: period indices bi-variate random walk

Fig 2. England & Wales 1961-2007 male mortality experience, ages 55-89.
Binomial responses, log-odds link, target q(x,t), predictor LC2.
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Model H1: deviance residual plots

Model H1: period index random walk

Fig 3. England & Wales 1961-2007 male mortality experience, ages 55-89.
Binomial responses, log-odds link, target q(x,t), predictor H1.
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Model M: deviance residual plots

Model M: period index random walk

Fig 4. England & Wales 1961-2007 male mortality experience, ages 55-89.
Binomial responses, log-odds link, target q(x,t), predictor M.
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Model M5: deviance residual plots

Model M5: period indices bi-variate random walk

Fig 5. England & Wales 1961-2007 male mortality experience, ages 55-89.
Binomial responses, log-odds link, target q(x,t), predictor M5.
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Model M6: deviance residual plots

Model M6: period indices bi-variate random walk

Fig 6. England & Wales 1961-2007 male mortality experience, ages 55-89.
Binomial responses, log-odds link, target q(x,t), predictor M6.
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Model M7: deviance residual plots

Model M7: period indices tri-variate random walk

Fig 7. England & Wales 1961-2007 male mortality experience, ages 55-89.
Binomial responses, log-odds link, target q(x,t), predictor M7.
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Model M8: deviance residual plots

Model M8: period indices bi-variate random walk

Fig 8. England & Wales 1961-2007 male mortality experience, ages 55-89.
Binomial responses, log-odds link, target q(x,t), predictor M8.
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LC: age modulating index LC2: age modulating indices

H1: age modulating index; year-of-birth index

M: age modulating indices; year-of-birth index

Fig 9. England & Wales 1961-2007 male mortality experience, ages 55-89.
Binomial responses, log-odds link, target q(x,t), predictors LC, LC2, H1, M.
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Models M5-M8: age modulating functions

Models M6-M8: year-of-birth indices

Model M8: deviance profile

Fig 10. England & Wales 1961-2007 male mortality experience, ages 55-89.
Binomial responses, log-odds link, target q(x,t), predictors M5-M8.
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Fig 11a. E&W male 1961-2007 mortality experience, age range 55-89.
Evolving 1985(02)07 life expectancy predictions (5, 50, 95 percentiles),

presented in descending sequence, for individuals aged 60(05)75.
Predictions by the cohort method.
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Fig 11b. E&W male 1961-2007 mortality experience, age range 55-89.
Evolving 1985(02)07 4% annuity predictions (5, 50, 95 percentiles),
presented in descending sequence, for individuals aged 60(05)75.

Predictions by the cohort method.
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Fig 12a. E&W male 1961-2007 mortality experience, age range 55-89.
2007 life expectancy predictions (5, 50, 95 percentiles), subject to

biennial front-end data deletion 1961(02)83, shown in ascending sequence,
for individuals aged 60(05)75. Predictions by cohort method.

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5

0

2

4

6

8

10

12

14

16

life expectancy

age 60age 65age 70age 75

age 60age 65age 70age 75

age 60age 65age 70age 75

age 60age 65age 70age 75

age 60age 65age 70age 75

age 60age 65age 70age 75

age 60age 65age 70age 75

age 60age 65age 70age 75

Model M8

Model M7

Model M6

Model M5

Model M

Model H1

Model LC2

Model LC 



Fig 12b. E&W male 1961-2007 mortality experience, age range 55-89.
2007 present value 4% annuity predictions (5, 50, 95 percentiles), subject

to biennial front-end data deletion 1961(02)83, shown in ascending sequence,
for individuals aged 60(05)75. Predictions by cohort method.
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Fig 13a. Retrospective error in 1982 predicted life expectancies
(LH panels) and annuity values (RH panels): ages 65-80.
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Fig 13b. Retrospective error in 1982 predicted log death rates, averaged
over ages, years, cohorts respective (1st to 3rd row of panels): based

on the region bounded by ages 60-89, years 1983-2007, cohorts 1894-1923.
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Fig 14a. EW male 1961-2007 mortality experience, age range 20-89.
Evolving 1993(02)07 life expectancy & 4% annuity prediction intervals.
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Fig 14b. EW female 1961-2007 mortality experience, age range 20-89.
Evolving 1993(02)07 life expectancy & 4% annuity prediction intervals.
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Fig 15a. USA male 1961-2006 mortality experience, age range 20-89.
Evolving 1993(02)05,06 life expectancy & 4% annuity prediction intervals.
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Fig 15b. USA female 1961-2006 mortality experience, age range 20-89.
Evolving 1993(02)05,06 life expectancy & 4% annuity prediction intervals.
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Fig 16. England & Wales male mortality experience, age range 55-89.
Evolving biennial 1985(02)07 measures of relative dispersion (r.d.) for

life expectancy predictions in Fig 11a: descending sequence, individuals
aged 60(05)75. [r.d. = (95th percentile - 5th. percentile)/median]
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Appendix C

primary period indices

primary period indices

Fig C1. England & Wales 1961-2007 male mortality experience, ages 55-89.
Quantile-Quantile plots: random walk primary period component time

series standardised residuals (checking for Normal residuals).
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Appendix C

secondary period indices

secondary (LC2) index & tertiary (M7) index

Fig C2. England & Wales 1961-2007 male mortality experience, ages 55-89.
Quantile-Quantile plots: random walk secondary (M5-M8, LC2) and
tertiary (M7) period component time series standardised residuals

(checking for Normal residuals).
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