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§1.1 –The summation operator (Σ) 

The (Σ) operator is widely used both in finance and 
statistics for finance applications. 

Therefore it makes sense to review it briefly in this teaching 
note.



Summation 1

In the simplest case, (Σ) it is merely a compact way to 
denote a sum. Note that Excel has a worksheet function 
(SUM) to carry out a summation
In the following equation we use a summation index 
(usually denoted with: i, j, k, …)
This index is an integer. The lower value is indicated below 
the (Σ) sign, while the upper level is indicated above it 
Both the lower and the upper level are included in the 
summationP10

j=1 aj = a1 + a2 + . . .+ a10



Summation 2

A very useful feature of the (Σ) operator is that we can use 
the index (j = 1, 2, …, n) both as a counter and as a 
parameter of the quantities we are adding up
The simplest example is:P10

j=1 j = 1 + 2 + . . .+ 10 = 55



Summation 3
A finance-specific use of the summation index is to denote 
the present value (PV) of a unit annuity (a unit annuity is 
simply a unit amount paid at regular intervals)
The following equation indicates the present value (using 
compound yield) of a unit amount due for (n) years in 
arrears, y = annual yield, which is assumed to be fixed, 
irrespective of the time-horizon of the annuity

PV = 1
(1+y) +

1
(1+y)2 + . . .+

1
(1+y)n

= (1 + y)−1 + (1 + y)−2 + . . .+ (1 + y)−n

=
Pn
j=1(1 + y)

−j



Summation 4

Another use of the indexed summation sign is to indicate a 
sum of products
Excel has a spreadsheet function (appropriately named 
SUMPRODUCT) that will calculate a sum of products
In TN 4 we’ll see how to express this in terms on vector 
multiplicationPn

j=1(aj · bj)
= (a1 · b1) + (a2 · b2) + . . .+ (an · bn)



Summation 5

One more application of the (Σ) operator is the nested sum 
of products
The most common finance application of this notation is to 
indicate the variance of a portfolio (see TN 5 and TN 7)

M = (a1 + a2 + . . .+ an)(b1 + b2 + . . .+ bn)
= (a1 + a2 + . . .+ an)(

Pn
k=1 bk)Pn

j=1

Pn
k=1(aj · bk)



§1.2 -Arithmetic and geometric series. 
Present value of an annuity 
& price of a coupon bond

In this teaching note we start with arithmetic series and the 
we proceed to geometric series, which have a number of 
important applications in finance (two examples are 
included in this note) 



Arithmetic sequence

An arithmetic progression, also known as an arithmetic 
sequence, is a sequence of numbers such that the 
differences between successive terms is a constant
A generic arithmetic sequence comprising of (n) terms can 
be written as:

a1 = a

a2 = a+ d

. . .

an = an−1 + d



Arithmetic series 1

An arithmetic series is simply the sum of an arithmetic 
progression
A generic arithmetic series (SA) comprising of (n) terms 
can be written as follows:

SA = a+ (a+ d) + (a+ 2d) + . . .+ [a+ (n− 1)d]

For example if a=1 and d=2 then
SA = 1 + 3 + 5 + · · ·+ 2(n − 1)



Arithmetic series 2

The value of an arithmetic series can be easily calculated by 
computer.
However, there is a simple equation for the value of the 
series (which we are likely to find in finance documents)
This formula is derived with one of the most commonly 
used algebraic manipulations: namely multiplying both 
sides of an equation by the same non-zero value (the 
number 2, in this case)

SA = a+ (a+ d) + (a+ 2d) + . . .+ [a+ (n− 1)d]

2 · SA = 2 · {a+ (a+ d) + (a+ 2d) + . . .+ [a+ (n− 1)d]}



Arithmetic series 3

The following algebraic manipulation shows that the 
value of an arithmetic series equals (n/2) times the sum 
of the 1-st and n-th terms of the series
To visualize this, we add the two series in inverse order:

SA = a + . . .+ [a+ (n− 1)d]
+SA = [a+ (n− 1)d] + . . .+ a

2·SA = 2a+ (n− 1)d + . . .+ 2a+ (n− 1)d
= n · [2a+ (n− 1)d]

∴ SA =
n
2
· [2a+ (n− 1)d]



Arithmetic series 4 (numerical example)

For example, the value of the arithmetic series 
{1+2+3+…+100} can be computed as

SA = 1 + . . .+ 100
+SA = 100 + . . .+ 1

2·SA = 101 + . . .+ 101
= 100 · 101

∴ SA =
100
2
· 101 = 5050



Geometric Sequence

An geometric progression, also known as a geometric 
sequence, is an ordered sequence in which the ratio of any 
two successive terms is a constant, known as common 
ratio. For example consider the sequence:

1, a, a2, . . . , an

∴ aj
aj−1

= a



Value of a geometric series

An intuitive way to find the sum of a geometric series is to 
multiply both sides of the equation by the same value, 
namely (1 –a) in our case

(1 − a)Sg = (1− a) · [1 + a+ a2 + . . .+ an]
= (1− a) + (a− a2) + (a2 − a3) + . . .+ (an−1 − an + an − an+1
= 1 + (−a + a) + (−a2 + a2) + . . .+ (−an + an)− an+1
= 1 − an+1

∴ Sg = 1−an+1
1−a



Present value of an annuity 1

We have already examined the equation for the present 
value of an annuity when discussing the (Σ) operator
The equation itself is a geometric series. Therefore, its 
value is:

PV = (1 + y)−1 + (1 + y)−2 + . . .+ (1 + y)−n

= [(1 + y)−1][1 + (1 + y)−1 + . . .+ (1 + y)−(n−1)

= (1 + y)−1
h
1−(1+y)−n
1−(1+y)−1

i
= 1−(1+y)−n

(1+y)−1
= 1−(1+y)−n

y



Present value of a unit annuity 2 
(bond pricing example)

We now compute the present value of a 10-year bond, with 
principal = 100, annual coupon of 5, and yield = 6.00%
The PV will equal the sum of the coupons annuity plus the PV 
of the principal, which will be paid at maturity (10-years)
The bond is priced below par (92.64 < 100) because the 
yield is higher than the coupon rate

P = 5
h
1−1.06−10

0.06

i
+ 100 · 1.06−10

= 36.8004 + 55.8395 = 92.6399
coupons principal



§1.3 -Linear equations
Linear equations (and systems of linear equations) are very 
simple to deal with. Due to this, they are widely used in a 
wide range of applications in economics, finance and 
management
In this section we’ll also discuss systems of two linear 
equations in two unknowns. This will allow us to develop an 
intuitive understanding of the conditions under which a 
system of linear equations will have a meaningful solution 



Linear functions
A linear function (its graph is a straight line) is written in 
terms of two parameters (a, b). 
The parameter (a) determines where the straight line will 
intersect the y-axis (for x = 0) while the parameter (b) tells 
us the slope of the function
If (b > 0) the line will be upwards sloping
If (b = 0) the line will be parallel to the x-axis
If (b < 0) the line will be downwards sloping

y = a+ bx



Graphical Illustration



One linear equation in one variable
Solving one linear equation in one variable means finding 
the value of (x) for which (a + bx = 0); that is to say 
where the linear function (y = a + bx) intersects the x-axis 
on the Cartesian plane
If the linear equation is defined over the entire real line i.e.
(-∞, ∞), then it will surely have a real solution, provided 
that the slope coefficient is not zero (see exhibit 1)
The following equation & numerical example show the 
simple procedure to solve the equation

a+ bx = 0
x = −ab

2− 0.4x = 0
x = − 2

−0.4
∴ x = 5



Two linear equations in two variables 1
Let us consider the following system of two linear equations 
in two variables (including the numerical example)

{ a1 + b1x+ c1y = 0
a2 + b2x+ c2y = 0

{ −2 + 0.4x+ y = 0
0− 1.8x+ 2y = 0



Two linear equations in two variables 2
Let us consider the following system of two linear equations in 
two variables (including the numerical example)
Each of the two equations can be transformed in a a linear 
function of (x) on the Cartesian plane
Thus, solving a system of two linear equations in two 
variables (x, y) means finding the two values (x*, y*) for 
which the two functions will intersect (see exhibit 2, based on 
the numerical example)

(
y = a1

c1
− b1

c1
x

y = a2
c2
− b2

c2
x

¯̄̄̄
¯ y = 2− 0.4x
y = 0+ 0.9x



Two linear equations in two variables 2



Two linear equations in two variables 4
The standard way of solving a system of two linear equations 
is to multiply one of the equations (we choose the second 
one) by a constant (λ) and subtract it from the other equation 
(the first in our case).
The constant is chosen in such a way that it will eliminate one 
of the variables (y in our case) in the first equation that we 
can now solve for (x) as a standard one-unknown linear 
equation
Once we know (x), we substitute its value in the second 
equation and we solve for (y)
In the next slide we show the necessary steps with reference 
to the numerical example



Two linear equations in two variables 5
Solving by elimination two linear equations in two unknowns

−2 + 0.4x+ y = 0
0− 1.8x+ 2y = 0

¾
λ = 1

2

−2 + 0.4x+ y = 0
0− 0.9x+ y = 0
−2 + 1.3x+ 0 = 0

x = 2
1.3 = 1.5385

∴ y = 0.9 · 1.5385 = 1.3846



Counting equations and unknowns 1
A system of linear equations will have a solution if the 
number of equations equals the number of unknowns (for 
example 2 equations in 2 unknowns)
If we have more equations than unknown (for example, 3 
equations in 2 unknowns) the system will not have a solution. 
In exhibit 1b the three lines have zero probability of 
intersecting in the same point



Graphical Illustration



Counting equations and unknowns 3
If we have less equations than unknown (for example, 1 
equation in 2 unknowns) the system will be indeterminate 
and have infinitely many solutions 
This follows from the fact that one equation in two 
unknowns describes a single real line on the Cartesian 
plane. Therefore, all the points on the line are valid 
solutions to the equation 

a+ bx+ cy = 0

∴ y = −ac − b
cx



Counting equations and unknowns 4
One last point. The system will have a solution only if the 
the equations are linearly independent
In our two equations example this entails that the two lines 
are not parallel 



Counting equations and unknowns 5



§1.4 -Non-linear equations. Calculating 
the internal rate of return (IRR)

Linear equations and systems of linear equations are 
relatively simple to solve (see also TN 4 for solving multi-
equation systems using matrices)
This is not the case with non-linear equations that, in most 
instances, must be solved with numerical methods (they have 
no closed-form solution)
Fortunately for us computers are great at using numerical 
methods, and some of the necessary software is also 
available in Excel



Finding the IRR of a cash flow 1
We have seen that the present value of a cash flow (with 
equally spaced payments) is given by the following 
equation where:
CJ= Payment at the end of year-j
If we know the discount rate (y) finding PV is very easy, 
and the calculations can be carried out in Excel, with PV or 
NPV spreadsheet functions
However, if we know PV determining (y) requires numerical 
methods. In Excel we can use the IRR function or SOLVER 

PV =C1(1 + y)
−1 + C2(1 + y)−2 + . . .+ Cn(1 + y)−n

=
Pn

j=1 Cj(1 + y)
−j



Finding the yield to maturity of a bond
Let us consider the case in which we know both the price of 
a bond (P) and its cash flow: coupons (C) and maturity (n)
If we want to determine the bond’s IRR (called yield to 
maturity or redemption yield) we have to use numerical 
methods to find the level of (y) that will satisfy the following
equation
In the numerical example we consider a 10 year 6% annual 
coupon bond, priced at 96.80. The numerical solution, 
obtained using the IRR Excel spreadsheet function, is (y = 
6.4440%)

PV = C
Pn

j=1(1 + y)
−j + 100(1 + y)−n

96.8 = 6
Pn

j=1(1 + y)
−j + 100(1 + y)−10



Graphical Illustration



§5 –Mathematical induction (optional)
One of the ways natural numbers (1, 2, …, n) are used in 
applied mathematics (and therefore in finance) is as the base 
for proofs by mathematical induction. This kind of proof is 
clearly useful when we must prove that a given assertion is 
true for all natural numbers. 
Mathematical induction is used in a number of finance 
applications. For example: 

The dividend discount model equation (see §6 of this TN)
Binomial trees for option pricing 
Proof that a floating rate note is priced at par at the start of
coupon accrual periods 



Proof by mathematical induction 1

Take a sequence of statements indexed by consecutive 
natural numbers 

Ak, Ak+1, Ak+2, Ak+3, . . .



Proof by mathematical induction 2

We can prove that the statements are true for all values of 
(k) if we can:
First, prove that statement number (k) is true (this is also 
known as the inductive base)
Second, establish that assertion (k + j + 1) is true 
whenever assertion (k + j) is true (this is also known as the 
inductive step)

Ak = True
Ak+j ⇒ Ak+j+1 (j = 0, 1, 2, . . .)



Proof by mathematical induction 3 
(arithmetic progression example)

We now prove the formula for the sum of the arithmetic 
progression of natural numbers using mathematical 
induction.
Based on our knowledge of arithmetic series this formula is 
(n/2)(1+n)
The inductive base of the proof is the self-evident identity:

SA = 1+ 2 ≡ 2(1+2)
2



Proof by mathematical induction 4
(arithmetic progression example)

We now proceed to prove the inductive step

1 + . . .+ (n+ 1) = {1 + . . .+ n}+ (n + 1)
= {n(n+1)2 }+ (n + 1)
= n(n+1)+2(n+1)

2

= (n+1)(n+2)
2

∴ 1 + . . .+ n = n(n+1)
2

⇒ 1 + . . .+ (n + 1) = (n+1)(n+2)
2



§1.6 -The Dividend Discount Model 
(Optional)

The Dividend Discount Model (DDM) is a standard tool in the 
valuation of shares and of companies. In this teaching note 
we will concentrate mainly on its quantitative analysis



Dividend Discount Model 1
The classic way in which this model is presented is to 
consider a one year (or one quarter) holding period of one 
share of a public traded company for which stock prices are 
available
We shall use the following symbols:
P0= our valuation of the share price at time 0
P1= our forecast of the expected share price at time 1 (year 
end)
D1= our forecast of the expected dividend payment at time 1 
(year end)
k = the corporation’s risk-adjusted rate (hurdle rate, cost of 
capital)



Dividend Discount Model 2
Let us assume that the expected dividend and the expected 
share price at year end are known
Clearly, the current share price can be easily calculated with a
simple discount equation
However, this also entails that we have a reliable estimate of 
the risk-adjusted discount rate (k = cost of capital)

P0 =
D1+P1
1+k

D1 = 3, P1 = 110, k = 10%
P0 =

3+110
1.10 = 102.7273



Dividend Discount Model 3
How can we determine (P1), which clearly accounts for most 
of the value of the estimated price at time 0 ?
The answer is to replicate the procedure for one more year
If we substitute result in the first equation we obtain the 
following value for (P0):

P1 = D2+P2
1+k

P0 = D1

1+k +
P1
1+k

= D1

1+k +
D2

(1+k)2
+ P2

(1+k)2



Dividend Discount Model 4
The process can now be repeated (forward induction)
For example, If we consider n-years we can write the 
following equation (k is assumed to remain constant):

P0 =
D1

(1+k) +
D2

(1+k)2 + . . .+
Dn

(1+k)n +
Pn

(1+k)n



Dividend Discount Model 5
When analysts use the DDM they try to forecast expected 
dividends for a few years in the future. However, these 
forecasts become less and less reliable as the forecasting 
horizon increases
Therefore, it is common practice to use a constant growth 
rate after a few years, as a simplifying assumption

Dt = (1 + g)Dt−1
P0 = D1

1+k
+ D2

(1+k)2
+ . . .+ D5

(1+k)5

+ (1+g)D5

(1+k)6
+ . . .+ (1+g)n−5D5+Pn

(1+k)n



Dividend Discount Model 6
In order to assign a value to (Pn) we usually assume that the 
corporation will go on forever, or, at least, until the present 
value of (Pn) becomes extremely small
To obtain uncluttered mathematics, in the following 
equations we assume that the constant growth phase begins 
immediately
In the following equation (k > g) in order not to obtain the 
paradoxical result of having an infinite price when n →∞

P0 =
D1

1+k +
(1+g)D1

(1+k)2
+ . . .+ (1+g)n−1D1

(1+k)n + Pn
(1+k)n



Dividend Discount Model 7
If (k > g) and (n →∞), we can prove (see appendix) that the 
constant growth equation can be expressed with the following 
compact equation
Note however, that if (k < g) we cannot derive the equation. 
(P0) would be infinite (and not negative as one could think 
reading the equation)

P0 =
D1

k−g (k > g)
D1 = 3, k = 10%, g = 6%
P0 =

3
0.1−0.06 = 75



Dividend Discount Model 8
A simple manipulation of the previous equation shows that 
the risk-adjusted rate of return (k) equals the dividend yield 
plus the rate of growth of the dividends (g)

P0 = D1

k−g (k > g)

k − g = D1

P0

k = D1

P0
+ g

= 3
75 + 0.06

= 10%



Dividend Discount Model 9



§7 –Excel functions referred to in this 
Teaching Note

IRR
NPV
PV
SUM
SUMPRODUCT 
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General Introduction
Calculus is a BIG topic. In this Teaching Note we can only 
review a few basic concepts that are the most likely to be 
useful for some modules of our MSc courses
Our discussion of these topics must necessarily be 
conducted relying on intuition and with exclusive reference 
to univariate calculus to benefit from both its analytical 
simplicity and ease of visualization
There are a few proofs in the appendix, to provide some 
extra material to the interested reader



§1 – Functions and limits

What is a function
Limits of a function

The first use of the word function is credited to Leibniz 
(1646-1716)
Until the mid 1800s the concept of function was that of a 
relatively simple mathematical formula expressing the 
relationship between the values of a dependent variable (y) 
and those on an independent variable (x)
In the second half of the 1800s, the concepts of function 
and limit were generalized and made a lot more rigorous, 
thereby providing a solid foundation for the further 
development of calculus



What is a Function 1

A real-valued mathematical expression, such as the 
following quadratic equation, has no defined numerical 
value until you assign a value to (x). Thus, we say that (y) 
is a function of (x)

y = −1 + 0.2x+ 0.5x2



What is a Function 2

Functions are also called transformations because they 
transform the value of (x) into a value (y)
If we plot the values of the independent (x) and the 
dependent (y) variables on the Cartesian plane we obtain 
the graphic representation of the function



What is a Function 3



What is a Function 4

A function (f) from a set D (domain) to a set R (range) 
defines a rule which assigns to each element of D a unique 
element in R
A very important element in the definition of a function is 
the requirement that for every given point on the domain 
there is one and only one function value.
In other words, if you draw a straight line parallel to the y-
axis it should cross only once the function’s graph (see 
exhibit 1 & 2)
Thus, if there is more than one value of (y) corresponding 
to one value of (x) we are not dealing with a function (see 
exhibit 3)



What is a Function 5



What is a Function 6



Limit of a function 1

The concept of limit is all-pervasive in calculus and its 
applications.
The rigorous definition of the limit of a function was worked 
out in the mid 1800s, mainly by the German mathematician 
Karl Weierstrass
The Weierstrass approach is intuitively evident and we shall 
use it in this TN, albeit with some simplifications



Limit of a function 2

There are several kinds of limits. Due to time constraints, 
we shall concentrate only on two limits, chosen for their 
relevance for our studies. First, the limit of a function that 
tends to zero for (x → ∞), where the symbol → stands for 
“tends to” or “approaches”
Second, the limit of a function for (x → 0). This limit is the 
cornerstone for the definition and calculation of derivative 
of a function and will be discussed in §3



Limit of a function 3 (for x →∞)
We now introduce the concept of a limit using what is known 
as the (δ, ε) approach. Suppose the following statement is 
true
Given an arbitrarily small number (ε), there is a number (δ) 
such that, for all x > δ, |f(x)−0| <ε
Then the limit of a function is zero for (x → ∞). We indicate 
this with the following equation:

limx→∞ f(x) = 0



Limit of a function 4 (for x →∞)
Let us now consider the present value (P) of a unit zero coupon 
bond due in (n) years, given a constant compounded discount 
rate (y)
The time-to-maturity is also known as tenor
The well-known equation for the unit zero-coupon bond price is

P=(1+y)−n

limn→∞ (1 + y)−n = 0



Limit of a function 5 (x →∞)



Limit of a function 6 (x →∞)
We now want to show numerically that the (PV → 0) when 
(n → ∞)
Let us assign a reasonable value to the compounded 
discount rate, for example (y = 7%)
We can see that (ε → 0) as (n → ∞)
A simple proof, using logs, is included in the Appendix to 
this TN. The logarithmic function is discussed in TN 3

0.000001200

0.001152100

0.03394850

0.25841920

PVTenor



§2 - Continuity, convexity and concavity
Continuous and discontinuous functions
Jumps in (y)
Jumps in both (x) and (y)
Convex and concave functions



Continuity 1
Relying on intuition, we can say that a uni-variate function 
y = f(x) is continuous if we can draw its graph on the 
Cartesian plane without having to lift pen from paper
The functions that we have seen in exhibits {1, …,4} are all 
continuous
However there do exist functions that are discontinuous. 
They may be discontinuous because:

Of their algebraic properties (typically, they entail one or more 
divisions by zero)
They are constructed in such a way as to bec discontinuous



Continuity 2 (discontinuous function example)
A well known example of a discontinuity due to a division 
by zero is the rectangular hyperbola (y = 1/x)
Exhibit 5 shows that the rectangular hyperbola tends to 
infinity when (x) approaches zero from the right (x → 0+) 
and to minus infinity when (x) approaches zero from the 
left (x → 0-)
Clearly, there is a discontinuity when (x = 0)



Continuity 3 (discontinuous function example)



Continuity 4 (jumps in y)



Continuity 5 (jumps in y)
The function in exhibit 6 is plotted for (0 < x < 8). The 
value of the function equals the integer part of (x). The 
Excel function TRUNC(x) has been used to calculate its 
value

f (x)=TRUNC(x)={1,2,...,7}
Therefore, the function is defined on a continuous domain 
(x) but is discontinuous on (y)
If we think of (x) as representing time, then the function 
represents a continuous-time, discontinuous-values process 
(also known as continuous-time, discrete-states process)



Continuity 6 - Jumps in both (x) and (y)



Continuity 7 - Jumps in both (x) and (y)
One of the two functions depicted in exhibit 7 is 
discontinuous in (x) and, consequently, in (y)
If we think of (x) as time, this function represent a 
sequence of 20 gains (losses) on betting $1, at regular 
intervals, on the outcome of tossing a fair coin (this is also 
known as a binomial process)
The second function (continuous time, discontinuous 
values) shows the cumulative gain (loss) on the game



Convex and concave functions 1
A function is convex over a given interval if a secant 
through any possible couple of points on the curve will 
always lie above the function itself
In calculus books convexity is often denoted as upwards 
concavity
Convexity has also a different meaning in mathematics 
(and in many economic and financial applications)
A set is said to be convex when a straight line through 
any two points in the set will lie inside the set



Convex and concave functions 2
The following two exhibits (8a & 8b) show that both the 
future value and the present value (as a function of yield) 
are convex
Convexity is much used in fixed income and will be 
discussed in some detail in “§4 - Duration and convexity of 
a zero coupon bond”
We should add that convexity is measured by the second 
derivative of the function (see §3 of this TN)



Convex and concave functions 3



Convex and concave functions 3



Convex and concave functions 5
A function is concave over a given interval if a secant 
through any possible couple of points on the curve will 
always lie below the function itself
In calculus books this is often denoted as downwards 
concavity
A typical example of a concave function is the logarithmic 
function (see exhibit 8c)
The logarithmic function will be discussed in §3 of TN 3



Convex and concave functions 3



§3 - Derivatives
Derivatives
Derivative and limit
Second derivative
Taylor series

The problem of calculating the tangent to a curve and the 
area delimited by a curve were already tackled more than 
2000 years ago, with very limited success. The break 
through came in the late 1600s, due to the work of Fermat, 
Newton and Leibnitz
It came as a surprise that the tangent and the area 
problems are intimately connected. The tangent is 
calculated with the derivative and the area with the integral 
(which is also known as the anti-derivative)



Derivatives 1
The central idea of differential calculus is the notion of 
derivative.
The derivative of a function f (x) in correspondence of a given 
value of (x) is a number which measures the slope of the 
function at that point
More generally, the derivative of a function is another function
that gives the slope of f(x) for each value of (x) on the domain 
of the function. Thus, the derivative measures the slope of the 
tangent to the function
Given a function y = f(x), its derivative function can be 
denoted in many different ways:

f 0(x) ≡ y0 ≡ dy
dx ≡ d

dxf(x)



Derivatives 2



Derivatives 3
In exhibit 9, the curve is continuous and does not have 
corner points.
Therefore, it is possible to determine its tangent in any 
point on the relevant domain
Such a function is known as differentiable (or well behaved)
A discontinuous function is clearly non differentiable in 
correspondence of points of discontinuity
A function is also non-differentiable in correspondence of 
corner points
Exhibit 10 visualizes that there can be infinite tangents at 
f(x = 0)



Derivatives 4



Derivative and limit 1
Let us consider a well-behaved differentiable function, such 
as a simple quadratic
The slope of a secant (s) through two points of the function 
is given by the following equation, where f(x) and f(x + h) 
are the values at which the secant will intersect the 
function

S = f(x+h)−f(x)
h



Derivatives and limit 2



Derivative and limit 3
Exhibit 11 is based on the following numerical values (the 
secant intersects the quadratic at points: x =1 & x = 4)

y = b x2 = 0.5x2, x = 1, h = 3

S = f(x+h)−f(x)
h

S = 0.5(1+3)2−0.5(1)2
3 = 2.5



Derivative and limit 4
This slope (s) as we have discussed so far is clearly the 
average slope of the function
Think of a plane at take off, that climbs 8,000 meters in 
250 Km (the 250 Km are measured relative to the ground). 
The average slope of the climb is 3.2%
Suppose now we want to determine the climbing angle over 
a smaller time interval corresponding to, for example, a 10 
meters climb from 7,000 to 7,010 meters, which takes 0.9 
seconds. 
To do this, we would simply divide the 10 meters by the 
ground distance covered while climbing, say 200 meters
The slope 0.05 so obtained would not represent the 
instantaneous climb angle, but it would certainly be very 
close to the instantaneous slope



Derivative and limit 5
The derivative measures the instantaneous slope of the 
function at single points
Therefore, it seems natural to calculate it with the same 
equation that we used for the secant, letting (h → 0). With 
reference to the quadratic equation y=bx2=0.5x2 we get:

dy
dx = limh→0

f(x+h)−f(x)
h

= limh→0
b(x+h)2−b(x)2

h

= limh→0

z }| {
b(x)2 +2b(x)(h)+b(h)2−

z }| {
b(x)2

h

= limh→0
2b(x)+b(h)

1
= 2bx



Derivative and limit 6



Second derivative 1
The second derivative of a function is simply the derivative 
of the first derivative
Just as in the case of the first derivative the second 
derivative can also be denoted in several possible ways. For 
example given a function y=f(x):

y0 ≡ f 0(x) ≡ dy
dx
≡ d

dx
f(x)

y00 ≡ f 00(x) ≡ d
dx

³
dy
dx

´
≡ d2y

dx2 ≡ d2

dx2 (f (x))



Second derivative 2
In our quadratic function example, we obtain the first 
derivative as a linear function y=x. 
Thus, the second derivative will be a constant (the slope of 
a straight line is clearly a constant)

y0 = 2bx = 2(0.5)x = x
y00 = d

dx
(y0) = d

dx
(x) = 1



Taylor series 1
It can be proved that, over a relatively contained interval, a 
well behaved function can be approximated using its 
derivatives
We could legitimately ask why we should use this 
approximation when we can calculate the function
There are two answers:

Using only the first derivative we get a linear approximation, 
which can be much simpler to compute and very useful as an 
approximation (for example the concept of a bond’s duration is 
based on this idea)
The Taylor series approach is the cornerstone for proving some 
properties of a function



Taylor series 2
The factorial of a natural number n (i.e. n belongs to the set  
{1,2,3, … }) is simply the product 1 × 2 × … × n
Factorials can be calculated with the Excel function FACT(N)
In the Taylor series expression given below, the symbol ““!”
stands for factorial

f(x) ∼= f(a)
+f 0(a)(x− a)
+ f 00(a)

2!
(x− a)2

+ f 000(a)
3! (x− a)3

+ . . .



§4 - Excel functions referred in this note
FACT(N): N must be a natural number. FACT(N) = 1 × 2 ×
… × N
LOG10(x): base 10 logarithm. The domain of the function is 
(0 ≤ ∞)
SIN(x): The sine function of (x), where (x) is measured in 
degrees
TRUNC(x): Truncates a number (any real number), 
eliminating decimals
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§3.1 - Some rules to calculate derivatives
Adding a constant to a function
Multiplying a function by a constant
Derivative of a linear function
Derivative of a sum of functions 
The power rule
The chain rule
Example: the derivative of the price of a bond
As we may well imagine, there is a large set of rules to find 
derivative functions. In this § we shall examine only a few 
of them, chosen on the basis of their immediate relevance 
for finance applications
The derivative of the natural exponential and logarithmic 
functions will be discussed in §3.3
The proofs of the power and chain rules can be found in the 
appendix (PDFs on the website)



Adding a constant to a function 1
Adding a constant to a function does not change its 
derivative
The added constant will simply cause a parallel shift in the 
function, without changing its slope
Exhibit 12 provides a visualization of the parallel shift

g(x) = a+ f(x)⇒ g0(x) = limh→0
g(x+h)−g(x)

h

= limh→0
{a+f(x+h)}−{a+f(x)}

h

= limh→0
f(x+h)−f(x)

h
= f 0(x)



Adding a constant to a function 2



Multiplying a function by a constant 1
Let a function g(x) equal a function f(x) multiplied by a 
constant (λ)
The derivative of g(x) is equal to the derivative of f(x) 
multiplied by the constant (λ)

g(x) = λf(x)⇒ g0(x) = limh→0
g(x+h)−g(x)

h

= limh→0
{λf(x+h)}−{λf(x)}

h

= λ limh→0
f(x+h)−f(x)

h
= λf 0(x)



Multiplying a function by a constant 2



Derivative of a linear function
The derivative of a linear function is a constant. The result 
is intuitively evident because a straight line has a constant 
slope
However, we can easily prove this result. This also provides 
an example of the sum of a constant and of the product of 
a constant rules

g(x) = a+ bx⇒ g0(x) = limh→0
g(x+h)−g(x)

h

= limh→0
{a+b(x+h)}−{a+bx}

h

= limh→0 bhh
= b



Derivative of a sum of functions 1
The derivative of a sum of functions equals the sum of their 
derivatives
This result is intuitively evident when we consider the 
following equation

s(x) = f(x) + g(x) ⇒ s0(x) = limh→0 s(x+h)−s(x)h

= limh→0
{f(x+h)+g(x+h)}−{f(x)+g(x)}

h

= limh→0
f(x+h)−f(x)

h + g(x+h)−g(x)
h

= f 0(x) + g0(x)



The power rule
The power rule allows us to differentiate a power of (x) 
even if the power in not an integer but any real number
Here is the relevant equation:

y= xa ⇒ y0 = axa−1



The chain rule
The chain rule is one of the most widely used rules to find 
the derivative of a function
It applies whenever we have a composite function 
(function of a function)
The following equations show a composite function and its
derivative, obtained with the chain rule

y = f[g(x)], u=g(x)
y0 = d

duf(u)
d
dxu =

dy
du

du
dx



Example: the derivative of the price of a bond 1
In TN 1 we have seen that the price of a fixed rate bond is 
given by the following equation, where (y) stands for the 
yield to maturity
To keep things simple we assume that the coupon 
payments (C) are constant and paid at the end of each 
year until maturity (n)
We also assume that the principal of the bond is (F) is paid 
together with the last coupon

P =C [(1+y)−1 + (1 + y)−2 + . . .+ (1 + y)−n] + F (1 + y)−n



Example: the derivative of the price of a bond 2
A simple inspection shows that, to find the derivative of the 
bond’s price relative to (y), we could use the following 
theorems:
chain rule
sum of a constant rule
the sum of functions rule
multiplication by a constant rule



Example: the derivative of the price of a bond 3
Let us start with the discount factors inside the square 
brackets and multiplying the principal (F)

d
dy (1 + y)

−j = −j(1 + y)−j−1 d
dy (1 + y)

= −j(1 + y)−j−1
∴ d

dyP = C[−(1 + y)−2 − 2(1 + y)−3 + . . .
−n(1 + y)−n−1]− nF (1 + y)−n−1



§3.2 - Duration and convexity of a zero 
coupon bond  Optional

Duration metrics for zeros
Dollar duration approximation for a zero coupon bond
Dollar value of one basis point (DV01)
Duration (modified duration)
Convexity approximation



Duration metrics for zeros 1
Duration metrics are based on linear approximations of the price
yield function (which is usually convex)
Linear expressions are easy to use because they depend only on 
one number and allow quick and rough comparisons between 
securities.
The following two statements are equivalent; however, the 
second is a lot more compact and easier to grasp quickly, even 
in the buzz of a dealing room:

The price of Bond A will decrease by 0.90% if its YTM increases by 
10 basis points (0.9% = 9 × 0.1%), while the price of bond B will 
decrease by 0.30% (0.3% =3 × 0.1%). Therefore, Bond A is 3 
times more interest-rate sensitive than bond B.
The duration of bond A is 9, versus 3 for bond B.



Duration metrics for zeros 2
We can use a linear risk measure because the price/yield 
functions for a coupon bond and for a zero are rather flat (low 
convexity) and a linear approximation is acceptable over a 
limited range yield movements
This means that a 1st order (Taylor series) approximation is 
acceptable
The tangent (slope) of the price/yield curve is also known as 
dollar duration
Dollar duration for a zero coupon bond (and for straight 
coupon bonds) is a negative number but is nearly always 
quoted as a positive one



Dollar duration approximation for a zero 1
P = price of the zero
F = face value of the zero (we shall use 100)
Y = spot yield at which we are calculating duration
T = tenor of the zero
D$ = Dollar duration
The 1st equation is simply the price of a zero; the 2nd 
equation is the derivative of the price as a function of (Y): 
the 3rd equation is the first order approximation

P = F (1 + Y )−T

D$ =
dP
dY = −T (F )(1 + Y )−T−1 = −T P

1+Y
∆P ≈ D$∆Y



Dollar duration approximation for a zero 2



Dollar duration approximation for a zero 3
Consider a 20-year zero coupon bond (face value = $100), 
priced to yield 6% per annum (spot yield, Y)
Let us compute, using the dollar duration approximation, by 
how much the price would decline if the yield jumped to 
6.10% (ΔY = 0.001)
Dollar duration is expressed in monetary units over yield

P = F (1 + Y )−T = 100(1.06)−20 = 31.180473
D$ = −T P

1+Y = −20 31.1804731.06 = −588.3108
∆P ≈ D$∆Y = −588.3108(0.001) = 0.5883108



Dollar duration approximation for a zero 4
The $0.588311 drop in price computed with the linear dollar 
duration approximation is rather accurate.
Due to the price-yield function convexity, duration 
overestimates the loss due to an increase in (Y), and 
underestimates the gain when (Y) decreases. This is 
sometimes referred to as gain from convexity
Gains from convexity have long being pursued by portfolio 
managers and by traders



Dollar value of one basis point 1
The dollar value of one basis point (DV01), also known as 
the price value of one basis point (PV01), is a commonly 
used duration metric
DV01 is simply the absolute price change of a bond due to a 
0.01% (one basis point) increase in yield
The price change is expressed in monetary units, thereby 
the name dollar value
DV01 is a negative number but is often quoted as an 
absolute value. The equation is: DV01= D$ ×0.0001



Dollar value of one basis point 2
The DV01 of a long-dated zero coupon bond first increases 
as a function of term to maturity, and then declines, as 
shown in exhibit 4. This is due to two counteracting factors 
at play:

The price-elasticity increases with maturity; therefore the 
DV01 increases rapidly as the term increases.
Given a face value ($100 in exhibit 2), the price of the zero 
coupon bond declines with the increase in tenor, and this 
produces a price-compression of dollar duration and DV01



Dollar value of one basis point 3



Duration (modified duration)
To avoid the price compression problem, we use modified 
duration which is simply dollar duration divided by the bond 
price (calculated at the yield at which we compute duration)
Modified duration (often denoted as duration) is therefore 
the proportional price change due to an absolute change 
in yield

D = D$

P = dP
dY

1
P = −T P

1+Y
1
P = − T

1+Y



Example
Consider a 12 year zero coupon bond (face value = $100), 
priced to yield 6% per annum. Use modified duration to 
compute by how much the price would decline if the yield 
jumped to 6.20% (ΔY = 20 bp)
P = $100(1.06)-12 = $49.696936
D= -12/1.06 = -11.320755
ΔP = PxDx ΔY 

= $49.696936 x (-11.3208) x 0.002 
= -$1.125214



Linking the duration metrics
The duration metrics mentioned so far are linked by the 
following equations

DV 01 = 0.0001D$

D =
D$
P
=

DV 01

0.0001P



The convexity of a zero coupon bond 1
The convexity of a function quantifies its curvature, and is 
measured by its second derivative
In the case of a zero coupon bond, this implies that 
convexity is a quadratic function of tenor, as shown in the 
following equation (for a proof see appendix)

dP
dY = −T (1 + Y )−(T+1)

d2P
dY 2 = (T + 1)T (1 + Y )

−(T+2)

=(T2 + T )(1 + Y )−(T+2)



The convexity of a zero coupon bond 2



Convexity approximation 1
A smooth function can be approximated using both the 1st 
and the 2nd derivatives (second order approximation). This 
property can be used to write an equation to approximate 
the price-yield function in terms of dollar duration and 
convexity (measured by the 2nd derivative)
Note: in options-speak, Delta, and Delta-Gamma denote 
respectively the first and second order approximations



Convexity approximation 2
The 2nd order approximation (duration and convexity) is 
very accurate, but (contrary to duration) is not much used 
in business life
Duration is a rough measure but has the advantage of being 
expressed by one number. This is the equation, where (C) 
indicates convexity
In the following equation (P’) indicates the first derivative 
and (P”) the second

∆P = P 0(Y )∆Y + 1
2P 00(Y )(∆Y )2

= D$∆Y +
1
2
C$(∆Y )

2



Convexity approximation 3



§3.3 - The exponential and the log functions
The exponential function
The natural exponential function
The log and the natural log functions
The exponential and the logarithmic functions are a 
cornerstone of calculus and are widely used in economic 
and financial applications



The exponential function 1
Let us start with the exponential function, which is the 
standard tool when modeling proportional growth (both 
positive or negative)
If we calculate the values of the function for x = {0, 1, 2, …, 
n}, we obtain a geometric sequence (TN 1, §1)
In fact, we can prove that proportional growth can be 
modeled with, and only with, the exponential function
The equation for the general exponential function, with 
arbitrarily chosen base (a) is:

y(x) = ax (a ≥0)



The exponential function 2
Some standard properties of the exponential function 
y(x)=a^x (a ≥0) can be summarized as follows:

a0 = 1
a1 = a
a−x = 1

ax

ax+h = axah

ax−h = ax

ah

(ax)h = axh



The natural exponential function 1
The natural exponential function has base (e = 2.718281…), 
and, for better readability, can be written as EXP(x). Excel 
has a spreadsheet function, EXP(x), to perform the 
calculation
The value of (e) can be calculated with either of the 
following two equations:

e = 1 + 1 + 1
2! +

1
3! + . . .

e = limn→∞ 1 + 1
n

n



The natural exponential function 2
We shall see (when discussing logarithms) that any generic 
exponential function can be easily transformed into a natural 
exponential function
The symbol (e) was chosen by the great Swiss mathematician 
Leonard Euler, who is credited with much of the development 
of a consistent theory of exponential and logarithmic functions
The widespread use of the natural exponential function is due 
to the remarkably useful mathematical property that its 
derivative equals the function itself

d
dxe

x = ex



The log and the natural log functions 1
The logarithmic function is the inverse of the exponential 
function
In other words, given a real number (x > 0), its logarithm is 
the exponent of a base (a > 0) that will satisfy the following 
equations
In practice we use only two logarithms function, one with 
base-10 and the other with base-e (called the natural 
logarithmic function)
The base-10 logarithm is usually abbreviated as log, while 
the base-e is abbreviated with ln
Excel has two spreadsheet functions LOG10(x) and LN(x) to 
calculate base-10 and natural logarithms



The log and the natural log functions 2
Let us now explore, with four self-explanatory equations 
what we mean precisely when we say that the logarithmic 
and exponential functions are the inverse of each other

y = 10x

log(y) = x
y = ex

ln(y) = x



The log and the natural log functions 3
The logarithmic function, irrespective of its base, have the 
following properties, which are the mirror-image of those of 
the exponential function
In the following equations we use natural logarithms

ln(e) = 1
ln(ab) = ln(a) + ln(b)
ln a

b = ln(a)− ln(b)
ln(ab) = b ln(a)



The log and the natural log functions 4
Using the properties of the logarithmic function we can 
easily transform an arbitrarily-based exponential function 
into a natural exponential function
As an example, let use the future value (v), at a fixed 
compounded rate (y = 0.07), of a unit investment over a 
time-horizon (t = 10)

v = (1 + y)t = 1.967151
R = ln(1 + y) = 0.067658648
v = exp(Rt) = 1.967151



The log and the natural log functions 5
We have seen how logarithms can be used to express yields 
in ln-rates (R). This subject will be discussed in much detail 
in TN 0
Let us discuss one more application
Consider a time series that increases in a roughly exponential 
way
The problem with this series is that it cannot be used in a 
linear regression model (it is not linear)
Clearly, taking the log of the series solves the linearity 
problem



Graphical Illustration 1



Graphical Illustration 2



Graphical Illustration 3



Excel functions used in this note
LN(x): natural logarithm, with base (e)
LOG10(x): base 10 logarithm
SIN(x): The sine function of (x), 
where (x) is measured in degrees
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§1 – Spot yields



Spot yields 1
Spot yields (often referred to as zero-coupon yields) are 
defined with reference to fixed-income financial instruments 
reimbursed at maturity, without any intermediate payment 
of coupons and/or principal. For example:
Discount securities (treasury bills, commercial paper, zero 
coupon bonds, etc.)
Other short-term fixed-income instruments, such as: bank 
deposits (term deposits), coupon bonds with only the last 
coupon left, etc.



Spot yields 2
However, most long-term fixed income securities and loans 
typically pay coupons before maturity
Coupon payments also apply to widely used derivatives 
such as interest-rate and currency swaps
Therefore, we could reasonably think that spot yields are 
relevant only for short-term instruments, and for 
investment & trading strategies based on zero-coupon 
bonds



Spot yields 3
In reality, the spot yield approach is a lot more powerful 
than traditional yield-to-maturity analysis, and is now 
widely used to price and structure all fixed income 
securities
Derivatives and a number of structured products are priced 
based on spot and forward yields
In turn, forward yields are calculated based on spot yields
The spot yield approach helps in gaining a much better 
understanding of risk measures, such as duration and 
convexity
The spot yield approach is now being fully adopted by high 
level finance textbooks, such as Berk and De Marzo (2006)



§2 - Discount factors & value relatives



Discount Factors
Take a security that promises to pay unconditionally the 
amount V(t) at some future time, and is priced at P(0) 
today. We define its discount factor d(t) as d(t)=P(0)/V(t).
Example. If the price of a t-bill with face value of €100 is 
quoted at €97.50, its discount factor is 0.975
Using a ratio between future and present value is a first 
step towards comparing the returns on different assets, 
irrespective of the size of the investment
Note that the discount factor does not have a currency 
dimension. It is a pure number.



Value relatives
A discount factor is the present value of a unit payment due 
at a future time (t)
The future value at time-t of a unit investment at time-0 is 
known as value relative. We shall indicate it with v(t)
Note that, like the discount factor, the value relative does 
not have a currency dimension. It is a pure number

v(t) = V (t)
P (0) =

1
d(t)



Rates of Return I
Clearly, we need to measure returns taking into account 
the length of the investment horizon
A 6% return over one year is very different from a 6% 
quarterly return
In other words, we need some measure of the intensity of 
return per unit of time, something analogous to the concept 
of speed in physics
The intensity of return problem is solved by computing 
rates of return per unit of time. Market convention dictates 
that time is measured in years, for both short-term and 
long-term investments
While speaking of time dimension, let us recall that 
volatility is also measured with reference to a 1-year time-
horizon



Rates of Return II
Introducing the time element entails that we can use one of 
several different yield metrics. These metrics are not 
fungible; different applications require different metrics
Bank discount rate, used to quote treasury bills and 
commercial paper
Simple yield. This is a linear growth measure, used in 
money market transactions and in a large number of 
derivatives (FRAs, futures, swaps, etc.)
Classic compounded yield (this is not much used in 
derivative and risk management applications)
Log yield, also known as continuously compounded yield. 
Log yields are used in option pricing and risk management



§3 – Bank discount rate and simple interest



Bank discount rate 1
This is widely used as a quotation convention for short-term 
securities (original maturities not exceeding one year) such 
as t-bills and commercial paper
Despite its wide use it is somewhat of an historical relic. 
Hopefully one day it will be abandoned because it is a non-
transparent and redundant yield metric



Bank discount rate 2
The bank discount rate is a linear discount metric with 
reference to both the time-to-maturity (tenor) and the 
discount rate. See exhibits 1 & 2
Bank discount rates are never used as a growth rate
Indicating with (b) the bank discount rate, the discount 
factor, over a time-horizon (t ) is defined as d(t) = 1 – b · t



Bank discount rate 3



Bank discount rate 4



Bank discount rate 5 (numerical example)
Bank discount rates are quoted with reference to the 
“days/360” day count
This means that (t) equals “effective days / 360” for a 1-
year bill
Consider a 6-month t-bill, face value €1,000, quoted at 
4.00%
If we assume that the 6-month tenor we are considering 
has 183 days, the bill’s price will be: 

€979.6667 = €1,000 (1 - 0.04 × 183/360)



Simple Interest 1
The simple rate, which we shall denote with r is a linear 
growth metric v(t) = 1 + r·t
It is widely used for money market transactions, such as 
bank deposits
For example, the widely used LIBOR rates (London 
Interbank Offered Rate) are quoted as simple rates
LIBOR rates are quoted for a number of currencies ($, €, ₤, 
¥, etc.). Values quoted as simple rates (spot yields) are for 
maturities up to one year



Simple Interest 2 (numerical example)
Simple rates are quoted with reference to the “days/360”
day count for a number of currencies (including the U.S. 
dollar)
Example. We borrow $10,000,000 at 6.00% for one quarter 
(91 days).
The amount of interest due in three months time will be: 
$151,666.67 = $10,000,000 × 0.06 × 91 ÷ 360



Simple rate & discount factors 1
The simple rate can be used to compute discount factors and 
we can calculate discount factors using the simple rate
While v(t) is a linear function of time, d(t) clearly is not. 

d(t) = 1
v(t) =

1
1+(r)(t)



Why use simple rates 1
We need to use an apparently crude linear metric such as 
simple yield because it has two very important (and 
interrelated) properties that turn out to be very useful both 
when aggregating securities in a portfolio (this is also known 
as cross-section aggregation) and when dealing with 
expected returns
First, the simple rate of return on a portfolio equals the 
weighted average of the returns of the individual assets, 
where the weights are the initial invested values. This is 
shown in exhibit 4



Why use simple rates 2



Why use simple rates 3
Second, when considering the probability distribution of an 
investment’s outcomes, the expected yield of the possible 
outcomes E[r] equals the yield on the expected outcome.
Thus, the standard deviation of simple rates of return equals 
the standard deviation of the outcomes per unit invested. 
This is shown in exhibit 5



Why use simple rates 4



Simple rate time-series aggregation inconsistency
Unfortunately, simple yields are not adequate for describing 
time sequences of returns. This is known as the time 
aggregation problem



Illustration



Measuring currency returns using simple rates
The inadequate time-aggregation property of simple rates 
pops up when we want to measure currency returns
The problem, sometimes referred to as Siegel’s paradox, is 
that you get two different absolute values of currency 
returns, depending on whether you use direct or indirect 
quotations
This is shown in exhibit 7



Illustration



§4 – Classic compounded yield 
& U.S. bond yield quotation



Proportional growth 1
In most cases (especially for medium and long-term fixed 
income securities) we need a proportional yield metric. This 
means that the invested amount is assumed to grow over 
time, at a given yield rate, in proportion to the amount 
outstanding
This requires the use of an exponential function (it can be 
mathematically proved that only exponential functions will 
do)
In classic compounded yield we have the following equation, 
where (Y) is the annual compounded yield rate

v(t) = 1
d(t) = (1 + Y )

t

∴ Y = [v(t)] 1t − 1



Proportional growth 2 (Numerical Example)
Compute the discount factor and the spot yield for a 4 year 
zero coupon bond, face value of $100, priced at $80

d(4) = 80
100 = 0.80

v(4) = 100
80 = 1.25

Y (4) = (1.25)
1
4 − 1 = 5.7371



Proportional growth 3 (Graphical Illustration)



The U.S. bond yield quotation
In the U.S. bond market, yields are quoted as if they were 
capitalized twice a year. The historical origin of this peculiar
convention reflects the fact that in the U.S. (like in the UK) 
bonds traditionally pay interest twice a year
Therefore, when the bond trades at par, its yield to maturity 
equals the coupon rate. 
In other words, the U.S. bond yield convention means that 
the quoted yield is the semiannual yield multiplied by two. 
Indicating with the subscript (us) this metric, we have:

v(t) = (1 + YUS(t)
2 )2t

∴ YUS(t) = 2(
√
1 + Y − 1)



§5 – Log yield 
(continuously compounded yield)



Log yield 1
With classic compounded yield, the yield rate appears in the 
base of the exponential function. With log yield, that we shall 
indicate with (R), the yield rate is in the exponent of the 
natural exponential function
When using log yields, day count is act/365 (elapsed days/ 
365)

v(t) =
1

d(t)
= exp(Rt) = eRt

∴ R = ln(v(t))

t
=
− ln(d(t))

t



Log yield 2 (Numerical Example)
Example of log yield calculation. A one-year t-bill is priced at 
95.00. Its log yield is computed as follows

d(t) =
95

100
= 0.95

∴ R = − ln(d(t))
t

=
− ln(0.95)

1
= 5.1293%



Continuously compounded yield 1
Log yield is often denoted as ‘continuously compounded 
yield’ because the value relative v(t) that you obtain using 
the log rate (R) is identical to that obtained using (R) simple 
rate compounded an infinite number of times over the 
interval [0, t]
The following result is proved in the appendix:

eR = lim
n→∞

1 +
R

n

n



Continuously compounded yield 2 
(numerical example)



A common misconception 1
You are likely to come across the statement that continuous 
compounding should be used only when interest is capitalized 
with a very high frequency
For example, let us quote from a well-known fixed income 
textbook/professional manual: 
“Eurobonds pay annual coupons, U.S. treasuries’ coupons are 
semiannual, and GNMAs make monthly payments. As the 
coupons become more frequent, it becomes more accurate to 
assume exponential continuous compounding.” (GNMAs are 
bonds issued by the Government National Mortgage 
Association, an agency of the U.S. government.)



A common misconception 1
This does not make sense
Given a value relative v(t) , the log rate (R) is simply an 
efficient way to measure the rate of growth (positive or 
negative), and has nothing to do with the coupon payment 
frequency
In fact, we use log yields for all sort of securities, including
zero coupon bonds (which have no coupon payment at all)



Log yields and time-series aggregation 1
Log yields (and classic compounded yields) have a coherent 
time aggregation
This is shown in the following exhibits



Log yields and time-series aggregation 2



Log yields and currency returns



Log rates and cross-section aggregation 1
The flip side of the time series aggregation consistency is 
that log rates cannot be used for cross section aggregation, 
as shown in exhibit 13
This is due to the convexity of log rates



Log rates and cross-section aggregation 2



§6 – Key terms 
Bank discount rate 
Binomial diffusion
Commercial paper
Continuously compounded yield
Coupon payments
Cross-section aggregation 
Discount factor 
Forward yields 
FRAs
Futures 
LIBOR rates

Proportional growth
Simple yield
Spot yields
Swaps
Tenor
Time-series aggregation
Time-to-maturity
Treasury bills
Value relative
Yield-to-maturity (YTM)
Zero coupon bonds
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