Life-annuities reserving in Algeria: comparison of some mortality models

Farid FLICI

1Division of Human Development and Social Economics
Centre of Research in Applied Economics for Development, CREAD, Algiers - Algeria: farid.flici@cread.edu.dz

Longevity 11, Lyon, 7 - 9, September 2015
Outline

- Motivation
- Methodology
- Data
- Best model selection
- Construction of a prospective life-table
- Simulation with life annuities
- Main funding
During the past half-century, the Algerian population has earned about 30 years in life expectancy at birth and more than 6 years in life expectancy at 50 (ONS, 2012).

Life-insurance calculations in Algeria are still based on static life table constructed on old mortality data (CNA, 2004).

In a previous works (Flici, 2013. Flici, 2014-a, Flici, 2015), we have tried to construct prospective life-tables for the Algerian population applying Lee carter (1992) and variants(RH and APC).

The objective of the present paper is to propose a dynamic life table for the Algerian population aged 50 years and over.

We aim to improve the quality of the fitting / forecasting by a comparison of a set of mortality models (LC and variants VS CBD and variants).
Background in mortality modeling
Lee Carter model and variants

- **Lee and Carter, (1992).** M1:

\[
\ln(\mu_{xt}) = \alpha_x + \beta_x \ast \kappa_t + \xi_{xt}
\]

- **Renshaw and Haberman (2006)** M2: M1 + Cohort effect:

\[
\ln(\mu_{xt}) = \alpha_x + \beta_x^{(1)} \ast \kappa_t + \beta_x^{(2)} \ast \gamma_{t-x} + \xi_{xt}
\]

- **Currie (2006):** M3 = simplified M2 with constant \(\beta_t^{(1)} \) and \(\beta_t^{(2)} \):

\[
\ln(\mu_{xt}) = \alpha_x + \frac{1}{n} \kappa_t + \frac{1}{n} \gamma_{t-x} + \xi_{xt}
\]
Background in mortality modeling
Cairns-Blake-Dowd model and variants

- **CBD Model (linear form):**

\[
\ln\left(\frac{q_{xt}}{1-q_{xt}}\right) = \beta_t^{(1)} + \beta_t^{(2)} (x - \bar{x}) + \xi_{xt}
\]

- **CBD model with Cohort effect:** M6 = M5 + Cohort effect:

\[
\ln\left(\frac{q_{xt}}{1-q_{xt}}\right) = \beta_t^{(1)} + \beta_t^{(2)} (x - \bar{x}) + \gamma_{t-x} + \xi_{xt}
\]

- **CBD model- Quadratic form:** M7:

\[
\ln\left(\frac{q_{xt}}{1-q_{xt}}\right) = \beta_t^{(1)} + \beta_t^{(2)} (x - \bar{x}) + \beta_t^{(3)} ((x - \bar{x})^2 - \sigma_x^2) + \xi_{xt}
\]

- **CBD model - quadratic form + cohort effect:** M7bis = M7 + cohort effect

\[
\ln\left(\frac{q_{xt}}{1-q_{xt}}\right) = \beta_t^{(1)} + \beta_t^{(2)} (x - \bar{x}) + \beta_t^{(3)} ((x - \bar{x})^2 - \sigma_x^2) + \gamma_{t-x} + \xi_{xt}
\]
The first Algerian life-table based on the civil registration data has been constructed in 1977 by The Algerian office for National Statistics (ONS).

Some life tables were closed-out before the open age group [80 and +]. For the period 1983-1987, the closing age was [70 and +]. For the period 1993-1996, the published life-tables were closed-out at the age group [75 and +]. For the rest, it was [80 and +] or higher.

In a previous work (Flici, 2014-b), we proposed to complete the missing data using a modified Lee Carter model with age-time segmentation.
The single-age death rates were interpolated by the Karup-king formula.

M1: recall

In (Lee and Carter, 1992), we first estimate $\alpha_x: \alpha_x = \ln(\prod_{t=T_1}^{T_n} (\mu_{xt}))^{\frac{1}{T_n-T_1}}$

In second, we decompose the residual matrix into two vectors:

$\ln(\mu_{xt}) - \alpha_x \approx \hat{\beta}_x \hat{k}_t$ with $\sum_{x=x_1}^{x_n} \beta_x = 1$ and $\sum_{t=T_1}^{T_p} \kappa_t = 0$

A two stages decomposition process was proposed. In the first stage we decompose the residual matrix by SVD minimising:

$\text{min}S(1) = \sum_{x=0}^{n_p, t=1} [\ln(\mu_{xt}) - \alpha_x - \hat{\beta}_x \hat{k}_t]^2$

In the second estimation stage, $\hat{\beta}_x$ and \hat{k}_t are adjusted to fit the observed number of deaths at every year (t). $\text{min}S(2) = \sum_{t=1}^{T_p} \sum_{x=0}^{n-1} [\exp(\alpha_x + \hat{\beta}_x \hat{k}_t)L_{xt} - D_{xt}]$

D_{xt}: observed number of deaths at age x and time t,

L_{xt}: the exposure to the death risk at age x and time t (population at risk).
Best model selection: some notes

- Models to be compared (Lee-Carter, CBD): M1, M2, M3, M5, M6, M7, M7*

Selection criteria:

- Quantitative: Weighted least squared errors, BIC, AIC.
- Qualitative: Robustness, predictive capacity, sex-differential mortality, Forecasted life expectancy, Regularity.

In the way to improve the fitting quality for all the models, we propose some modifications related to the estimation process:

- In *Lee Carter*(1992), the alpha parameter α_x is defined to be the mean over time of the ln of the central death rate. Some authors accepted that this relation can be partially respected. In the way to improve the quality of the model,
M1: recall

Wilmoth (1993) proposed a one stage decomposition process based on the Weighed Least Squared Errors. (Weighted SVD)

\[
\text{min } S = \sum_{x=0, t=1}^{n,p} W_{xt} [\ln(\mu_{xt}) - \alpha_x - \hat{\beta}_x \ast \hat{\kappa}_t]^2
\]

The weight \(W_{xt} \) can be the observed number of deaths at each point \(x \) and \(t \) \(D_{xt} \).

Renshaw and Haberman (2006) used the original values of \(\alpha_x \) as a starting values which was re-estimated by the same optimization process with all the parameters in RH model. To insure the same fitting quality for all models.

We use XL-Solver for all applications of the present work.
M1: results

Figure: M1- Parameters estimation (1977-2013)

- Mortality trend index: the two populations marks a high mortality level by the beginning of the black decade (1990th).
M2: results

Figure: M2- Parameters estimation (1977-2013)

- alpha starting value, $\frac{1}{30}$: starting value for $\beta_x^{(1)}$ and $\beta_x^{(2)}$. No starting value for time and cohort components.
the transition from M2 to M3 was by introducing $\beta_{x}^{(1)} = \beta_{x}^{(2)} = \frac{n}{n}$.
- alpha starting value, no starting value for time and cohort component
M5: results

Figure: M5- Parameters estimation (1977-2013)

Statting values:

\[k_t^{(1)} = \ln \left(\frac{q_{65,t}}{1-q_{65,t}} \right) \]

\[k_t^{(2)} = \frac{\ln \left(\frac{q_{79,t}}{1-q_{79,t}} \right) - \ln \left(\frac{q_{50,t}}{1-q_{50,t}} \right)}{30} \]
M6: results

- Starting Values: $k_t^{(1)}$ and $k_t^{(2)}$ estimated in M5. No starting value for γ_{t-x}

Figure: M6- Parameters estimation (1977-2013)

- Cohort effect or cosmetic effect: what about forecasting?
- Same form was observed for the Belgian population \((\text{Mendes et Pochet, 2012})\)
M7: results

Figure: M7- Parameters estimation (1977-2013)

- **Startting Values:** $k_t^{(1)}$ and $k_t^{(2)}$ estimated in M5. No starting value for $k_t^{(3)}$
M7*: results

Figure: M7*- Parameters estimation (1977-2013)

- Starting Values: $k^{(1)}_t$, $k^{(2)}_t$, $k^{(3)}_t$ estimated in M7 and γ_{t-x} estimated in M6.
M7 and M7* are respectively an extension to M5 and M6: No advantages.

We keep, by considering fitting quality and coherence between males and females: M6 - M5 - M2 - M3 - M1.
we reestimated the parameters of the three models for the period 1977 - 2010, on the basis of the obtained results, we do a forecast for the period [2011 - 2013], we compare the forecasted and the observed values.
M1: Time index projection

- comparison between three models: AR(1), AR(2) and Arima (0, 1, 0)
- The best model is AR(2)

Figure: M1: time mortality index forecasting

- it leads to incoherent forecasting if we compare males and females;
- The idea is to use only the period [1998 - 2010]
Motivation

Methodology

Data

Best model selection

Construction of a dynamic life-table

Life-annuities pricing

Main Funding

Fitting Quality

Predictive capacity

Coherence in forecasting

M1: Time index projection (2)

- model Arima (0, 1, 0)
- period: 1998 - 2010

Figure: M1: time mortality index forecasting

![Figure: M1: time mortality index forecasting](image-url)
Figure: M1: Observed VS Forecasted
M2: Time / Cohort effect projection

Time index projection: same as in M1
Cohort effect projection: The best model is AR(2)

Figure: M2: Cohort effect projection
Figure: M2: Observed VS Forecasted
The best model is ARIMA(0,1,0) with drift (1998 - 2010)
adverse to results obtained with M1 and M2, $k_t^{Female} \leq k_t^{Males}$.

Figure: M3 : time mortality index forecasting

- Cohort effect : same as in M2
M3: Observed VS Forecasted

Figure: M3: Observed VS Forecasted
The best model is AR(1)

Figure: M5 k(1) projection
The best model is AR(1)

Figure: M5 $k(1)$ projection
Figure: M5: Observed VS Forecasted
The best model is Random walk with drift for $K(1)$ and AR(1) for $K(2)$

Figure: M6 $k(1)$ and $k(2)$ forecast
M6: Cohort effect projection

- Cohort effect stationarized by differentiation (1st difference) : ARIMA(1,2,0)

Figure: M6 cohort effect forecast
Figure: M6: Observed VS Forecasted
M3 is the best model regarding to the (short term) predictive capacity, followed by M6.
Long term forecasting coherence

- We forecast mortality until 2100;
- we observe the sex-differential mortality by the horizon of the forecast
- Coherence: Males mortality is almost sup than Females Mortality
- We compare to the observed sex ratio (1977-2013): $SR_{xt} = \frac{\ln(u_{xt}^{Females})}{\ln(u_{xt}^{Males})}$
- finally, we compare to the observed trend of the sex mortality ratio observed during the period [2000-2013].
Figure: expected Mortality sex ratio (2100)
Construction of a dynamic life-table

- We use M3 and M5
- The projected life tables are closed-out with Denuit and Gouderniaux Model (2005) without age limit constraint:

\[\ln(q_x) = a + bx + cx^2 + \xi_x \]

parameters a, b and c are estimated on the age group [50 - 79]
Projected mortality surface: M3 VS M5

Figure: projected mortality surfaces: M3 VS M5
Residual life expectancy: M3 VS M5

Figure: projected life expectancy at age (50) : M3 VS M5
Simulation with life annuities pricing

- Annual rente - 1 USD - payable by January, 1st until death.
- The price of this life-annuities and its evolution over time for individual aged 50:

Figure: Price of Life annuity in 2015 (males - Females)
- Model selection: combine quantitative and qualitative criteria
- The irregularity of the data during the 70's and 80's and the events of the terrorism decade = forecast the time mortality trends (all model) only on the basis of a short observation period (1998 - 2013): is it sufficient?
- The cohort effect in CBD models doesn't have a regular trend (VS LC models) = need to better separate the Cohort effect from the residual term,
- The bad quality of M6 compared with M5: related to the forecasting of the cohort effect (look for more adapted method)
- The results and conclusions are only confirmed with the considered age group (50 - 80), more regular and coherence results can be obtained when we change the age group (Flici, 2013: age 60-80 and Flici, 2015: age 0-80)
Thank you !!!!