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Laura Ballotta∗

Faculty of Actuarial Science and Insurance, Cass Business School,
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December 2006

Abstract

The aim of this paper is to provide an assessment of alternative frameworks for
the fair valuation of life insurance contracts with a predominant financial compo-
nent, in terms of impact on the market consistent price of the contracts, the options
embedded therein, and the capital requirements for the insurer. In particular, we
model the dynamics of the log-returns of the reference fund using the so-called Mer-
ton process (Merton, 1976), which is given by the sum of an arithmetic Brownian
motion and a compound Poisson process, and the Variance Gamma (VG) process
introduced by Madan and Seneta (1990), and further refined by Madan and Milne
(1991) and Madan et al. (1998). We conclude that, although the choice of the
market model does not affect significantly the market consistent price of the overall
benefit due at maturity, the consequences of a model misspecification on the capital
requirements are quite severe.

Keywords: fair value, incomplete markets, Lévy processes, Monte Carlo simula-
tion, participating contracts, solvency requirements

1 Introduction

Our problem is motivated by the recent move towards market consistent valuation of in-
surance companies’ assets and liabilities for accounting and solvency purposes. Although
asset prices can be observed directly in the financial market, in general insurance liabil-
ities are not fully traded, which implies the lack of proper market prices. Consequently,
according to the regulators’ directives, insurance companies need to develop suitable (in-
ternal) models which incorporate both market risk and insurance risk, and are market
consistent, i.e. are based on the up-to-date information available at the time of valuation.
These models will be used to generate market consistent distributions for the future cash
flows originated by the relevant liabilities, from which a proxy for the market price can be

∗E-mail: L.Ballotta@city.ac.uk
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extracted. In terms of how this is implemented in practice, we note that two approaches
are currently being debated (see, for example, FSA, 2006): on the one hand, the market
value of the liability can be calculated on the basis of the fair value principle, which, using
the terminology of contingent claim pricing theory, is equivalent to risk neutral valuation.
This approach should be adopted when hedges are readily available, like in the case of
financial risks. In each case where risks are not hedgeable (like, for example, in the case
of some insurance risk), the market value can be calculated as the sum of the expected
present value of the liability itself (the so-called best estimate), and an arbitrary but
quantified risk margin. Regulators agree on the use of the risk free rate of interest as
discount factor to reflect the time value of money (CEIOPS, 2006).

In terms of solvency, instead, the market values of assets and liabilities need to be
used to calculate the target capital or Solvency Capital Requirement (SCR); thus, the
SCR should reflect the amount of capital required to meet all obligations over a specified
time horizon to a defined confidence level. Hence, the calculation of the target capital
should be based on suitable risk measures, like VaR and TVaR, over a 1-year time horizon
(CEIOPS, 2006).

Given the regulatory framework described above, one of the key factors the insurance
companies need to deal with carefully is the development of a suitable valuation model
incorporating both the market risk and the insurance risk. The features and the complex-
ity of this model will depend on the nature of the liability to be priced; for example, very
common policy types in the insurers’ portfolio of products are the so-called participat-
ing contracts with minimum guarantee, which are essentially path-dependent contingent
claims and, consequently, particularly sensitive to the underlying dynamics of the asset
returns.

In the light of the discussion above, the aim of this paper is to analyze the impact
on the market consistent price and the target capital of financially sound models for the
market risk; to this purpose, we consider the example of a participating contract with
minimum guarantee. In recent years, a series of studies have applied classical contingent
claim theory to different types of participating contracts, building on the pioneering work
of Brennan and Schwartz (1976) on unit-linked policies; thus, amongst some of the most
recent works, we would cite Bacinello (2001, 2003), Ballotta et al. (2006.a,.c), Grosen and
Jørgensen (2000, 2002), Guillén et al. (2004), and Tanskanen and Lukkarinen (2003). As
all these contributions use a Black-Scholes (1973) framework, based on the assumption
of a geometric Brownian motion model for the dynamics of the asset fund backing the
insurance policy, Ballotta (2005), Kassberger et al. (2006) and Siu et al. (2006) extend the
pricing framework to the case of a market specification based on different Lévy processes.

In his respect, this contribution aims at extending these more recent works in two
directions. Firstly, we want to assess the relevance of the (financial) model error by cal-
culating the impact on the contract fair value of neglecting or not correctly capturing
market shocks. Hence, we compare the performance of three different assumptions for the
dynamic of the log-returns of the reference portfolio backing the insurance policy; specifi-
cally, we use the traditional Brownian motion, which provides the “standard” model, and
two Lévy processes which allow us to depart from the assumption of normal distributed
log-returns, and incorporate market shocks. The first alternative is the so-called Mer-

2



ton process (Merton, 1976), given by the sum of an arithmetic Brownian motion and a
compound Poisson process; the second alternative is the Variance Gamma (VG) process
introduced by Madan and Seneta (1990) and further refined by Madan and Milne (1991)
and Madan et al. (1998). Secondly, we assess the mispricing generated by the above
mentioned models not only with respect to the fair value of the insurance policy, but also
in terms of the target capital. The numerical experiments carried out show that, although
the choice of the driving process does not affect significantly the market consistent value of
the contract, the impact of the model misspecification becomes relevant when the target
capital is involved, since this quantity is computed using the tails of the reference fund’s
distribution.

The paper is hence organized as follows. In the next section, we present the features of
the insurance contract considered for this analysis, and we also introduce the framework
for the fair valuation and the calculation of the target capital. We then provide in section
3 the market setup and the resulting market consistent price. In section 4, we describe and
test a number of numerical algorithms available to perform the required computations,
the results of which are discussed in section 5. The last section presents our concluding
remarks on few issues related to the pricing procedure and the model setup.

2 The participating contract: fair valuation and cap-

ital requirements

In order to assess the impact of the choice for the market model on the balance sheet of
the insurance company and the corresponding capital requirements, we make use of an
example based on a participating contract with minimum guarantee. More specifically,
for ease of exposition, we adopt the same contract considered in Ballotta (2005); however,
we consider the full specification of the policy, allowing for both leverage and terminal
bonus rate (like in Ballotta et al., 2006.c, for example). Thus, at maturity the policy pays
a guaranteed benefit which incorporates the minimum guarantee and a scheme for the
distribution of the annual returns earned by the company’s assets (called the reversionary
bonus in the UK insurance industry), together with a discretionary benefit which depends
on the insurer’s final surplus, i.e. the terminal bonus. The accumulation scheme for
the guaranteed benefit is based on the smoothed asset share approach. This policy is
representative of a typical UK accumulating (unitized) with profit contract. Further,
since our focus is on the market model, in this analysis we ignore lapses and mortality.

The features of the participating contract design under analysis will be described in
the next section. Based on these features, we proceed to identify the options embedded
in the insurance policy, for which we develop a general framework for the calculation of
the fair value, and a possible approach for the calculation of the target capital.

2.1 Contract design

As mentioned above, the policy is initiated at time t = 0 by the payment of a single
premium, P0, from the policyholder to the insurance company. The premium is invested in

3



the company’s assets, A, together with the contribution from the shareholders, E0; hence,
P0 = ϑA0 and E0 = (1 − ϑ) A0, where ϑ ∈ (0, 1] represents the policyholder contribution
or leverage coefficient (Ballotta et al., 2006.c), and A0 is the value of the insurer’s assets
at time t = 0. The contract entitles the policyholder to receive at maturity, T , an overall
benefit given by the guaranteed component, P (T ), which includes the minimum guarantee
and a scheme for the distribution of the annual returns generated by the reference fund
A, and a discretionary component representing the terminal bonus

γR (T ) = γ (ϑA (T ) − P (T ))+ , (1)

where γ ∈ [0, 1] is the terminal bonus rate. Hence, the terminal bonus redistributes part
of the final surplus generated by the policyholder share in the insurance company.

As to the accumulation scheme governing the guaranteed benefit, P (T ), as mentioned
above we follow Ballotta (2005) and adopt the smoothed asset share scheme, so that every
year after inception the guaranteed benefit is calculated as

P (t) = αP 1 (t) + (1 − α) P (t − 1) , α ∈ (0, 1) , t > 0,

P (0) = P0,

where P 1 (t) is the unsmoothed asset share defined by

P 1 (0) = P0,

P 1 (t) = P 1 (t − 1) (1 + rP (t)) ,

rP (t) = max

{

rG, β
A (t) − A (t − 1)

A (t − 1)

}

, (2)

and rG ∈ R
++ and β ∈ (0, 1) are the guaranteed rate and the participation rate respec-

tively. Therefore, at maturity, T , the value of the policy reserve is

P (T ) = P0

[

α
T−1
∑

k=0

(1 − α)k
T−k
∏

t=1

(1 + rP (t)) + (1 − α)T

]

. (3)

If, at the claim date, the insurance company is not capable of paying the liability
due, then the policyholder sizes the available assets, whilst the shareholders “walk away”
empty handed. This implies that the payoff at expiration of the participating contract is

Π (T ) = P (T ) + γR (T ) − D (T ) , (4)

where D (T ) = (P (T ) − A (T ))+ is the payoff of the so-called default option.

2.2 Fair valuation

If the insurance company aims at setting an initial premium, P0, which is fair, in the sense
that it does not originate arbitrage opportunities (and therefore is market consistent), then

P0 = Ê

[

Π̃ (T )
]

,
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where Ê denotes the expectation taken under some risk neutral probability measure P̂,
and Π̃ represents the payoff at maturity discounted at the current risk free rate of interest.
Let us define

V P (0) = Ê

[

P̃ (T )
]

; V R (0) = Ê

[

R̃ (T )
]

; V D (0) = Ê

[

D̃ (T )
]

;

then, it follows from equation (4) that the fair value condition returns

P0 + V D (0) = V P (0) + γV R (0) . (5)

Equation (5) shows that the price of the default option represents an additional pre-
mium that the policyholder has to pay in order to gain an “insurance” against a possible
default of the company; in this sense, the default option premium can be then interpreted
as a safety loading (see Ballotta et al,. 2006.a, .c, and Bernard et al., 2006, for a more
detailed discussion of this point).

Further, equation (5) also implies that the fair terminal bonus rate is given by

γ =
P0 + V D (0) − V P (0)

V R (0)
.

Hence, if the policyholder’s contribution is 100% of the reference fund (i.e. ϑ = 1), then
γ = 1. This is consistent with intuition, since in this case the policyholders would be the
only group contributing to the financing of the reference portfolio, and as such they would
have the right to receive the entire surplus of the company; consequently they would fix
the terminal bonus rate at its maximum value.

2.3 Target capital

As previously mentioned, the market consistent values of assets and liabilities related to
insurance contracts are the key ingredients not only for the preparation of the company’s
balance sheet, but also for the calculation of the capital requirements.

For ease of exposition, in this paper the approach for the calculation of the target
capital is based on the comparison between the so-called Risk Bearing Capital (RBC) and
the target capital (FOPI, 2004). The RBC is defined as the difference between the total
value of the assets and the market consistent price of the liabilities. Thus, we notice that,
according to equation (5), the total value of the assets of the insurance company is given
by the reference portfolio and the safety loading, i.e. the default option premium, which,
in the following, we assume to be invested in the same fund backing the participating
contract (in this respect, in this study we assume that the insurance company is passive
in terms of risk management). Therefore, the RBC at time t ∈ [0, T ] is given by

RBC(t) = Atot(t) − V P (t) − γV R(t),

where Atot is the total value of the insurer’s assets, such that Atot(0) = A0 + V D(0). The
fair value condition (5) implies that RBC(0) = A0 (1 − ϑ). We note that, based on our
model, the RBC is a stochastic process evolving under the real probability measure, which
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depends on the fair value process of the liabilities defined as a conditional expectation
under the risk neutral martingale measure.

The target capital is, instead, based on the calculation of a downside risk measure
relative to the change in the RBC over a 1 year time horizon. In order to take into
account the time value of money, discounting at the risk free rate is applied. This reflects
the implicit assumption that the target capital should represent the amount that, once
invested in the money market account, guarantees enough capital strength to maintain
appropriate policyholder protection and market stability with a certain confidence level.
Therefore, the target capital at year t is based on the variation

˜RBC(t + 1) − RBC(t).

For ease of exposition of the results, we prefer to construct a solvency index expressing
the change in the RBC as a percentage of the value of the total assets of the insurance
company at the valuation time, i.e.

st =
˜RBC(t + 1) − RBC(t)

Atot(t)
.

In this study, we focus our attention on the TVaR (or Tail Conditional Expectation)
with confidence level 1 − x, i.e.

TV aR (x; t, t + 1) := −E (st| st ≤ cst
(x; t, t + 1)) ,

where cst
is the VaR of the solvency index st with confidence level 1 − x.

In order to proceed to the actual calculation of the contract market consistent value,
and the related distributions of the assets and the liability which are needed to obtain the
target capital, we need to specify the relevant market model and the stochastic process
driving the reference portfolio. This is covered in the next section, in which we also derive
the valuation framework.

3 Market consistent pricing of the embedded options

In order to price the components of the participating contract shown in section 2, we
need to define a possible dynamic for the evolution of the price of the fund A. We note
at this point that there is no specific recommendation from the regulators as to which
model should be adopted; however, a common benchmark seems to be the RiskMetrics
model (Mina and Xiao, 2001) with a given number of factors capturing the several sources
of risk in the market. The Swiss Solvency Test (FOPI, 2004), for example, recommends
a RiskMetrics-based standard asset model with 75 risk factors, including interest rates,
FX rates, implied volatilities, credit spreads and hedge funds amongst the others (Keller,
2005). However, such a complex model creates a significant challenge in terms of intuition
and understanding (which, consequently, makes transparency of information more difficult
to achieve). For this reason, in this paper we prefer to adopt a simpler, parsimonious
approach to the modelling of the reference portfolio evolution. More specifically, we rely
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on the recent advances in the area of financial mathematics, and choose as a standard
model the traditional Black-Scholes paradigm. Consequently, assets’ log-returns follow
a normal distribution which, in spirit, is very similar to the main assumption of the
RiskMetrics model. However, since this assumption has been proven not to hold in real
markets, we also consider two alternative asset models that depart from the assumption
of Gaussian log-returns in order to incorporate market shocks. These two alternatives
make use of the Merton process (Merton, 1976) and the Variance Gamma (VG) model
(Madan et al., 1990, 1991, 1998).

The idea is to assess the impact of the model error when shocks are either neglected, or
not correctly captured by the driving process. In the following sections, we introduce the
three asset models and analyze their most relevant features; we then proceed to discuss
the issue of market incompleteness originated by the inclusion of shocks in the model, and
hence we show how the participating contract introduced in section 2 can be evaluated.

3.1 Market modelling

Consider as given a filtered probability space
(

Ω,F , {Ft}t≥0 , P
)

under the real probability
measure P, and assume a frictionless market with continuous trading, in which a risk free
security B (t) = ert, r ∈ R

++, is traded. The insurance company’s reference portfolio is
then assumed to be given by

A (t) = A (0) eL(t),

A (0) = A0,

where L is the process governing the log-returns.

The standard model As mentioned above, the standard asset model proposed in this
note agrees with the Black-Scholes paradigm, so that

L (t) = µt + σAW (t) ,

where W is a one-dimensional standard Brownian motion under the real probability mea-
sure P, µ ∈ R is the mean log-return and σA ∈ R

++ is the instantaneous volatility. It
follows that the expected rate of growth on the fund is µ + σ2

A/2.
It is, however, a well known fact that asset log-returns exhibit fatter tails than those

accommodated by the normal distribution, implying a misunderestimation of the likeli-
hood of extreme events.

The Merton process-based model In order to take into account the occurrence of
market shocks, the first alternative we propose is based on the so-called Merton process
(Merton, 1976), which is given by the sum of a Brownian motion with drift and an
independent compound Poisson process. Thus

L (t) = (n − λµX) t + σW (t) +

N(t)
∑

k=1

X (k) , n, µX ∈ R, σ ∈ R
++, (6)
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where W is a one-dimensional standard P-Brownian motion capturing the “marginal”
price changes; X ∼ N (µX , σ2

X) models the size of the jumps, i.e. the “abnormal” changes
in the prices due to the arrival of important new information, whose flow is regulated
by a Poisson process, N , of rate λ ∈ R

++. Note that W , N and X are assumed to be
independent one of the other, which implies that L is a Lévy process. In particular, the
characteristic function of the Merton process is

φL (u; t) = e
t
�
iu(n−λµX)−u2 σ2

2
+λ(φX(u)−1)

�
, (7)

φX (u) = eiuµX−u2 σ2
X
2 ;

consequently, the characteristic triplet of the process L is (n − λµX , σ, υM (dx)), with

υM (dx) =
λ

σX

√
2π

e
−

(x−µX)2

2σ2
X dx.

Hence, the Merton process is a finite activity process. It follows that the mean log-return
is n ∈ R, whilst the instantaneous variance is σ2 + λ (µ2

X + σ2
X) and the expected rate of

growth on the fund A is (n − λµX) + σ2/2 + λ (φX (1) − 1). The Merton process exhibits
skewness and kurtosis as described by the Pearson index of asymmetry

γ1 =
λµX (µ2

X + 3σ2
X)

(σ2 + λ (µ2
X + σ2

X))
3/2

,

and the excess of kurtosis index

γ2 =
λ (µ4

X + 6µ2
Xσ2

X + 3σ4
X)

(σ2 + λ (µ2
X + σ2

X))
2 .

Finally, we observe that

sign (γ1) = sign (µX) ;

γ2 > 0.

Therefore, the distribution of the Merton process is positively or negatively skewed ac-
cording to the sign of the expected jump’ size; further, it is leptokurtic.

The Variance Gamma process-based model A recent analysis offered by Carr et
al. (2002) shows that, in general, market prices lack of a diffusion component, as if it was
diversified away; consequently, they conclude that there is an argument for using pure
jump processes, particularly of infinite activity and finite variation given their ability
to capture both frequent small changes and rare large jumps. A process of this kind
used in finance due to its analytical and numerical tractability is the Variance Gamma
(VG) process, which is a normal tempered stable process obtained by time changing an
arithmetic Brownian motion by a gamma subordinator. We follow this approach and
define the second alternative asset model by

L (t) = (m − θ) t + Z(t), m ∈ R, (8)
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where
Z(t) = θτt + ξW (τt), θ ∈ R, ξ ∈ R

++,

is the VG process, W = (Wt : t ≥ 0) is a standard Brownian motion and τ = (τt : t ≥ 0)
is a gamma process, with parameters a, b > 0, and independent of W . The parameter a
represents the time scale of the process, i.e. it alters the intensity of the jumps of all sizes
simultaneously, whilst the parameter b captures the decay rate of big jumps. It is easy to
show that the characteristic function of the process L is

φL (u, t) = eiu(m−θ)t

[

b

b − iuθ + u2 ξ2

2

]at

. (9)

The VG process has been introduced by Madan and Seneta (1990), and has been
further refined by Madan and Milne (1991) and Madan et al. (1998); in particular,
these authors consider as subordinator a gamma process with unit mean rate, i.e. with
parameters a = b = 1/k, where k ∈ R

++ is the variance rate. For this parametrization,
Z is V G (θ, ξ, 1/k, 1/k), and therefore

φL (u, t) = eiu(m−θ)t

[

1

1 − iuθk + u2 ξ2

2
k

]
t
k

. (10)

Note that equation (10) implies that the VG process is well defined for

−θ −
√

θ2 + 2ξ2

k

ξ2
< ℜ (z) <

−θ +
√

θ2 + 2ξ2

k

ξ2
z ∈ C.

The VG process Z can also be represented as the difference between two independent
gamma processes, which follows from the fact that

φZ (u, t) =

[

1

1 − iuθk + u2 ξ2

2
k

]
t
k

=

[

b+

b+ − iu

]
t
k
[

b−
b− + iu

]
t
k

, (11)

where

b+ =
2

k

(

√

θ2 + 2ξ2

k
+ θ

) ,

b− =
2

k

(

√

θ2 + 2ξ2

k
− θ

) .

Consequently, the Lévy measure of the process Z(t) is given by

υZ (dx) =
1

k
|x|−1 (

e−b+x1(x>0) + eb−x1(x<0)

)

, (12)
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and the characteristic triplet of the process L is (m − θ, 0, υZ (dx)).
In this model, the mean log-return is given by m ∈ R; the instantaneous variance is

(ξ2 + θ2k); the expected rate of growth on A is m − θ − 1
k

ln
(

1 − θk − ξ2

2
k
)

. As far as

skewness and kurtosis are concerned, the Pearson index of asymmetry and the excess of
kurtosis index are respectively

γ1 =
(3ξ2θk + 2θ3k2)

(ξ2 + θ2k)3/2

γ2 =
(3ξ4k + 12ξ2θ2k2 + 6θ4k3)

(ξ2 + θ2k)2 .

Therefore, the VG distribution is positively or negatively skewed according to whether θ >
0 or θ < 0, since sign (γ1) = sign (θ); further, we observe that γ2 > 0 and, consequently,
the distribution is leptokurtic as well.

3.2 Pricing the embedded options

The models proposed in the previous section have as common feature the fact that the
driving process is a Lévy process, i.e. a process with independent and stationary in-
crements. This actually allows us to reduce the problem of obtaining the price of the
guaranteed benefit P (T ) to the pricing of a European call option.

The payoff equation (3), in fact, implies that

P (T ) = α
T−t−1
∑

k=0

(1 − α)k P 1 (t)
T−t−k
∏

i=1

(1 + rP (t + i)) + (1 − α)T−t P (t) ;

therefore

V P (t) = Ê

[

P̃ (T )
∣

∣

∣
Ft

]

= αP 1 (t)
T−t−1
∑

k=0

e−rk (1 − α)k
T−t−k
∏

i=1

Ê
[

e−r (1 + rP (t + i))
∣

∣ Ft

]

+e−r(T−t) (1 − α)T−t P (t) . (13)

Because of equation (2), it follows that

Ê
[

e−r (1 + rP (t + i))
∣

∣ Ft

]

= e−r (1 + rG) + Ê

[

e−r
(

βeL′(1) − (β + rG)
)+

]

, (14)

where L′ denotes an independent copy of the Lévy process L. Analytical formulae are
hence available for this part of the participating contract (see, for example, Ballotta,
2005); we note, though, that it is not possible to derive analytical formulae for both the
terminal bonus and the default option given the complex recursive nature of P (T ), and
their high dependency on the path of the reference fund A; hence we resort to Monte Carlo
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simulation in order to approximate the price of these two components of the insurance
contract. We need however to specify the risk neutral martingale measure P̂: except for
the Brownian motion case, in fact, the market is incomplete due to the presence of market
shocks and, therefore, there are infinitely many pricing measures.

For the purpose of this analysis, we select the Esscher risk neutral martingale measure;
however, such a probability measure imposes a specific form of the investors’ preferences.
A more general approach would be to extract the market’s pricing measure from option
prices via calibration. However, the portfolio backing insurance policies is in general a
mixture of securities such as equities, bonds and properties, that rarely is tradeable in
the market. Consequently, the “market-implied martingale measure” cannot be extracted
due to the lack of suitable option prices. In the remaining of this section, we show how the
risk neutral Esscher measure can be determined for the models considered in this paper,
and how it is used to price the guaranteed benefit P (T ).

3.2.1 The Esscher transform and the risk neutral martingale Esscher measure

Let L(t) be a Lévy motion; then the process

η(t) =

{

ehL(t)φL

(

h

i
, t

)−1

: t ≥ 0

}

, (15)

is a positive P-martingale that can be used to define a change of probability measure,
i.e. the Radon-Nikodým derivative of a new equivalent probability measure P̂

h, called
the Esscher measure of parameter h. The process η(t) is called the Esscher transform
of parameter h. If we use the Esscher transform to determine a risk neutral martingale
measure, i.e. a measure under which discounted asset prices behave like martingales, the
Esscher parameter h needs to satisfy the following condition (see, for example, Gerber
and Shiu, 1994):

r = ln φL

(

h + 1

i
, 1

)

− ln φL

(

h

i
, 1

)

. (16)

In virtue of equation (7), the P̂
h-characteristic function of the log-returns driven by

the Merton process is

φ̂h
L (u, t) =

φL

(

iu+h
i

, t
)

φL

(

h
i
, t

) = e
t
�
iu(n+hσ2−λµX)−u2 σ2

2
+λh(φ̂h

X(u)−1)
�

λh = λehµX+h2 σ2
X
2 ,

φ̂h
X (u) = eiu(µX+hσ2

X)−u2 σ2
X
2

This implies that the P̂
h-triplet is (n + hσ2 − λµX , σ, υ̂M (dx)), with

υ̂M (dx) =
λh

σX

√
2π

e
−
(x−(µX+hσ2

X))
2

2σ2
X dx.

11



From the risk neutral condition (16) it follows that

r = n + hσ2 − λµX +
σ2

2
+ λh

(

φ̂h
X (1) − 1

)

;

therefore, the reference fund under P̂
h is given by

A (t) = A (0) e

�
r−σ2

2
−λh(φ̂h

X( 1
i )−1)

�
t+σŴ h(t)+

PN̂h(t)
k=1 X̂h(k)

, (17)

where Ŵ h is a P̂
h-Brownian motion, N̂h is a P̂

h-Poisson process with rate λh, and X̂h ∼
N (µX + hσ2

X , σ2
X) under P̂

h.
Similarly, using equation (10), it follows that the characteristic function of the VG-

based log-returns under P̂
h is

φ̂h
L (u, t) = eiu(m−θ)t

[

1

1 − iuθhkh + u2 ξ2

2
kh

]
t
k

, (18)

where

θh = θ + hξ2,

kh =
k

1 − hθk − h2 ξ2

2
k
.

Moreover, the Esscher measure exists if and only if φZ

(

h
i
, t

)

exists (similar results but for
a simpler setting have been obtained also by Hubalek and Sgarra, 2005), i.e. if and only
if

−θ −
√

θ2 + 2ξ2

k

ξ2
< h <

−θ +
√

θ2 + 2ξ2

k

ξ2
.

The P̂
h- Lévy measure can be easily recovered either from equation (18), or via exponential

tilting of the P- Lévy measure (12), so that

υ̂h
Z (dx) = ehxυZ (dx) =

1

k
|x|−1

(

e−bh
+x1(x>0) + ebh

−
x1(x<0)

)

, (19)

bh
+ =

2 − hk

(

√

θ2 + 2ξ2

k
+ θ

)

k

(

√

θ2 + 2ξ2

k
+ θ

) , (20)

bh
− =

2 + hk

(

√

θ2 + 2ξ2

k
+ θ

)

k

(

√

θ2 + 2ξ2

k
− θ

) . (21)

The Esscher parameter h is the solution to

f (h) = r − (m − θ) − 1

k
ln

1 − hθk − h2 ξ2

2
k

1 − (h + 1) θk − (h + 1)2 ξ2

2
k

= 0. (22)
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Note that the function f (h) exists only for h ∈
(

−θ−

q
θ2+ 2ξ2

k

ξ2 ,
−θ+

q
θ2+ 2ξ2

k

ξ2 − 1

)

, provided

that θ2 + 2ξ2

k
> ξ4

4
. Further, let

h1 =
−θ −

√

θ2 + 2ξ2

k

ξ2
; h2 =

−θ +
√

θ2 + 2ξ2

k

ξ2
− 1,

then
lim

h→h1

f (h) = ∞; lim
h→h2

f (h) = −∞;

hence, equation (22) admits at least one solution on the support of f . Solving equation
(22) directly, we obtain that

h∗ = −θ

ε
− 1

ε
± 1

ξ2ε

√

ξ4 + θ2ε2 − ξ4ε +
2ξ2

k
ε2

ε = 1 − ek(m−θ−r).

This solution to equation (22) together with equation (18) fully characterizes the risk
neutral dynamic of the stock price process under P̂

h, which, in virtue of the Girsanov
theorem, is given by

A (t) = A (0) e(r−ln φ̂h
Z( 1

i
,1))t+Ẑh(t), (23)

and Ẑh is V G
(

θh, ξ, 1/k, 1/kh
)

.

3.2.2 Pricing of the guaranteed benefit P

Based on the results presented in the previous section, it is possible to solve analytically
equation (14), and therefore determine closed formulae for the price of the guaranteed
benefit, expressed in equation (13), under the three market paradigms introduced in
section 3.1. The result is summarized in the following

Proposition 1 The market consistent value of the guaranteed benefit P (T ), when the
reference fund is driven by a Lévy process, is (for the risk neutral Esscher measure P̂

h)

V P (t) = αP 1 (t)
T−t−1
∑

k=0

e−rk (1 − α)k

[

e−r (1 + rG) + βÊ
h

(

e−reL′(1)1�
L′(1)>

β+rG
β

�)
−e−r (β + rG) P̂

h

(

L′ (1) >
β + rG

β

)]T−t−k

+ e−r(T−t) (1 − α)T−t P (t) .(24)

In particular, let Φ denote the distribution of the standard normal random variable.
Then

i) under the standard model, V P (t) is

αP 1 (t)
T−t−1
∑

k=0

e−rk (1 − α)k [

e−r (1 + rG) + βΦ (d1) − e−r (β + rG) Φ (d2)
]T−t−k

+e−r(T−t) (1 − α)T−t P (t) , (25)
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where

d1 =
ln β

β+rG
+

(

r +
σ2

A

2

)

σA

; d2 = d1 − σA.

ii) Under the Merton model, V P (t) is given by

αP 1 (t)
T−t−1
∑

k=0

e−rk (1 − α)k



e−r (1 + rG) + β

∞
∑

n=0

e−λhφ̂h
X( 1

i )
(

λhφ̂h
X

(

1
i

)

)n

n!
Φ (dn;h)

−e−r (β + rG)
∞

∑

n=0

e−λh (

λh
)n

n!
Φ

(

d′
n;h

)

]T−t−k

+ e−r(T−t) (1 − α)T−t P (t) , (26)

where

dn;h =
ln β

β+rG
+

(

rn;h + v2
n

2

)

vn

, d′
n;h = dn;h − vn,

and

rn;h = r − λh

(

φ̂h
X

(

1

i

)

− 1

)

+ n ln φ̂h
X

(

1

i

)

,

v2
n = σ2 + nσ2

X .

iii) Under the VG model, V P (t) is

αP 1 (t)
T−t−1
∑

k=0

e−rk (1 − α)k

[

e−r (1 + rG) + βΨ

(

d
√

1 − s,
θh + ξ2

ξ
√

1 − s
,
1

k

)

−e−r (β + rG) Ψ

(

d,
θh

ξ
,
1

k

)]T−t−k

+ e−r(T−t) (1 − α)T−t P (t) , (27)

where

Ψ (a, b, c) =

∫ ∞

0

Φ

(

a√
τ

+ b
√

τ

)

τ c−1e−
τ

kh

(kh)c Γ (c)
dτ ;

d =
ln β

β+rG
+ r − ln φ̂h

Z

(

1
i
, 1

)

ξ
, s = kh

(

θh +
ξ2

2

)

.

Proof. We only focus on the calculation the expectation in equation (14), bearing
in mind that the pricing measure is the risk neutral Esscher measure P̂

h defined in the
previous section. Hence, we note that

Ê
h

[

e−r
(

βeL′(1) − (β + rG)
)+

]

= Ê
h

(

e−reL′(1)1�
L′(1)>

β+rG
β

�) − P̂
h

(

L′ (1) >
β + rG

β

)

.

Now, we calculate the expectation and the probability in the previous expression under
the three market model introduced in this paper.

14



i) The result follows from the application of the Black-Scholes formula (see Ballotta,
2005).

ii) Note that, conditioning on the number of jumps occurring in 1 year, the process

L′ (1) follows a normal distribution with mean rn;h − v2
n

2
and variance v2

n. Therefore,

Ê
h

(

eL′(1)1�
L′(1)>

β+rG
β

�∣∣
∣

∣

N̂h (1) = n

)

= ern;hΦ (dn;h) ;

consequently

Ê
h

(

e−reL′(1)1�
L′(1)>

β+rG
β

�) =
∞

∑

n=0

e−λh (

λh
)n

n!
ern;hΦ (dn;h)

=
∞

∑

n=0

e−λhφ̂h
X( 1

i )
(

λhφ̂h
X

(

1
i

)

)n

n!
Φ (dn;h) .

Moreover,

P̂
h

(

L′ (1) >
β + rG

β

)

=
∞

∑

n=0

e−λh (

λh
)n

n!
P̂

h

(

L′ (1) >
β + rG

β

∣

∣

∣

∣

N̂h (1) = n

)

=
∞

∑

n=0

e−λh (

λh
)n

n!
Φ

(

d′
n;h

)

,

as required.

iii) In this case, we condition on the random time τ̂h (1), which implies that the process

L′ (1) follows a normal distribution with mean rτ ;h − ξ2

2
and variance ξ2, where

rτ ;h =
r−ln φ̂h

Z( 1
i
,1)

τ
+ θh + ξ2

2
. Therefore,

Ê
h

(

eL′(1)1�
L′(1)>

β+rG
β

�∣∣
∣

∣

τ̂h (1) = τ

)

= erτ ;hΦ (dτ ;h) ;

consequently

Ê
h

(

e−reL′(1)1�
L′(1)>

β+rG
β

�) = er

∫ ∞

0

φ̂h
Z

(

1

i
, 1

)−1

e

�
θh+ ξ2

2

�
τ
Φ (dτ ;h)

τ
1
k
−1e−

τ

kh

(kh)
1
k Γ

(

1
k

)

dτ,

with

dτ ;h =
ln β

β+rG
+

(

rτ ;h + ξ2

2

)

ξ
√

τ
.

Further, set s = kh
(

θh + ξ2

2

)

and u = (1 − s) τ . Then

Ê
h

(

e−reL′(1)1�
L′(1)>

β+rG
β

�) = er

∫ ∞

0

Φ (du;h)
u

1
k
−1e−

u

kh

(kh)
1
k Γ

(

1
k

)

du
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where

du;h =
d
√

1 − s√
u

+
θh + ξ2

ξ
√

1 − s

√
u.

Moreover,

P̂
h

(

L′ (1) >
β + rG

β

)

=

∫ ∞

0

τ
1
k
−1e−

τ

kh

(kh)
1
k Γ

(

1
k

)

P̂
h

(

L′ (1) >
β + rG

β

∣

∣

∣

∣

τ̂h (1) = τ

)

dτ

=

∫ ∞

0

τ
1
k
−1e−

τ

kh

(kh)
1
k Γ

(

1
k

)

Φ
(

d′
τ ;h

)

dτ,

d′
τ ;h =

d√
τ

+
θh

ξ

√
τ ,

which concludes the proof.

For the case of the model based on the VG process, a closed form for the option
price can be obtained by using the closed formula for the function Ψ (a, b, c) developed by
Madan et al. (1998) (Theorem 2, equation (A.11)), which involves the modified Bessel
function of the second kind and the degenerate hypergeometric function. However, the
evaluation of these special functions is computationally time-consuming; for this reason,
we resort to numerical methods for the computation of the price of the guaranteed benefit.
Further, in order to obtain the fair value of the participating contract we also need to
evaluate the premium of the terminal bonus option and the default option, which can
only be done using a Monte Carlo procedure as discussed before. The price V P (t) can be
then easily obtained as a by-product of these computations.

4 Numerical algorithms

As mentioned in the previous section, we need to develop numerical algorithms for the
pricing of the participating contract analyzed, and for the calculation of the corresponding
risk margin and capital requirements. Since this represents a critical issue for insurance
companies which need to develop suitable software architectures, in this section we review
the available alternative algorithms, and test their efficiency for the case of the contract
considered in this note.

In order to price the guaranteed benefit, we use the closed analytical formulae de-
veloped in the previous section for both the cases of the standard asset model and the
Merton-based model; for the case of the VG-based model, instead, we resort to Monte
Carlo simulation.

In more details, the infinite series determining the Poisson distribution for the cal-
culation of V P under the Merton model (see equation (26)) is computed with relative
tolerance ǫ = 10−15; in other words, we neglect all terms smaller than ǫ times the current
sum.
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Sequential Monte Carlo Stratified Monte Carlo
(with variance reduction)
GBM Merton VG GBM Merton VG

VP (0) 190.7750 191.7985 191.4060 190.773 191.812 191.8260
(0.00003%) (0.00003%) (0.00002%) (0.00003%) (0.00004%) (0.00003%)

VR (0) 8.72811 9.02418 9.3426 8.7261 9.0228 9.3099
(0.00084%) (0.00083%) (0.46%) (0.61%) (0.59%) (0.59%)

VD (0) 99.5084 100.759 100.8730 99.6916 100.756 100.805
(0.00006%) (0.00006%) (0.04%) (0.11%) (0.11%) (0.11%)

VP (0) (closed analytical formula)
GBM 190.7739

Merton 191.8112

Table 1: Fair values of the embedded option for the benchmark set of parameters specified
in section 5, and ϑ = 1. Values based on 1,000,000 Monte Carlo simulations. The numbers
in parenthesis represent the error of the estimate expressed as percentage of the corresponding
option price

n. of runs 10,000 100,000 1,000,000

GBM model VR (0) 0.030 0.006 0.0020
VD (0) 0.006 0.002 0.0006

Merton model VR (0) 0.049 0.010 0.0032
VD (0) 0.017 0.003 0.0011

VP (0) 1.07 6.34 12.01
VG model VR (0) 1.86 2.10 2.54

VD (0) 1.07 1.08 1.19

Table 2: Stratified sampling vs Sequential sampling with variance reduction. The table reports
the efficiency gain, EAB of method A (stratified Monte Carlo) to method B (sequential Monte
Carlo). If EAB > 1, then method A is more efficient than method B; in fact, EAB is a multiple
of the time method B takes to achieve a particular standard deviation compared to method A.
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The price of both the terminal bonus option and the default option are obtained by
Monte Carlo method, irrespective of the model, due to their path-dependent payoff design.

All Monte Carlo codes generate random deviate by inversion of the distribution func-
tion using the Newton algorithm, except for the case of beta deviates (see below). Further,
variance reduction techniques are used in order to speed up the convergence and improve
the accuracy of the estimates. Specifically, for all models considered in this paper, we
develop both sequential and stratified algorithms. The sequential algorithms use, for
variance reduction purposes, the antithetic variate method in addition with, wherever
possible, the control variate technique. The stratified algorithms make use of the Latin
Hypercube Sampling technique to generate uniform deviates; further, the Brownian bridge
and the Brownian-Gamma bridge (Ribeiro and Webber, 2004) are used to produce re-
spectively the paths of the Brownian motion and the Variance Gamma process. As far
as the Merton process is concerned, we use the standard property that, given the (strati-
fied) total number of jumps in [0, T ], N (T ) = k, the arrival times of the jumps have the
the joint distribution of the order statistics of k independent random variables uniformly
distributed over [0, T ] (see Glasserman, 2004). The gamma function and the lower incom-
plete gamma function are computed using the algorithms recommended in the Numerical
Recipes in C++ (Press et al., 2002). Finally, the beta deviates from a Beta distribution,
B(a, b), required for the gamma bridge are generated using the algorithms of Atkinson
and Whittaker for the cases in which a, b < 1 with a+b ≥ 1, and a ≤ 1, b ≥ 1; the Johnk’s
algorithm is used instead for the case in which a, b < 1 with a+b < 1 (see Devroye, 1986).

For benchmarking purposes, we compute V P by Monte Carlo simulation as well using
equation (24), with numerical approximation restricted to the embedded 1-year European
call option. Results are shown in Table 1.

In order to test the efficiency of the algorithms developed, we consider the efficiency
gain index, EAB, of the stratified sampling procedure (method A with standard error σA

and execution time tA) versus the sequential sampling algorithm (method B with standard
error σB and execution time tB), which is defined as

EAB =
σ2

BtB
σ2

AtA

Results are shown in Table 2.
The results reported in Tables 1 and 2 show that for both the cases of the standard asset

model and the Merton process model, Monte Carlo with variance reduction provides the
best prices in terms of both accuracy, as measured by the standard error, and efficiency, as
quantified by the efficiency index E. The reason for this high performance has to be sought
for in the combination of the antithetic variate technique with the control variate method,
which is made possible by the closed analytical formulae developed for the guaranteed
benefit in these two market frameworks. Stratified Monte Carlo is, instead, the most
competitive method for the VG based model, above all when it is used to calculate the
price of the guaranteed benefit.

In virtue of these results, in the remaining of the analysis, we will refer to the estimates
generated by the sequential algorithm for the standard model and the Merton model;
whilst we will use the estimates generated by the stratified algorithm for the VG model.
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5 Results

In this section, we use the results presented in section 3 and the numerical algorithms
discussed in section 4 to analyze the impact of a model misspecification on the market
consistent price of the participating contract, and the corresponding target capital.

For the analysis to be consistent, the parameters of the models considered in this note
are chosen so that the first four moments of the underlying distributions of the asset log-
returns are matched as closely as possible under the real probability measure. The base
set of parameters is presented in Table 3; the resulting moments are instead reported in
Table 4.

The mispricing of the benefits’ prices are analysed in Table 5 for ϑ = 1 only, since the
leverage coefficient ϑ is a mere rescaling factor of the value of the benefits; equations (1)
and (3) in fact imply

P (T ) = ϑA (0)

[

α
T−1
∑

k=0

(1 − α)k
T−k
∏

t=1

(1 + rP (t)) + (1 − α)T

]

= ϑPU (T ) ,

R (T ) = ϑ
(

A (T ) − PU (T )
)

= ϑRU (T ) .

Therefore
V P (0) = ϑV P

U (0) ; V R (0) = ϑV R
U (0) ;

where V ·
U denotes the “unlevered” option’s value. The same argument though does not

apply to the default option, as its value depends on the leverage coefficient as shown in
Table 6; the mispricing generated by the model error is reported in Table 7.

The results show that the standard asset model underprices each single component
of the insurance contract, although the mispricing is particularly significant for the case
of the terminal bonus (call) option and the default (put) option. A more detailed ex-
amination shows that both the Merton process and the VG process originate leptokurtic
and negatively skewed distributions, although the kurtosis is higher in the case of the VG
process. This is reflected in the mispricing of both the terminal bonus and the default
option, in particular when the default option is deep out-of-the-money, i.e. for low values
of ϑ. The mispricing is less severe when shocks are somehow incorporated in the model:
although the VG process overprices out-of-the-money default options when compared to
the Merton model, the price difference reduce sensibly as ϑ approaches 1. The observed
mispricing is also reflected in the terminal bonus rate γ; for the benchmark set of pa-
rameters we obtain γ = 14.17% under the standard asset model, γ = 18.19% under the
Merton process model, and γ = 26.26% under the VG model.

The RBC, as measured by the TVaR of the solvency index st defined in section 2.3,
is presented in Figure 1 for different values of the leverage coefficient ϑ. In particular, for
this numerical example, we consider the change in the RBC over 1 year after the inception
of the contract, i.e.

TV aR (x; 0, 1) = −E (s1| s1 ≤ cs1 (x; 0, 1)) ,

with

s1 =
˜RBC(1) − A0 (1 − ϑ)

A0 + V D(0)
.
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Market models parameters

Standard model (GBM) µ = 10% p.a.; σA = 20% p.a.
Merton model n = 10% p.a.; σ = 18.82% p.a.; .

λ = 0.59; µX = −5.37% p.a.; σX = 7% p.a.
VG model m = 10% p.a.; θ = −3.04% p.a.; k = 0.15; ξ = 19.56% p.a.

r = 3.5% p.a.

Contract parameters

P0 = 100; T = 20 years; α = 60%; β = 50%; ϑ = 90%; rG = 4% p.a.

Table 3: Base parameter set. The parameters are taken from Ballotta (2005).

GBM model Merton model VG model

Expected rate of growth 0.12 0.1199 0.1199
E (L1) 0.1 0.1 0.1

(0.1) (0.1) (0.1)
Var (L1) 0.04 0.04 0.04

(0.04) (0.04) (0.04)
γ1 0 −0.6964 −0.06836

(0) (−0.0693) (−0.0655)
γ2 0 0.0609 0.45312

(0) (0.0679) (0.0459)

Table 4: Moments of the asset log-returns at time t = 1, based on the models considered in
section 3 and the base set of parameters given in Table 3. The numbers in parenthesis represent
the estimated moments based on 1,000,000 Monte Carlo runs.

GBM vs Merton GBM vs VG VG vs Merton

VP (0) -0.54% -0.55% 0.01%
VR (0) -3.27% -6.25% 3.18%

Table 5: Model error: impact on the fair value of the guaranteed benefit and the terminal bonus
for the benchmark set of parameters (unlevered contract). Mispricing calculated using the prices
reported in Table 1.
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ϑ GBM Merton VG

0.1 0.1325 0.1879 0.2194
0.2 1.9670 2.1509 2.3368
0.3 6.7038 7.1569 7.4603
0.4 14.5295 15.1898 15.5587
0.5 25.0377 25.7831 26.1078
0.6 37.2608 38.3416 38.5989
0.7 51.4867 52.5789 52.6699
0.8 66.9076 67.7502 67.9518
0.9 82.8095 84.1079 84.8437
1.0 99.5084 100.7590 100.8052

Table 6: Fair value of the default option for different levels of the leverage coefficient ϑ, and
the benchmark set of parameters. Values based on 1,000,000 runs.

ϑ GBM vs Merton GBM vs VG VG vs Merton

0.1 -39.60% -29.46% 16.79%
0.2 -15.82% -8.55% 8.64%
0.3 -10.14% -6.33% 4.24%
0.4 -6.62% -4.35% 2.43%
0.5 -4.10% -2.89% 1.26%
0.6 -3.47% -2.82% 0.67%
0.7 -2.25% -2.08% 0.17%
0.8 -1.54% -1.24% 0.30%
0.9 -2.40% -1.54% 0.87%
1.0 -1.24% -1.29% 0.05%

Table 7: Model error: impact on the default option price for different levels of the leverage
coefficient ϑ. Mispricing calculated using the prices reported in Table 6.
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Figure 1: Risk Bearing Capital: TV aR(s1) for different levels of the leverage coefficient ϑ. For
the confidence levels, we consider the percentiles provided by the Standard & Poor’s classification
(AAA = 99.99%; AA = 99.97%; A = 99.93%; BBB = 99.77%; BB = 99.31%; B = 93.46%).
Estimation based on 100,000 simulations for the benchmark set of parameters.

The analysis can be easily extended to any two points in time over the lifetime of the
contract (although the results would depend on the trajectory of the underlying fund).
As the RBC depends on the price of the default option, the capital requirements change
with the policyholder’s contribution level to the reference fund of the insurance company.
In particular, we note that the RBC increases with ϑ, due to the fact that the probability
of default increases (as quantified by the premium for the default option), and therefore
a higher safety loading is required. Similarly to what has been observed in the case of the
default option, the mispricing generated by the model error reduces as ϑ increases; further,
the mispricing becomes more significant in correspondence of higher confidence levels, x,
which is a reflection of the different probability mass assigned by the three models to
the tails of the distribution. Consistently with the findings related to the fair value, also
in this case we observe that the standard model underestimates quite significantly the
capital requirements; the inclusion of shocks in the model though reduces the magnitude
of the error.

6 Conclusions

In this note we have developed a general framework for the market consistent pricing
of insurance liabilities based on the fair value principle and the calculation of the corre-
sponding capital requirements. In particular, we have used this framework to analyze the
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impact on these quantities of the inclusion in the model of market shocks. We conclude
from the numerical results presented that the standard Black-Scholes economy signifi-
cantly underestimates the amount of the total liabilities and, more importantly, the value
of the default option. This fact has therefore repercussions on the safety loadings and
consequently on the size of the target capital. However, the mispricing is less severe when
shocks are incorporated in the model, even if this might be done in a sub-optimal way.

The analyses presented above are based on the assumption of constant interest rates;
the techniques presented in this paper can be extended to incorporate a stochastic term
structure, although this would prevent the derivation of closed form solutions for the price
of the guaranteed benefit. This consideration highlights the importance of computation-
ally efficient and accurate algorithms for the pricing of these contracts. In this note,
we compare sequential and stratified Monte Carlo methods; the numerical procedures
described in section 4 can be further improved by using, for example, QMC or RQMC
techniques. Further, Avramidis and L’Ecuyer (2006) have introduced a competitive al-
ternative procedure for pricing options under the VG model, exploiting dyadic partition,
the VG representation as difference of gamma processes, and a suitably tailored beta
generator. The generation of VG trajectories on the basis of a Dirichlet bridge and a fast
gamma generator is currently being explored (see Ballotta et al., 2006.b).

An important open issue related to the implementation of fair valuation schemes in
incomplete markets is the selection of the pricing measure. The analyses presented rely
on the risk neutral Esscher measure; however, as discussed above, this might prove a quite
restrictive approach. The lack of a market of derivative securities written on the contract
reference portfolio, though, prevents the adoption of a more suitable market measure.
Furthermore, the incompleteness of the market also means that the valuation framework
has to take into account some non hedgeable financial risk. In this sense, perhaps it
would be more appropriate to use the “best estimate plus risk margin” approach for
the market consistent valuation of the liabilities; however, the full definition of the best
estimate is still under discussion at regulatory level. Based on financial theory, a possible
suggestion which we think might be appropriate to the task, could be interpreting the
best estimate as the market price of a hedging strategy, whilst the risk margin would
represent a protection against the inevitable hedging error. Investigation of this approach
is left for future research.

Acknowledgements

The author would like to thank Enrico Biffis for many useful discussions about many steps
of the development of this project, Steven Haberman and Vladimir Kaishev for reading
previous drafts of this paper and making very helpful suggestions and comments. Earlier
versions of this work have been presented at the 12th International Conference on Com-
puting in Economics and Finance, the EURO XXI conference and the 10th International
Congress in Insurance: Mathematics and Economics. The author would like to thank the
participants of these conferences, in particular Farid AitSahlia and Mogens Steffensen.
Usual caveats apply. This research was supported in part by the Actuarial Profession.

23



References

[1] Avramidis, A. and P. L’Ecuyer (2006). Efficient Monte Carlo and Quasi-Monte Carlo option
pricing under the variance-gamma model. Management Science, forthcoming.

[2] Bacinello, A. R. (2001). Fair pricing of life insurance participating contracts with a mini-
mum interest rate guaranteed. Astin Bulletin, 31, 275-97.

[3] Bacinello, A. R. (2003). Pricing guaranteed life insurance participating policies with annual
premiums and surrender option. North American Actuarial Journal, 7 (3), 1-17.
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