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Abstract. We consider a class of stochastic intensities of mortality that

generalizes the model proposed by Lee and Carter (1992), allowing general

diffusions to drive the mortality time-trend. We analyze the stability of such

class of intensities under measure changes and show how a risk-neutral ver-

sion of the generalized Lee-Carter model can be employed for fair valuation

purposes. We provide an example of model calibration based on the Italian

annuity market.

Keywords: stochastic mortality, Lee-Carter model, mortality projections,

fair valuation, longevity risk.

1. Introduction and Motivation

In the last decade, the model proposed by Lee and Carter (1992) (referred to

as LC henceforth) has acquired increasing relevance among demographers and

insurance practitioners. In particular, its description of the secular change of

mortality as a function of a single time-index has proved effective for mortal-

ity projections (see, for example: Lee, 2000; Pitacco, 2004; Wong-Fupuy and

Haberman, 2004). The last few years have also witnessed a considerable effort to
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take up the concept of no-arbitrage in actuarial valuations, partly prompted by

the proposals of the International Accounting Standards Board (IASB), partly

favored by the convergence of methodologies employed in finance and insur-

ance (see Milevsky and Promislow, 2001; Biffis, 2004; Dahl, 2004, and references

therein).

In this work, we bridge the gap between demographic and actuarial analyses

based on the LC model and stochastic models aimed at fair valuation. We do

so by consistently specifying the behavior of the LC model both in the physical

world and in the so-called risk-neutral world, i.e. the world in which insurance

security prices grow on average at the risk-free rate, thus requiring an adjust-

ment in the intensity of mortality to reflect the investors’ risk-aversion toward

mortality risk.

The work is organized as follows: In Sec. 2, we first describe a stochastic mor-

tality model based on an information structure quite common in the credit-risk

literature. We then consider a continuous-time version of the LC model that

allows the intensity of mortality to be driven by general diffusions. Following

Biffis, Denuit and Devolder (2005), we describe a class of measure changes under

which stochastic intensities of mortality remain of the LC type. Sec. 3 shows

how the mortality setup of Sec. 2 can be nested into a stochastic model for the

risk-neutral valuation of mortality-contingent securities. We show how the dy-

namics of insurance securities are affected by the measure changes introduced

above and describe a rich class of mortality risk-premiums accounting for dif-

ferent sources of risk, in the spirit of IASB (2004). In Sec. 4, we focus on the

behavior of LC intensities in the risk-neutral world. We show how to mimic

the market practice of specifying risk-loaded intensities by suitably adjusting a

reference physical intensity of mortality, eventually identifying the adjustments

by calibration to observed security prices. A numerical example concerning the

Italian annuity market is provided in Sec. 5. We calibrate risk-neutral LC in-

tensities and estimate the margins to be incorporated into a classical LC model

fitted to Italian population data. Finally, Sec. 6 summarizes our findings.
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2. A Generalized Lee-Carter Model

In this section, we describe the information structure of the mortality model,

which is based on the subfiltration approach of Jeanblanc and Rutkowski (2000)

(see also Lando, 1998). We then consider a generalized version of the LC model,

which allows the secular change in mortality to be described as a function of a

diffusion process. A class of equivalent probability measures is then described,

preserving the LC form of the intensity and allowing a rich class of mortality-risk

premiums to be introduced in Sec. 3.2.

2.1. Mortality Model. Given a filtered probability space1 (Ω,F , (F)t∈[0,T ∗ ], P),

we consider the F-stopping times (τx)x∈I representing the random lifetimes of

individuals with ages in I = {x1, . . . , xn} at the reference time 0. In other words,

for each t and x, the σ-field Ft carries enough information to tell whether τx has

occurred or not by time t. For each t, we take Ft to be structured as Ft = Gt∨Ht,

with Gt strictly included in Ft and Ht = ∨x∈IH
x
t , with Hx

t = σ(1τx≤s : 0 ≤ s ≤ t)

for each t and x. In what follows, s, t and T will denote times in the compact

interval [0, T ∗], while the filtrations (Ft)t∈[0,T ∗], (Gt)t∈[0,T ∗] and (Hx
t )t∈[0,T ∗] will

be denoted by F, G and H
x respectively.

We see G as a filtration carrying the available information about relevant

factors driving the evolution of mortality. Since it is a strict subfiltration of F,

we have that the (τx)x∈I are not stopping times with respect to the filtration G,

which can thus be seen as carrying information about the likelihood of deaths

happening, but not about their actual occurrence. For simplicity, we will take G

to be the augmented filtration generated by a d-dimensional Brownian motion

W .

For each x, we consider the jump process Nx
t = 1τx≤t associated with τx. We

say that τx admits the intensity µx if the compensated jump process Mx
t = Nx

t −∫ t∧τx

0 µx
sds is an F

x-martingale, where we set F
x .

= G∨H
x and t∧τx = min(t, τx).

To achieve greater tractability, we take each µx to be G-predictable and set

τx = inf

{
t :

∫ t

0
µx

sds > Θx

}
for x ∈ I (1)

1In the sequel, all filtrations are assumed to satisfy the usual conditions, i.e. right-continuity

and P-completeness (see Protter, 2004, p. 3).
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with (Θx)x∈I independent unit exponential random variables, also independent

of GT ∗ .

The main consequence of such setup is that the stopping times (τx)x∈I are

conditionally independent given GT ∗ and that for all t and each x, τx is condi-

tionally independent of GT ∗ , given Gt. As a result, tractability can be achieved

at expense of generality, in that every G-martingale is also an F-martingale. In

particular, W is not just a Brownian motion with respect to G, but also with re-

spect to F. Similarly, each Mx is an F-martingale and not just an F
x-martingale.

Given the above assumptions, one can show (e.g. Lando, 1998) that for all

T ≥ t the following expression holds for the Ft-conditional survival probability

of each stopping-time τx

P(τx > T |Ft) = 1τx>tE

[
exp

(
−

∫ T

t

µx
sds

) ∣∣∣Gt

]
, (2)

where we have used the fact that the sigma-fields Fx
t and Gt agree on {τx > t}.

Furthermore, the following expression is available for the Ft-conditional density

of τx, on {τx > t}:

∂

∂s
P(τx ≤ s|Ft) = E

[
exp

(
−

∫ s

t

µx
udu

)
µx

s

∣∣∣Gt

]
. (3)

From the above expressions we recognize the doubly stochastic or Cox setting

(see Duffie, 2001, App. I, and references therein), according to which, for all T ≥

t and conditional on GT ∨Ft, the coordinate processes (Nx)x∈I are independent

and such that for each x ∈ I the increment Nx
T −Nx

t is Poisson distributed with

parameter
∫ T

t
1τx>sµ

x
sds.

2.2. Classical LC Model. Lee and Carter (1992) proposed a simple model for

describing the secular change of mortality as a function of a single time index.

This model is fitted to historical data and the resulting estimate of the time-

varying parameter is then forecast as a stochastic time series using standard

Box-Jenkins methods. From this forecast of the general level of mortality, the

actual age-specific rates are derived using the estimated age effects. For a review

of recent applications of the Lee-Carter methodology, we refer the interested

readers to Lee (2000), as well as to the couple of review papers by Pitacco

(2004) and Wong-Fupuy and Haberman (2004).
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Let us introduce the set of dates T = {t1, . . . , tm} and denote by mx(t) the

central death rate relative to age x ∈ I and date t ∈ T . In particular, for each

i and j, mxi
(tj) is the average number of deaths between ages xi and xi+1 to

the exposed to risk between tj and tj+1. Under the assumption of a piecewise

constant intensity between ages xi+t and xi+t+1, we have that µxi

t
∼= mxi+t(t).

The LC approach is in essence a relational model of the form

ln m̂x(t) = αx + βxκt + ǫx(t), (4)

where m̂x(t) is the unconstrained maximum likelihood estimator of mx(t), the

ǫx(t)’s are homoskedastic centered error terms and where the parameters are

subject to the constraints

∑

t∈T

κt = 0 and
∑

x∈I

βx = 1 (5)

ensuring model identification. The model (4) is fitted to a matrix of age-specific

observed forces of mortality using singular value decomposition (SVD). The re-

sulting estimate of the time-varying parameter κt is then forecast as a stochastic

time series using standard Box-Jenkins methods. For example, in the classical

paper by Lee and Carter (1992), κt is modeled as a random walk with drift.

Interpretation of the parameters is quite simple: exp αx is the general shape

of the mortality schedule and the actual forces of mortality change according

to an overall mortality index κt modulated by an age response βx (the shape

of the βx profile tells which rates decline rapidly and which slowly over time in

response of change in κt).

2.3. Generalized Lee-Carter. In light of the setup described in Sec. 2.1, we

can see the LC approach as a discretized version of a general continuous-time

intensity of the form

µx
t = exp(α(x + t) + β(x + t) · κt), (6)

for some functions α and β and where κ is an R
d-valued G-predictable pro-

cess. For simplicity, we focus here on diffusion processes and assume κ to have

dynamics described by the stochastic differential equation

dκt = δ(t, κt)dt + σ(t, κt)dWt, (7)
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for a d-dimensional standard Brownian motion W and some continuous vector

and matrix-valued functions δ and σ ensuring that the solution to (7) is unique

and strong (see Protter, 2004, Ch. 5).

Care must be taken in reconciling (4) with (6). We stress that the dependence

of functions α and β on time is due to the fact that each process µx
t describes

the evolution of the intensity of mortality of an individual aged x + t at each

time t. Thus, the αx’s and βx’s of expression (4) must be seen as the pointwise

estimates of the functions α(·) and β(·) at each age in I.

When d = 1, δ(·) ≡ δ ∈ R and σ(·) ≡ σ ∈ R, κ is a Brownian motion with

drift and after discretization we are back to the model originally proposed by

Lee and Carter (1992). Since κ in (6) can be a fairly general multidimensional

diffusion, we refer to (6) as to a continuous-time generalized LC model. We note

that several forms of stochastic Gompertz intensities are also encompassed by

(6)-(7). In the one-dimensional case, for example, if δ(·) = −aκt (with a > 0)

and σ(·) ≡ σ ∈ R, we are back to the so called Mean Reverting Brownian

Gompertz model introduced by Milevsky and Promislow (2001).

2.4. Measure Changes. According to Biffis, Denuit and Devolder (2005), a

class of equivalent probability measures can be specified ensuring the stability

of both the framework described in Sec. 2.1 and the class of generalized LC

intensities. Specifically, let us consider for each T > 0 a strictly positive random

variable ξT such that EP[ξT ] = 1. Then, a probability measure P̃ equivalent to

P can be defined on (Ω,FT ) by setting its density equal to dP̃/dP|Ft
= ξt. A

suitable martingale representation theorem (see Jeanblanc and Rutkowski, 2000,

and references therein) allows us to write ξ as

dξt = ξt−(−ηtdWt +
∑

x∈I

(φx
t − 1)dMx

t ), (8)

with φx > 0 for all x, and to obtain a factorization ξ = ξ′ξ′′ with factors having

the following explicit expression

ξ′t = exp

(
−

∫ t

0
ηsdWs −

∫ t

0
||ηs||

2ds

)
(9)

ξ′′t =
∏

x∈I

exp

(∫ t

0
ln φx

sdNx
s −

∫ t∧τx

0
(φx

s − 1)µx
sds

)
, (10)
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where the R
d-valued process η and the R++-valued processes (φx)x∈I are F-

predictable and satisfy suitable integrability conditions. Let η and (φx)x∈I be

G-predictable (rather than just F-predictable) and let us assume that for each

x

φx
t = exp (ax(x + t) + bx(x + t) · κt) , (11)

for some functions (ax)x∈I and (bx)x∈I . Then, under P̃ the process W̃ = W +
∫ ·

0 ηsds is an F-Brownian motion and each stopping time τx has intensity µ̃x =

φxµx, i.e. an intensity of the generalized LC type given by

µ̃x
t = exp(α̃x(x + t) + β̃x(x + t) · κt), (12)

with α̃x = α + ax, β̃x = β + bx. Under P̃, the dynamics of the time-trend κ are

described by the SDE

dκt = (δ(t, κt) − σ(t, κt)ηt)dt + σ(t, κt)dW̃t. (13)

From (12)-(13), it is apparent that the change of measure considered has a

twofold effect on the new intensities: one the one hand, it affects the drift of the

time-index κ through the process η entering (9); on the other hand, it acts on

each compensated jump process Mx through the strictly positive process φx in

(8), leading to an actual change in the intensity process itself. Put another way,

if the processes (φx)x∈I are not identically 1, then the processes (µx)x∈I are not

the intensities of (τx)x∈I under P̃. This will be exploited in Sec. 3.2 to specify a

rich class of mortality risk-premiums.

3. A Stochastic Model for Insurance Securities

In Sec. 3.1, we recall some basic results concerning the fair valuation of insurance

securities, in the spirit of the IASB proposals (e.g. IASB, 2004). Then, Sec. 3.2

describes the mortality risk-premiums that can be introduced by exploiting the

changes of measure described in the previous section.

3.1. Insurance Market Model. In a financial market, the absence of arbi-

trage is essentially equivalent to the existence of an equivalent probability mea-

sure under which the gain from holding a security is a martingale after deflation

at the risk-free rate (see Duffie, 2001, and references therein). The setup de-

scribed in Sec. 2.1 allows us to easily extend such result to markets involving
7



mortality-contingent securities (e.g. Artzner and Delbaen, 1995). This is re-

markably convenient for the valuation of insurance liabilities according to the

principles of IASB (2004).

Let us take as given a filtered probability space (Ω,F , F, P), where the in-

formation structure is the same as the one described in Sec. 2.1, but with the

Brownian subfiltration G ⊂ F now carrying also information about financial

security prices and not just the evolution of mortality risk factors. We refer to

P as to the physical (real-world) probability measure and take T ∗ to be a final

trading date and r to be a bounded short rate process adapted to G, from which

a money-market account B· = exp(
∫ ·

0 rsds) can be defined.

Let V be an F-adapted process representing the price of an insurance security

issued to an individual aged x at time 0 and paying a continuous dividend-stream

contingent on survival and a lump sum in case of death (see Biffis, 2004, for other

examples). For ease of notation, we drop reference to age in the sequel. We let S

and D represent the G-predictable survival dividend and death benefit processes.

In the absence of arbitrage, there exists an equivalent probability measure P̃ such

that the discounted gain process B−1
t Vt +

∫ t

0 B−1
s DsdNs +

∫ t

0 B−1
s Ss1τ>sds is an

F-martingale. We take2
P̃ to belong to the class of measure changes described in

Sec. 2.4, so that it is actually parametrized by η and (φx)x∈I (i.e. P̃
.
= P̃

(η,(φx))).

In view of the assumed information setup, assuming that a security has zero

price if it does not pay any dividends, we can employ (2)-(3) to obtain (e.g.

Lando, 1998)

Vt = BtẼ

[∫ T

t

B−1
s DsdNs +

∫ T

t

B−1
s Ss1τ>sds + B−1

T VT

∣∣∣Ft

]

= 1τ>tBtẼ

[∫ T

t

B̂−1
s Dsµ̃sds +

∫ T

t

B̂−1
s Ssds + B̂−1

T V T

∣∣∣Gt

]
,

(14)

where B̂· = exp(
∫ ·

(rs + µ̃s)ds) represents a ‘mortality risk-adjusted’ money

market account, µ̃ is the G-predictable intensity of τ under P̃ and V t is the pre-

death price of the security, in the sense that Vt = 1τ>tV t. As a result, we see

that the standard risk-neutral machinery can be employed for the fair valuation

2The meaning of such assumption is that the dynamics of financial securities are the same

in the financial market and in the insurance market (see Blanchet-Scalliet and Jeanblanc, 2004,

for details).
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of mortality-contingent claims, provided we consider fictitious securities paying

a fictitious dividend Dµ̃ + S under a fictitious short rate r + µ̃.

If the insurance market is incomplete, i.e. the insurance assets available do not

span the whole space of mortality-contingent claims, there are infinitely many

equivalent martingale measures making (14) hold. Indeed, expression (14) deter-

mines a whole (open) interval of prices consistent with the absence of arbitrage.

We narrow down the price range by mimicking the market practice of specifying

µ̃ in terms of adjustments to a reference physical intensity of mortality, eventu-

ally identifying P̃ through calibration to observed prices. To do this properly,

we need to understand the effects of the parametrization of P̃ on the dynamics

of security prices (Sec. 3.2) and intensities (Sec. 4.1).

3.2. Mortality Risk Premiums. According to the IASB’s principles, all risk

sources should be taken into account when computing the fair value of life in-

surance liabilities. In particular, suitable margins for non-diversifiable risks (e.g.

the longevity risk) should be allowed for. Our framework allows us to identify

pretty well three sources of mortality risk affecting insurance securities.

The first one is the so called unsystematic risk associated with the fluctuations

of death occurrences in a portfolio of insureds. In our context, such risk is asso-

ciated with the randomness in the jumps of the processes (Nx)x∈I , conditional

on the information carried by G, i.e. conditional on knowledge of the whole path

of the intensities (µx)x∈I . Bearing in mind the construction given in (1), this

is the risk of fluctuations associated with the draws from each unit exponential

random variable Θx. Such risk can be pooled, in the sense that a large enough

portfolio reduces its impact. As a consequence, it may not be priced under P̃.

The second source of risk is the systematic risk affecting simultaneously the

intensities of the stopping times (τx)x∈I . When it manifests itself through per-

sistent downward trends in the intensities, such risk is called longevity risk. In

our context, it is associated with the information carried by G and is represented

by the Brownian risk sources common to the processes (µx)x∈I and impacting

an insurance portfolio at the same time and in the same direction. Such risk

cannot be diversified away, and a suitable margin should be allowed for.

There is another source of risk which can reside in the timing of the jumps of

(Nx)x∈I . It is the uncertainty concerning the likelihood of death as described by
9



the information carried by G. As often happens, the dynamics of the intensities

(µx)x∈I are specified on the basis of some reference population with demographic

characteristics only broadly matching those of the insureds of concern. The re-

maining risk may be relevant and should be accounted for by specifying suitable

margins. In our framework, this can be achieved by employing non trivial pro-

cesses (φx)x∈I making the compensated processes (Mx)x∈I come into play in

the Radon-Nykodym density (8).

Let us now identify the specific adjustments allowed for by the model for each

of the risks described. Let us focus on the security introduced in the previous

section and suppose, for ease of interpretation, that D is proportional to V−, i.e.

Dt = dtVt− for all t and suitable G-predictable process d. Let us assume that

the physical (real-world) dynamics of our security are given by

dVt = Vt−

(
(νtdt + σV

t · dWt + (dt − 1)dNt

)

= Vt−

(
δV

t dt + σV

t · dWt + (dt − 1)dMt

)
,

where the physical drift δV is given by δV

t
.
= νt+(dt−1)µt1τ>t and where we must

consider the process V stopped at τ , since the value of the contract is zero after

τ . As an example, we can think of a unit-linked contract backed by a unit reserve

with value process V : at death, the beneficiary is paid the amount Dτ = dτVτ−

financed through liquidation of the reserve Vτ− and through provision of the

top-up (dτ − 1)Vτ−. Now, the measure change dP̃/dP|Ft
= ξt allows us to write

the risk-neutral dynamics as follows

dVt = Vt−

(
(δV

t − ηt · σ
V

t + (dt − 1)µ̃t1τ>t)dt + σV

t · dW̃t + (dt − 1)dM̃t

)
,

with the no-arbitrage restriction δV

t − ηt · σV

t + (dt − 1)µ̃t1τ>t = rt − st1τ>t,

where we express the the survival payouts as St = stVt− for suitable G-adapted

process s.

The latter two expressions make it clear the effect of the measure change on

the dynamics of the insurance security. Indeed, the spread between the risk-

neutral and the physical drift is equal to

−ηt · σ
V

t − (dt − 1)(1 − φt)µt,

showing a different role played by the processes η and φ entering (9)-(10). If the

Brownian sources of risk carries a risk-premium (i.e., η 6= 0), this is reflected
10



by a drift adjustment −ηt · σ
V

t proportional to the volatility process σV . If the

compensated process carries a risk-premium (i.e., φ 6= 1), this is reflected by a

drift adjustment (dt − 1)(φt − 1)µt proportional to the physical intensity and to

the relative size of the death benefit, which can in turn affect the sign of the

adjustment.

4. Lee-Carter in the Risk-Neutral world

In Sec. 4.1, we show how an LC intensity behaves in the risk-neutral world and

how it can incorporate margins for the sources of risk described in the previous

section. Sec. 4.2 examines some calibration issues.

4.1. The Risk-neutral Lee-Carter Model. Let us focus again on a single

stopping time τ with LC intensity µ under the physical measure P. The P-

dynamics of the process µ can be written as

dµt = µt(δ
µ
t dt + σµ

t · dWt),

where the R-valued drift process δµ and the R
d-valued volatility process σµ can

be recovered by applying Itô’s formula to (6). The dynamics of µ under P̃ are

instead given by

dµt = µt((δ
µ
t − ηt · σ

µ
t )dt + σµ

t · dW̃t),

so that the drift process under P̃ is δ̃µ = δµ − η · σµ. However, we know that

µ needs not be the intensity process of τ under P̃, unless φ = 1. If that is the

case, it is clear that

δ̃µ
t − δµ

t = −ηt · σ
µ
t (15)

is the only margin allowed by the model for the systematic risk affecting the

evolution of the intensity over time. More generally, if φ is not identically 1,

the intensity of τ is represented by a different process, µ̃ = φµ. From (11), the

dynamics of φ under P̃ can be written as

dφt = φt(δ̃
φ
t dt + σφ

t · dW̃t),
11



with obvious meaning of the notation. Now, integration by parts yields:

dµ̃t = φt−dµt + µt−dφt + d[φ, µ]t

= φtµt(δ̃
µ
t dt + σµ

t · dW̃t) + µtφt(δ̃
φ
t dt + σφ

t · dW̃t) + (φtσ
φ
t ) · (µtσ

µ
t )dt

= µ̃t

(
(δ̃µ

t + δ̃φ
t + σµ

t · σφ
t )dt + (σµ

t + σφ
t ) · dW̃t

)
. (16)

The LC dynamics (16) provide us with some useful insights into the behavior

of LC intensities in the risk-neutral world. First, the drift adjustment (15) is

replaced by the more complex spread

δ̃eµ
t − δµ

t = −ηt · σ
µ
t + δ̃φ

t + σµ
t · σφ

t ,

allowing the timing of the jump process N in (10) to affect the drift through

φ under the equivalent martingale measure. Second, the volatility of the P̃-

intensity is in general different from that of the P̃-intensity process. Third,

there are non-trivial specifications of δ̃φ, σφ that allow some Brownian sources

of risk to disappear from the dynamics of µ̃ when switching from P to P̃. This

is particularly relevant when dealing with issues regarding the orthogonality of

financial and mortality risk factors, as we explain below.

4.2. Model Calibration. In Sec. 3.1, we have taken G to be the filtration gen-

erated by financial security prices and mortality risk factors, without making

any assumptions on their correlation under the physical measure P. It is clear,

however, that having independence between financial and mortality risk factors

under P̃ greatly facilitates the calibration of the model, as we show below. Ex-

pression (16) tells us that LC intensities enable to consider situations in which

such assumption needs not hold under the physical measure.

As a simple example, consider the case of an annuity paying unitary amounts

at dates in T = {t1, . . . , tm}. From the results in Sec. 3.1, we can exploit the

independence assumption (under P̃) to write the time-0 price of such security as

Ẽ

[
∑

t∈T

B−1
t 1τ>t

]
=

∑

t∈T

Ẽ
[
B̂−1

t

]
=

∑

t∈T

Ẽ
[
B−1

t

]
P̃(τ > t).

The last expression shows that we can separately calibrate, the financial com-

ponent to zero-coupon bond prices, the mortality component to risk-neutral

survival probabilities. We provide an example of the latter in the next section.
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We note that the same holds true for more general annuities (e.g. unit-linked)

provided the randomness in the payouts only depends on financial risk factors.

5. Numerical Illustrations

In this section, we provide a simple example of calibration of risk-neutral LC

intensities to the survival probabilities implied by a mortality table employed in

the Italian annuity market. In particular, we estimate the margins to be added

to a classical LC model fitted to Italian population data.

5.1. Lee-Carter modeling for the population mortality rates. We use

data concerning Italian males, general population. They have been downloaded

from the Human Mortality Database (www.mortality.org). The period consid-

ered is 1960-2001 and the age range is 50-100. Fig. 1 depicts the shape of the

mortality surface. More specifically, the ln m̂x(t) are displayed in function of age

x and time t. The fit of the Lee-Carter model on the Italian population data

gives the results displayed in Fig. 2. The parameters of the random walk with

drift are given next: δ̂ = −0.6630901 and σ̂2 = 1.974014.

< Fig. 1 about here>

< Fig. 2 about here>

5.2. Lee-Carter modelling for the IPS55 life table.

5.2.1. Presentation of the IPS55. The ANIA (for Associazione Nazionale fra le

Imprese Assicuratrici, Italian Association of Insurers) recently defined a set of

life tables for pricing and reserving in the life anuity business: the IPS55 life

table. It replaces the former RG48 annuitants life table released by ANIA.

IPS55 life tables are based on mortality projections performed by the Italian

National Institute for Statistics (Istituto Nazionale di Statistica). These pro-

jections have been obtained from the Lee-Carter model, fitted to population

data. ANIA then applied self-selection factors to the death probabilities of the

projected 1955 cohort life table. Age shifts are then used to take mortality im-

provements into account. Specifically, the technical ages are obtained by adding

3 years to the real age for generations between 1908 and 1925, 2 years for genera-

tions between 1926 and 1938, 1 year for generations between 1939 and 1947, and

by substracting 1 year for generations between 1961 and 1970, and 2 years for
13



the generations from 1971. No correction is applied for the generations between

1948 and 1960 (the cohort life table for the generation 1955 is thus directly

applied).

Fig. 3 depicts the reference life table for the generation 1955 as well as the

shape of the mortality surface given by the IPS55 life table. More specifically,

the ln mx
IPS55(t) are displayed in function of age x and time t, where mx

IPS55(t)

is the force of mortality prevailing at age x in year t according to the IPS55.

Note that the mx
IPS55(t)’s do not fill a rectangular array of data.

< Fig. 3 about here>

5.2.2. Estimation of the κt’s keeping the population αx’s and βx’s. We first carry

out the classical Lee-Carter estimation on the basis of the IPS55 life table by

keeping the αx’s and βx’s fixed at their population values. The estimated κt’s

are then obtained by the linear regressing of ln m̂x(t) − α̂s on the β̂x, without

intercept and separately for each value of t. The resulting κt’s are displayed in

Fig. 4.

The third plot in Fig. 4 shows that the resulting time index is driven by a

totally different process, with an estimated volatility of 0.01106657. It is thus

impossible to get a Lee-Carter model consistent with the IPS55 life table if the

change of measure only involves the Brownian motion driving the time index.

< Fig. 4 about here>

5.2.3. Estimation of the αx’s and κt’s keeping the population βx’s. We consider

the change of measure (9)-(10) with η ∈ R and φx
t = φt = a(x + t) + b(x + t)κt

for all x, where the dynamics of κ under P̃ are assumed to be described by

dκt = (δ − ησ)dt + σdW̃t, (17)

with W̃ a one-dimensional Brownian motion and where the coefficients δ, σ have

been estimated in Sec. 5.1. Our aim is to estimate the functions a and b, and

the parameter η entering the drift of κ under P̃.

We start by keeping the population βx’s and by estimating the αx’s and the

time-index implied by the IPS55 table. We denote the implied time-index by κ̃.

The new estimates for the drift and volatility of κ̃ will enable us to recover the

adjustment function b underlying the change of measure, as we now show.
14



The fit of the Lee-Carter model to the IPS55 data gives the results displayed

in Fig. 5. Note that the αx’s have been modified in order to satisfy the con-

straints (5). The parameters of the random walk with drift are given next:

δ̃eκ = −0.18834872 and (σeκ)2 = 0.01273341. Now, using a superscript ‘IM’ to

indicate that the quantity relates to Italian males, and ‘IPS55’ to the Italian

IPS55 life table, the force of mortality can be written as

µ̃t = exp
(
αIPS55(x + t) + βIM(x + t)κ̃t

)

where αIPS55 = αIM + a and κ̃ has P̃-dynamics

dκ̃t = δ̃eκdt + σeκdW̃t,

with σeκ different from the volatility coefficient σ of κ under P (as seen from the

estimates), so that κ̃ and κ are two different processes under P̃. Now, we can

also write

µ̃t = exp
(
αIPS55(x + t) +

(
βIM(x + t) + b(x + t)

)
κt

)

with κ having P̃-dynamics (17) and with

b(x + t) = βIM(x + t)

(
σeκ

σ
− 1

)
.

The interpolated point estimates of the functions a and b are displayed in Fig. 6.

Finally, we can compute η as

η =
δ − δ̃eκσ/σeκ

σ
= 1.197179.

The resulting estimates for the adjustment functions a,b and for the coefficient

η can be employed for the fair valuation of annuity business in the framework of

Sec. 3. In the same context, they can be employed to quantify the adjustments

implied by table IPS55 for the different types of risk described in Sec. 3.2.

< Fig. 5 about here>

< Fig. 6 about here>

6. Conclusion

In this work, we have introduced a class of stochastic intensities of mortality gen-

eralizing the model proposed by Lee and Carter (1992). We have described their

stability under a suitable class of measure changes, which can be employed in
15



the context of risk-neutral valuations. We have examined the way LC intensities

behave in the risk-neutral world and the way they affect the dynamics of insur-

ance security prices. To conclude, we have provided an example of parameter

calibration with reference to the Italian annuity market.

References

Artzner, P. and F. Delbaen (1995). Default risk insurance and incomplete mar-

kets. Mathematical Finance, 5(3):187–195.

Biffis, E. (2004). Affine processes for dynamic mortality and actuarial valuations.

Forthcoming in Insurance: Mathematics & Economics.

Biffis, E., M. Denuit and P. Devolder (2005). Stochastic mortality under measure

changes. Working Paper.

Blanchet-Scalliet, C. and M. Jeanblanc (2004). Hazard rate for credit risk and

hedging defaultable contingent claims. Finance and Stochastics, 8:145–159.

Dahl, M. (2004). Stochastic mortality in life insurance: Market reserves and

mortality-linked insurance contracts. Insurance: Mathematics & Economics,

35(1):113–136.

Duffie, D. (2001). Dynamic Asset Pricing Theory . Princeton University Press,

Princeton, third edn.

IASB (2004). International Financial Reporting Standard N. 4 . International

Accounting Standards Board, London.

Jeanblanc, M. and M. Rutkowski (2000). Modeling of default risk: Mathematical

tools. Working paper, Départment of Mathématiques, Université d’Évry.

Lando, D. (1998). On Cox processes and credit risky securities. Review of

Derivatives Research, 2(2/3):99–120.

Lee, R. (2000). The Lee-Carter method for forecasting mortality, with various

extensions and applications. North American Actuarial Journal , 4(1):80–93.

Lee, R. and L. Carter (1992). Modeling and forecasting the time series of us

mortality. Journal of The American Statistical Association, 87(419):659–671.

Milevsky, M. and S. Promislow (2001). Mortality derivatives and the option to

annuitise. Insurance: Mathematics & Economics, 29(3):299–318.
16



Pitacco, E. (2004). Survival models in a dynamic context: a survey. Insurance:

Mathematics & Economics, 35(2):279–298.

Protter, P. (2004). Stochastic Integration and Differential Equations. Springer-

Verlag, Heidelberg, second edn.

Wong-Fupuy, C. and S. Haberman (2004). Projecting mortality trends: Recent

developments in the United Kingdom and the United States. North American

Actuarial Journal , 8(2):56–83.

A
ge

 x

Time t

ln
 m

u
_
xt

Figure 1: Mortality surface for the Italian males.

17



5
0

6
0

7
0

8
0

9
0

1
0

0

−5 −4 −3 −2 −1

A
g

e
 x

Alpha_x − Italian population

5
0

6
0

7
0

8
0

9
0

1
0

0

0.005 0.010 0.015 0.020 0.025 0.030

A
g

e
 x

Beta_x − Italian population

1
9

6
0

1
9

7
0

1
9

8
0

1
9

9
0

2
0

0
0

−15 −10 −5 0 5 10

T
im

e
 t

Kappa_t − Italian populationF
ig

u
re

2
:

E
stim

a
ted

L
ee-C

a
rter

p
a
ra

m
eters

fo
r

Ita
lia

n
m

a
les.

1
8



50 60 70 80 90 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Age x

q_
x

Ag
e 

x

Time t

ln m
u_xt

Figure 3: One-year death probabilities for the reference generation 1955 (top panel)
and mortality surface for the Italian IPS55 life table (bottom panel), male
annuitants.

19



1960 1970 1980 1990 2000

−4
7.

0
−4

6.
5

−4
6.

0
−4

5.
5

−4
5.

0
−4

4.
5

Time t

Ka
pp

a_
t −

 IP
S5

5 
wi

th
 fi

xe
d 

al
ph

a’
s 

an
 b

et
a’

s

1960 1970 1980 1990 2000

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Time t

Ka
pp

a_
t −

 IP
S5

5 
wi

th
 fi

xe
d 

al
ph

a’
s 

an
 b

et
a’

s

1960 1970 1980 1990 2000

−1
5

−1
0

−5
0

5
10

Time t

Ka
pp

a_
t

Italian males
IPS55

Figure 4: Estimated κt’s for the IPS55 life table: the resulting bκt’s before the stan-
dardization (5) are diplayed in the top panel, the transformed values meet-
ing (5) are displayed in the middle panel and a comparison with population
κt’s is given in the bottome panel.

20



50 60 70 80 90 100

−6
−5

−4
−3

−2
−1

Age x

Al
ph

a_
x 

− 
IP

S5
5 

wi
th

 fi
xe

d 
be

ta
’s

1960 1970 1980 1990 2000

−4
−2

0
2

Time t

Ka
pp

a_
t −

 IP
S5

5 
wi

th
 fi

xe
d 

be
ta

’s

Figure 5: Estimated Lee-Carter parameters for the IPS55 life table, keeping the pop-
ulation βx’s.

21



5
0

6
0

7
0

8
0

9
0

1
0

0

0.2 0.4 0.6 0.8 1.0 1.2 1.4

A
g

e
 x

a(x)

5
0

6
0

7
0

8
0

9
0

1
0

0

−0.025 −0.020 −0.015 −0.010 −0.005

A
g

e
 x

b(x)

F
ig

u
re

6
:

T
h
e

fu
n
ctio

n
s

a
a
n
d

b.

2
2



  1

 
FACULTY OF ACTUARIAL SCIENCE AND STATISTICS 

 
Actuarial Research Papers since 2001 

 
 
 

135. Renshaw A. E. and Haberman S. On the Forecasting of Mortality Reduction Factors.   February 
2001.          

ISBN 1 901615 56 1 
 
136. Haberman S., Butt Z. & Rickayzen B. D.  Multiple State Models, Simulation and Insurer 

Insolvency.  February 2001.  27 pages.       
ISBN 1 901615 57 X 

 
137. Khorasanee M.Z.  A Cash-Flow Approach to Pension Funding.  September 2001.  34 pages. 
 

 ISBN 1 901615 58 8 
 

138. England P.D.  Addendum to “Analytic and Bootstrap Estimates of Prediction Errors in Claims 
Reserving”.  November 2001.  17 pages. 

ISBN 1 901615 59 6 
 

139. Verrall R.J.  A Bayesian Generalised Linear Model for the Bornhuetter-Ferguson Method of 
Claims Reserving.  November 2001.  10 pages. 

ISBN 1 901615 62 6 
 
140. Renshaw A.E. and Haberman. S.  Lee-Carter Mortality Forecasting, a Parallel GLM Approach, 

England and Wales Mortality Projections.  January 2002.  38 pages. 
ISBN 1 901615 63 4 

 
141. Ballotta L. and Haberman S.  Valuation of Guaranteed Annuity Conversion Options.  January 

2002.  25 pages. 
ISBN 1 901615 64 2 

 
142. Butt Z. and Haberman S.  Application of Frailty-Based Mortality Models to Insurance Data.  April 

2002.  65 pages. 
ISBN 1 901615 65 0 

 
143.  Gerrard R.J. and Glass C.A.  Optimal Premium Pricing in Motor Insurance: A Discrete 

Approximation.   (Will be available 2003). 
 
144. Mayhew, L.  The Neighbourhood Health Economy.  A systematic approach to the examination of 

health and social risks at neighbourhood level.   December 2002.  43 pages. 
 

ISBN 1 901615 66 9 
 
145. Ballotta L. and Haberman S.  The Fair Valuation Problem of Guaranteed Annuity Options:  The 

Stochastic Mortality Environment Case.  January 2003.  25 pages. 
 

ISBN 1 901615 67 7 
 

146. Haberman S., Ballotta L. and Wang N.  Modelling and Valuation of Guarantees in With-Profit and 
Unitised With-Profit Life Insurance Contracts.  February 2003.  26 pages. 

 
ISBN 1 901615 68 5 

147. Ignatov Z.G., Kaishev V.K and Krachunov R.S.  Optimal Retention Levels, Given the Joint 
Survival of Cedent and Reinsurer.  March 2003.  36 pages. 

ISBN 1 901615 69 3 
 
148. Owadally M.I.  Efficient Asset Valuation Methods for Pension Plans.  March 2003.  20 pages. 

ISBN 1 901615 70 7 
 



  2

149. Owadally M.I.  Pension Funding and the Actuarial Assumption Concerning Investment Returns.  
March 2003.  32 pages. 

ISBN 1 901615 71 5 
 

150. Dimitrova D, Ignatov Z. and Kaishev V.  Finite time  Ruin Probabilities for Continuous Claims 
Severities.  Will be available in August 2004. 

 
151. Iyer S.  Application of Stochastic Methods in the Valuation of Social Security Pension Schemes.  

August 2004.  40 pages. 
ISBN 1 901615 72 3 

 
152. Ballotta L., Haberman S. and Wang N.  Guarantees in with-profit and Unitized with profit Life 

Insurance Contracts; Fair Valuation Problem in Presence of the Default Option1.  October 2003.  
28 pages. 

 ISBN 1-901615-73-1 
 

153. Renshaw A. and Haberman. S.  Lee-Carter Mortality Forecasting Incorporating Bivariate Time 
Series.  December 2003.  33 pages. 

ISBN 1-901615-75-8 
 

154. Cowell R.G., Khuen Y.Y. and Verrall R.J.  Modelling Operational Risk with Bayesian Networks.  
March 2004.  37 pages. 

ISBN 1-901615-76-6 
 
155. Gerrard R.G., Haberman S., Hojgaard B. and Vigna E.  The Income Drawdown Option: 

Quadratic Loss.  March 2004.  31 pages. 
ISBN 1-901615-77-4 

 
156. Karlsson, M., Mayhew L., Plumb R, and Rickayzen B.D.  An International Comparison of Long-

Term Care Arrangements. An Investigation into the Equity, Efficiency and sustainability of the 
Long-Term Care Systems in Germany, Japan, Sweden, the United Kingdom and the United 
States. April 2004.   131 pages. 

ISBN 1 901615 78 2 
 
157. Ballotta Laura.  Alternative Framework for the Fair Valuation of Participating Life Insurance 

Contracts.  June 2004.  33 pages. 
ISBN 1-901615-79-0 

 
158. Wang Nan.  An Asset Allocation Strategy for a Risk Reserve considering both Risk and Profit.   

July 2004.  13 pages.   
ISBN 1 901615-80-4 

 
159. Spreeuw Jaap.  Upper and Lower Bounds of Present Value Distributions of Life Insurance  

Contracts with Disability Related Benefits.  December 2004.  35 pages. 
ISBN 1 901615-83-9 

 
160. Renshaw A.E. and Haberman S.  Mortality Reduction Factors Incorporating Cohort Effects.  

January 2005.  33 pages. 
ISBN 1 90161584 7 

 
161. Gerrard R.J. Haberman A and Vigna E.  The Management of De-Cumulation Risks in a Defined 

Contribution Environment.  February 2005.  35 pages. 
ISBN  1 901615 85 5. 

 
162. Ballotta L, Esposito G. and Haberman S.  The IASB Insurance Project for Life Insurance 

Contracts: Impart on Reserving Methods and Solvency Requirements.   May 2005.  26 pages. 
ISBN  1-901615 86 3. 

 
163. Emms P. and Haberman S.  Asymptotic and Numerical Analysis of the Optimal Investment 

Strategy for an Insurer.  September 2005.  42 pages. 
 ISBN 1-901615-88-X 

 
164. Kaishev V.K., Dimitrova D.S.  and Haberman S  Modelling the Joint Distribution of Competing 

Risks Survival Times using Copula Functions.  October 2005.  26 pages. 
ISBN 1-901615-89-8 

 
 
 



  3

 
165. Kaishev V.K. and Dimitrova D.S.  Excess of Loss Reinsurance Under Joint Survival Optimality.  

November 2005.  18 pages. 
ISBN1-901615-90-1 

 
 
166. Biffis E. and Denuit M.  Lee-Carter Goes Risk-Neutral.  An Application to the Italian Annuity 

Market.  November 2005.  22 pages. 
ISBN 1-901615-91-X 

 
 
 
 
 
 

Statistical Research Papers 
 
1. Sebastiani P.  Some Results on the Derivatives of Matrix Functions.  December 1995.   
 17 Pages.         

ISBN 1 874 770 83 2 
 
2. Dawid A.P. and Sebastiani P.  Coherent Criteria for Optimal Experimental Design.   
 March 1996.  35 Pages.       

ISBN 1 874 770 86 7 
 
3. Sebastiani P. and Wynn H.P.  Maximum Entropy Sampling and Optimal Bayesian Experimental 

Design.  March 1996.  22 Pages.      
ISBN 1 874 770 87 5 

 
4. Sebastiani P. and Settimi R.  A Note on D-optimal Designs for a Logistic Regression Model.  May 

1996.  12 Pages.        
ISBN 1 874 770 92 1 

 
5. Sebastiani P. and Settimi R.  First-order Optimal Designs for Non Linear Models.  August 1996.  28 

Pages.         
ISBN 1 874 770 95 6 

 
6. Newby M.  A Business Process Approach to Maintenance: Measurement, Decision and Control.  

September 1996.  12 Pages.       
ISBN 1 874 770 96 4 

 
7. Newby M.  Moments and Generating Functions for the Absorption Distribution and its Negative 

Binomial Analogue.  September 1996.  16 Pages.    
ISBN 1 874 770 97 2 

 
8. Cowell R.G.  Mixture Reduction via Predictive Scores.  November 1996.  17 Pages. 

          ISBN 1 874 770 98 0 
 
9. Sebastiani P. and Ramoni M.  Robust Parameter Learning in Bayesian Networks with Missing 

Data.  March 1997.  9 Pages.       
ISBN 1 901615 00 6 

 
10. Newby M.J. and Coolen F.P.A.  Guidelines for Corrective Replacement Based on Low Stochastic 

Structure Assumptions.  March 1997.  9 Pages.   
ISBN 1 901615 01 4. 

 
11. Newby M.J.  Approximations for the Absorption Distribution and its Negative Binomial Analogue.  

March 1997.  6 Pages.      
ISBN 1 901615 02 2 

 
12. Ramoni M. and Sebastiani P.  The Use of Exogenous Knowledge to Learn Bayesian Networks from 

Incomplete Databases.  June 1997.  11 Pages.    
ISBN 1 901615 10 3 

 
13. Ramoni M. and Sebastiani P.  Learning Bayesian Networks from Incomplete Databases.   
 June 1997.  14 Pages.        

ISBN 1 901615 11 1 



  4

 
14. Sebastiani P. and Wynn H.P.  Risk Based Optimal Designs.  June 1997.  10 Pages. 

          ISBN 1 901615 13 8 
 
15. Cowell R.  Sampling without Replacement in Junction Trees.  June 1997.  10 Pages. 

          ISBN 1 901615 14 6 
 
16. Dagg R.A. and Newby M.J.  Optimal Overhaul Intervals with Imperfect Inspection and Repair.  July 

1997.  11 Pages.       ISBN 1 901615 15 4 
 

17. Sebastiani P. and Wynn H.P.  Bayesian Experimental Design and Shannon Information.  October 
1997.  11 Pages.      ISBN 1 901615 17 0 
 

18. Wolstenholme L.C.  A Characterisation of Phase Type Distributions.  November 1997.   
 11 Pages.        ISBN 1 901615 18 9 
 
19. Wolstenholme L.C.  A Comparison of Models for Probability of Detection (POD) Curves.  December 

1997.  23 Pages.      ISBN 1 901615 21 9 
 
20. Cowell R.G.  Parameter Learning from Incomplete Data Using Maximum Entropy I: Principles.  

February 1999.  19 Pages.      ISBN 1 901615 37 5 
 
21. Cowell R.G.  Parameter Learning from Incomplete Data Using Maximum Entropy II: Application to 

Bayesian Networks.  November 1999.  12 Pages   ISBN  1 901615 40 5 
 
22. Cowell R.G.  FINEX :  Forensic Identification by Network Expert Systems.  March 2001.  10 pages. 

          
ISBN 1 901615 60X 

 
23. Cowell R.G.  When Learning Bayesian Networks from Data, using Conditional Independence Tests 

is Equivalant to a Scoring Metric.  March 2001.  11 pages.  
ISBN 1 901615 61 8 

 
24. Kaishev, V.K., Dimitrova, D.S., Haberman S., and Verrall R.J.  Autumatic, Computer Aided 

Geometric Design of Free-Knot, Regression Splines.  August 2004.  37 pages. 
ISBN 1-901615-81-2 

 
25. Cowell R.G., Lauritzen S.L., and Mortera, J.  Identification and Separation of DNA Mixtures Using 

Peak Area Information.  December 2004.  39 pages. 
ISBN 1-901615-82-0 

 



 
 
 
 
 
 
 

Faculty of Actuarial Science and Statistics 
 
 

Actuarial Research Club 
 
 

The support of the corporate members 
 
 

CGNU Assurance 
English Matthews Brockman 

Government Actuary’s Department 
Watson Wyatt Partners 

 
 

is gratefully acknowledged. 
 

 
 

 
ISBN 1-901615-91-X 


