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Time varying correlations are often estimated with multivariate generalized autoregressive conditional
heteroskedasticity (GARCH) models that are linear in squares and cross products of the data. A new
class of multivariate models called dynamic conditional correlation models is proposed. These have
the � exibility of univariate GARCH models coupled with parsimonious parametric models for the
correlations. They are not linear but can often be estimated very simply with univariate or two-step
methods based on the likelihood function. It is shown that they perform well in a variety of situations
and provide sensible empirical results.
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1. INTRODUCTION

Correlations are critical inputs for many of the common
tasks of � nancial management. Hedges require estimates of
the correlation between the returns of the assets in the hedge.
If the correlations and volatilities are changing, then the hedge
ratio should be adjusted to account for the most recent infor-
mation. Similarly, structured products such as rainbow options
that are designed with more than one underlying asset have
prices that are sensitive to the correlation between the under-
lying returns. A forecast of future correlations and volatilities
is the basis of any pricing formula.

Asset allocation and risk assessment also rely on correla-
tions; however, in this case a large number of correlations is
often required. Construction of an optimal portfolio with a set
of constraints requires a forecast of the covariance matrix of
the returns. Similarly, the calculation of the standard devia-
tion of today’s portfolio requires a covariance matrix of all
the assets in the portfolio. These functions entail estimation
and forecasting of large covariance matrices, potentially with
thousands of assets.

The quest for reliable estimates of correlations between
� nancial variables has been the motivation for countless aca-
demic articles and practitioner conferences and much Wall
Street research. Simple methods such as rolling historical cor-
relations and exponential smoothing are widely used. More
complex methods, such as varieties of multivariate general-
ized autoregressive conditional heteroskedasticity (GARCH)
or stochastic volatility, have been extensively investigated in
the econometric literature and are used by a few sophisticated
practitioners. To see some interesting applications, exam-
ine the work of Bollerslev, Engle, and Wooldridge (1988),
Bollerslev (1990), Kroner and Claessens (1991), Engle and
Mezrich (1996), Engle, Ng, and Rothschild (1990), Bollerslev,
Chou, and Kroner (1992), Bollerslev, Engle, and Nelson
(1994), and Ding and Engle (2001). In very few of these arti-
cles are more than � ve assets considered, despite the apparent

need for bigger correlation matrices. In most cases, the number
of parameters in large models is too big for easy optimization.

In this article, dynamic conditional correlation (DCC) esti-
mators are proposed that have the � exibility of univariate
GARCH but not the complexity of conventional multivariate
GARCH. These models, which parameterize the conditional
correlations directly, are naturally estimated in two steps—
a series of univariate GARCH estimates and the correla-
tion estimate. These methods have clear computational advan-
tages over multivariate GARCH models in that the number of
parameters to be estimated in the correlation process is inde-
pendent of the number of series to be correlated. Thus poten-
tially very large correlation matrices can be estimated. In this
article, the accuracy of the correlations estimated by a variety
of methods is compared in bivariate settings where many
methods are feasible. An analysis of the performance of the
DCC methods for large covariance matrices was considered
by Engle and Sheppard (2001).

Section 2 gives a brief overview of various models
for estimating correlations. Section 3 introduces the new
method and compares it with some of the cited approaches.
Section 4 investigates some statistical properties of the
method. Section 5 describes a Monte Carlo experiment and
results are presented in Section 6. Section 7 presents empiri-
cal results for several pairs of daily time series, and Section 8
concludes.

2. CORRELATION MODELS

The conditional correlation between two random variables
r1 and r2 that each have mean zero is de� ned to be

�121 t
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In this de� nition, the conditional correlation is based on infor-
mation known the previous period; multiperiod forecasts of
the correlation can be de� ned in the same way. By the laws of
probability, all correlations de� ned in this way must lie within
the interval 6ƒ1117. The conditional correlation satis� es this
constraint for all possible realizations of the past information
and for all linear combinations of the variables.

To clarify the relation between conditional correlations and
conditional variances, it is convenient to write the returns
as the conditional standard deviation times the standardized
disturbance:

hi1 t
D Etƒ1 r 2

i1 t

¢
1 ri1 t

D
q

hi1 t˜i1 t1 i D 1123 (2)

˜ is a standardized disturbance that has mean zero and vari-
ance one for each series. Substituting into (4) gives

�121 t
D Etƒ14˜11 t˜21 t5q

Etƒ14˜
2
11 t5Etƒ14˜

2
21 t5

D Etƒ14˜11 t˜21 t50 (3)

Thus, the conditional correlation is also the conditional covari-
ance between the standardized disturbances.

Many estimators have been proposed for conditional cor-
relations. The ever-popular rolling correlation estimator is
de� ned for returns with a zero mean as
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Substituting from (4) it is clear that this is an attractive estima-
tor only in very special circumstances. In particular, it gives
equal weight to all observations less than n periods in the
past and zero weight on older observations. The estimator
will always lie in the 6ƒ1117 interval, but it is unclear under
what assumptions it consistently estimates the conditional cor-
relations. A version of this estimator with a 100-day win-
dow, called MA100, will be compared with other correlation
estimators.

The exponential smoother used by RiskMetrics uses declin-
ing weights based on a parameter ‹, which emphasizes current
data but has no � xed termination point in the past where data
becomes uninformative.
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It also will surely lie in 6ƒ11 17; however, there is no guidance
from the data for how to choose ‹. In a multivariate context,
the same ‹ must be used for all assets to ensure a positive
de� nite correlation matrix. RiskMetrics uses the value of 094
for ‹ for all assets. In the comparison employed in this article,
this estimator is called EX .06.

De� ning the conditional covariance matrix of returns as

Etƒ14rtr
0
t5 ² Ht1 (6)

these estimators can be expressed in matrix notation respec-
tively as

Ht
D 1

n

nX

jD1

4rtƒjr
0
tƒj5 and Ht

D ‹4rtƒ1r
0
tƒ15 C 41ƒ ‹5Htƒ10 (7)

An alternative simple approach to estimating multivariate
models is the Orthogonal GARCH method or principle com-
ponent GARCH method. This was advocated by Alexander
(1998, 2001). The procedure is simply to construct uncondi-
tionally uncorrelated linear combinations of the series r . Then
univariate GARCH models are estimated for some or all of
these, and the full covariance matrix is constructed by assum-
ing the conditional correlations are all zero. More precisely,
� nd A such that yt

D Art1E4yty
0
t5 ² V is diagonal. Univari-

ate GARCH models are estimated for the elements of y and
combined into the diagonal matrix Vt . Making the additional
strong assumption that Etƒ14yty

0
t5 D Vt , then

Ht
D A

0ƒ1VtA
ƒ10 (8)

In the bivariate case, the matrix A can be chosen to be trian-
gular and estimated by least squares where r1 is one compo-
nent and the residuals from a regression of r1 on r2 are the
second. In this simple situation, a slightly better approach is
to run this regression as a GARCH regression, thereby obtain-
ing residuals that are orthogonal in a generalized least squares
(GLS) metric.

Multivariate GARCH models are natural generalizations of
this problem. Many speci� cations have been considered; how-
ever, most have been formulated so that the covariances and
variances are linear functions of the squares and cross prod-
ucts of the data. The most general expression of this type is
called the vec model and was described by Engle and Kroner
(1995). The vec model parameterizes the vector of all covari-
ances and variances expressed as vec4Ht5. In the � rst-order
case this is given by

vec4Ht5 D vec4ì5 C Avec4rtƒ1r
0
tƒ15 C B vec4Htƒ151 (9)

where A and B are n2 � n2 matrices with much structure
following from the symmetry of H . Without further restric-
tions, this model will not guarantee positive de� niteness of the
matrix H .

Useful restrictions are derived from the BEKK representa-
tion, introduced by Engle and Kroner (1995), which, in the
� rst-order case, can be written as

Ht
D ì C A4rtƒ1r

0
tƒ15A

0 C BHtƒ1B
00 (10)

Various special cases have been discussed in the literature,
starting from models where the A and B matrices are simply
a scalar or diagonal rather than a whole matrix and continuing
to very complex, highly parameterized models that still ensure
positive de� niteness. See, for example, the work of Engle and
Kroner (1995), Bollerslev et al. (1994), Engle and Mezrich
(1996), Kroner and Ng (1998), and Engle and Ding (2001).
In this study the scalar BEKK and the diagonal BEKK are
estimated.

As discussed by Engle and Mezrich (1996), these models
can be estimated subject to the variance targeting constraint by
which the long run variance covariance matrix is the sample
covariance matrix. This constraint differs from the maximum
likelihood estimator (MLE) only in � nite samples but reduces
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the number of parameters and often gives improved perfor-
mance. In the general vec model of Equation (9), this can be
expressed as

vec4ì5D 4I ƒAƒB5vec4S51 where S D 1
T

X

t

4rtr
0
t 50 (11)

This expression simpli� es in the scalar and diagonal BEKK
cases. For example, for the scalar BEKK the intercept is
simply

ì D 41 ƒ � ƒ ‚5S0 (12)

3. DCCs

This article introduces a new class of multivariate GARCH
estimators that can best be viewed as a generalization of the
Bollerslev (1990) constant conditional correlation (CCC) esti-
mator. In Bollerslev’s model,

Ht
D DtRDt1 where Dt

D diag
nq

hi1 t

o
1 (13)

where R is a correlation matrix containing the conditional
correlations, as can directly be seen from rewriting this equa-
tion as

Etƒ14˜t˜
0
t5 D Dƒ1

t HtD
ƒ1
t

D R since ˜t
D Dƒ1

t rt 0 (14)

The expressions for h are typically thought of as univari-
ate GARCH models; however, these models could certainly
include functions of the other variables in the system as prede-
termined variables or exogenous variables. A simple estimate
of R is the unconditional correlation matrix of the standard-
ized residuals.

This article proposes the DCC estimator. The dynamic cor-
relation model differs only in allowing R to be time varying:

Ht
D DtRtDt 0 (15)

Parameterizations of R have the same requirements as H ,
except that the conditional variances must be unity. The matrix
Rt remains the correlation matrix.

Kroner and Ng (1998) proposed an alternative generaliza-
tion that lacks the computational advantages discussed here.
They proposed a covariance matrix that is a matrix weighted
average of the Bollerslev CCC model and a diagonal BEKK,
both of which are positive de� nite.

Probably the simplest speci� cation for the correlation
matrix is the exponential smoother, which can be expressed as

�i1j1t
D
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sD1 ‹s˜i1 tƒs˜j1 tƒsq Ptƒ1

sD1 ‹s˜2
i1 tƒs

¢ Ptƒ1
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¢ D 6Rt7i1 j1 (16)

a geometrically weighted average of standardized residuals.
Clearly these equations will produce a correlation matrix at
each point in time. A simple way to construct this correla-
tion is through exponential smoothing. In this case the process

followed by the q’s will be integrated,

qi1 j1 t
D 41ƒ ‹54˜i1 tƒ1˜j1 tƒ15 C ‹4qi1 j1 tƒ151

(17)
�i1 j1 t

D qi1 j1 tp
qii1 tqjj1 t

0

A natural alternative is suggested by the GARCH(1, 1)
model:

qi1 j1 t
D N�i1 j

C �4˜i1 tƒ1˜j1 tƒ1
ƒ N�i1 j 5C ‚4qi1 j 1 tƒ1

ƒ N�i1 j5 (18)

where N�i1 j is the unconditional correlation between ˜i1 t and
˜j1 t . Rewriting gives

qi1 j1 t
D N�i1 j

³
1ƒ � ƒ ‚

1ƒ ‚

´
C �

X̂

sD1

‚sƒ1˜i1 tƒs˜j1 tƒs0 (19)

The average of qi1 j1 t will be N�i1 j , and the average variance will
be 1.

Nqi1 j
û N�i1 j 0 (20)

The correlation estimator

�i1 j1 t
D qi1 j1 tp

qi1 i1 tqj1 j1 t

(21)

will be positive de� nite as the covariance matrix, Qt with typ-
ical element qi1 j1 t , is a weighted average of a positive de� nite
and a positive semide� nite matrix. The unconditional expec-
tation of the numerator of (21) is N�i1 j and each term in the
denominator has expected value 1. This model is mean revert-
ing as long as � C ‚ < 1, and when the sum is equal to 1 it
is just the model in (17). Matrix versions of these estimators
can be written as

Qt
D 41 ƒ ‹54˜tƒ1˜

0
tƒ15C ‹Qtƒ1 (22)

and

Qt
D S41ƒ � ƒ ‚5 C �4˜tƒ1˜

0
tƒ15 C ‚Qtƒ11 (23)

where S is the unconditional correlation matrix of the epsilons.
Clearly more complex positive de� nite multivariate

GARCH models could be used for the correlation parameter-
ization as long as the unconditional moments are set to the
sample correlation matrix. For example, the MARCH family
of Ding and Engle (2001) can be expressed in � rst-order form
as

Qt
D S � 4‰‰0 ƒ Aƒ B5 C A �˜tƒ1˜

0
tƒ1

C B �Qtƒ11 (24)

where ‰ is a vector of ones and � is the Hadamard product
of two identically sized matrices, which is computed simply
by element-by-element multiplication. They show that if A1B,
and 4‰‰0 ƒ A ƒ B5 are positive semide� nite, then Q will be
positive semide� nite. If any one of the matrices is positive
de� nite, then Q will also be. This family includes both earlier
models as well as many generalizations.
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4. ESTIMATION

The DCC model can be formulated as the following statis-
tical speci� cation:

rt
—=tƒ1 N 401 DtRtDt51

D2
t

D diag8—i9 C diag8Ši9 � rtƒ1r
0
tƒ1
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0
tƒ1

C B � Qtƒ11

Rt
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(25)

The assumption of normality in the � rst equation gives rise to
a likelihood function. Without this assumption, the estimator
will still have the Quasi-Maximum Likelihood (QML) inter-
pretation. The second equation simply expresses the assump-
tion that each asset follows a univariate GARCH process.
Nothing would change if this were generalized.

The log likelihood for this estimator can be expressed as
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which can simply be maximized over the parameters of the
model. However, one of the objectives of this formulation is
to allow the model to be estimated more easily even when
the covariance matrix is very large. In the next few para-
graphs several estimation methods are presented, giving sim-
ple consistent but inef� cient estimates of the parameters of
the model. Suf� cient conditions are given for the consistency
and asymptotic normality of these estimators following Newey
and McFadden (1994). Let the parameters in D be denoted
ˆ and the additional parameters in R be denoted ”. The log-
likelihood can be written as the sum of a volatility part and a
correlation part:

L4ˆ1”5 D LV 4ˆ5 C LC4ˆ1”50 (27)

The volatility term is

LV 4ˆ5 D ƒ 1
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and the correlation component is
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The volatility part of the likelihood is apparently the sum of
individual GARCH likelihoods

LV 4ˆ5 D ƒ1
2

X

t

nX

iD1
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log42� 5 C log4hi1 t5 C r 2

i1 t

hi1 t

´
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which is jointly maximized by separately maximizing each
term.

The second part of the likelihood is used to estimate the
correlation parameters. Because the squared residuals are not
dependent on these parameters, they do not enter the � rst-
order conditions and can be ignored. The resulting estimator
is called DCC LL MR if the mean reverting formula (18) is
used and DCC LL INT with the integrated model in (17).

The two-step approach to maximizing the likelihood is to
� nd

Ô D arg max8LV 4ˆ59 (31)

and then take this value as given in the second stage:

max
”

8LC 4 Ô1”590 (32)

Under reasonable regularity conditions, consistency of the
� rst step will ensure consistency of the second step. The
maximum of the second step will be a function of the � rst-
step parameter estimates, so if the � rst step is consistent, the
second step will be consistent as long as the function is con-
tinuous in a neighborhood of the true parameters.

Newey and McFadden (1994), in Theorem 6.1, formulated
a two-step Generalized Method of Moments (GMM) prob-
lem that can be applied to this model. Consider the moment
condition corresponding to the � rst step as ïˆLV 4ˆ5 D 0.
The moment condition corresponding to the second step is
ï”LC 4 Ô1 ”5 D 0. Under standard regularity conditions, which
are given as conditions (i) to (v) in Theorem 3.4 of Newey
and McFadden, the parameter estimates will be consistent,
and asymptotically normal, with a covariance matrix of famil-
iar form. This matrix is the product of two inverted Hessians
around an outer product of scores. In particular, the covariance
matrix of the correlation parameters is

V 4”5 D 6E4ï””LC 57ƒ1

� E 8ï”LC
ƒ E4ï”ˆLC 56E4ïˆˆLV 57ƒ1ïˆLV 9

� 8ï”LC
ƒ E4ï”ˆLC56E4ïˆˆLV 57ƒ1ïˆLV 90¢

� 6E4ï””LC570 (33)

Details of this proof can be found elsewhere (Engle and
Sheppard 2001).

Alternative estimation approaches, which are again consis-
tent but inef� cient, can easily be devised. Rewrite (18) as

ei1 j1 t
D N�i1 j41 ƒ � ƒ ‚5 C 4� C ‚5ei1 j 1 tƒ1

ƒ ‚4ei1 j1 tƒ1
ƒ qi1 j1 tƒ15 C 4ei1 j1 t

ƒ qi1 j1 t51 (34)

where ei1 j1 t
D ˜i1 t˜j1 t . This equation is an ARMA(1, 1)

because the errors are a Martingale difference by construction.
The autoregressive coef� cient is slightly bigger if � is a small
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positive number, which is the empirically relevant case. This
equation can therefore be estimated with conventional time
series software to recover consistent estimates of the parame-
ters. The drawback to this method is that ARMA with nearly
equal roots are numerically unstable and tricky to estimate. A
further drawback is that in the multivariate setting, there are
many such cross products that can be used for this estimation.
The problem is even easier if the model is (17) because then
the autoregressive root is assumed to be 1. The model is sim-
ply an integrated moving average ( IMA) with no intercept,

ãei1 j1 t
D ƒ‚4ei1 j1 tƒ1 ƒ qi1 j1 tƒ15 C 4ei1 j1 t

ƒ qi1 j1 t51 (35)

which is simply an exponential smoother with parameter ‹ D
‚. This estimator is called the DCC IMA.

5. COMPARISON OF ESTIMATORS

In this section, several correlation estimators are com-
pared in a setting where the true correlation structure is
known. A bivariate GARCH model is simulated 200 times for
1,000 observations or approximately 4 years of daily data for
each correlation process. Alternative correlation estimators are
compared in terms of simple goodness-of-� t statistics, multi-
variate GARCH diagnostic tests, and value-at-risk tests.

The data-generating process consists of two Gaussian
GARCH models; one is highly persistent and the other is not.

h11 t
D 001C 005r 2

11 tƒ1
C 094h11 tƒ11

h21 t
D 05C 02r 2

21 tƒ1
C 05h21 tƒ11

³
˜11 t

˜21 t

´
N

µ
01

³
1 �t

�t 1

´¶
1 (36)

r11 t
D

q
h11 t˜11 t1 r21 t

D
q

h21 t˜21 t 0

The correlations follow several processes that are labeled as
follows:

1. Constant �t
D 09

2. Sine �t
D 05 C 04 cos42� t=2005

3. Fast sine �t
D 05C 04cos42� t=205

4. Step �t
D 09 ƒ 054t > 5005

5. Ramp �t
D mod 4t=2005

These processes were chosen because they exhibit rapid
changes, gradual changes, and periods of constancy. Some of
the processes appear mean reverting and others have abrupt
changes. Various other experiments are done with different
error distributions and different data-generating parameters but
the results are quite similar.

Eight different methods are used to estimate the
correlations—two multivariate GARCH models, orthogonal
GARCH, two integrated DCC models, and one mean revert-
ing DCC plus the exponential smoother from Riskmetrics and
the familiar 100-day moving average. The methods and their
descriptions are as follows:

1. Scalar BEKK—scalar version of (10) with variance tar-
geting as in (12)

2. Diag BEKK—diagonal version of (10) with variance tar-
geting as in (11)

3. DCC IMA—DCC with integrated moving average esti-
mation as in (35)

4. DCC LL INT—DCC by log-likelihood for integrated
process

5. DCC LL MR—DCC by log-likelihood with mean revert-
ing model as in (18)

6. MA100—moving average of 100 days
7. EX .06—exponential smoothing with parameter D 006
8. OGARCH—orthogonal GARCH or principle compo-

nents GARCH as in (8).

Three performance measures are used. The � rst is simply
the comparison of the estimated correlations with the true cor-
relations by mean absolute error. This is de� ned as

MAE D 1
T

X
— O�t

ƒ �t
—1 (37)

and of course the smallest values are the best. A second mea-
sure is a test for autocorrelation of the squared standardized
residuals. For a multivariate problem, the standardized residu-
als are de� ned as

�t
D Hƒ1=2

t rt1 (38)

which in this bivariate case is implemented with a triangular
square root de� ned as

�11 t
D r11 t=

p
H111 t1

�21 t
D r21 t

1p
H221 t41ƒ O�2

t 5
ƒ r11 t

O�tp
H111 t41ƒ O�2

t 5
0

(39)

The test is computed as an F test from the regression of �2
11 t

and �2
21 t on � ve lags of the squares and cross products of the

standardized residuals plus an intercept. The number of rejec-
tions using a 5% critical value is a measure of the perfor-
mance of the estimator because the more rejections, the more
evidence that the standardized residuals have remaining time
varying volatilities. This test obviously can be used for real
data.

The third performance measure is an evaluation of the esti-
mator for calculating value at risk. For a portfolio with w

invested in the � rst asset and 41 ƒw5 in the second, the value
at risk, assuming normality, is

VaRt
D1065

q
4w2H111t

C41ƒw52H221t
C2 ü w41ƒw5 O�t

p
H111tH221t51 (40)

and a dichotomous variable called hit should be unpredictable
based on the past where hit is de� ned as

hitt
D I4w ü r11 t

C 41ƒ w5 ü r21 t < ƒVaRt5 ƒ 0050 (41)

The dynamic quantile test introduced by Engle and Manganelli
(2001) is an F test of the hypothesis that all coef� cients as well
as the intercept are zero in a regression of this variable on its
past, on current VaR, and any other variables. In this case, � ve
lags and the current VaR are used. The number of rejections
using a 5% critical value is a measure of model performance.
The reported results are for an equal weighted portfolio with
w D 05 and a hedge portfolio with weights 11ƒ1.
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Figure 1. Correlation Experiments.

6. RESULTS

Table 1 presents the results for the mean absolute error
(MAE) for the eight estimators for six experiments with 200
replications. In four of the six cases the DCC mean reverting
model has the smallest MAE. When these errors are summed
over all cases, this model is the best. Very close second-
and third-place models are DCC integrated with log-likelihood
estimation and scalar BEKK.

In Table 2 the second standardized residual is tested for
remaining autocorrelation in its square. This is the more
revealing test because it depends on the correlations; the test
for the � rst residual does not. Because all models are mis-
speci� ed, the rejection rates are typically well above 5%. For
three of six cases, the DCC mean reverting model is the best.
When summed over all cases it is a clear winner.

The test for autocorrelation in the � rst squared standardized
residual is presented in Table 3. These test statistics are typi-
cally close to 5%, re� ecting the fact that many of these mod-
els are correctly speci� ed and the rejection rate should be the
size. Overall the best model appears to be the diagonal BEKK
with OGARCH and DCC close behind.

The VaR-based dynamic quantile test is presented in Table 4
for a portfolio that is half invested in each asset and in Table 5
for a long-short portfolio with weights plus and minus one.
The number of 5% rejections for many of the models is close
to the 5% nominal level despite misspeci� cation of the struc-
ture. In � ve of six cases, the minimum is the integrated DCC

log-likelihood; overall, it is also the best method, followed by
the mean reverting DCC and the IMA DCC.

The value-at-risk test based on the long-short portfolio � nds
that the diagonal BEKK is best for three of six, whereas the
DCC MR is best for two. Overall, the DCC MR is observed
to be the best.

From all these performance measures, the DCC methods are
either the best or very near the best method. Choosing among
these models, the mean reverting model is the general winner,
although the integrated versions are close behind and perform
best by some criteria. Generally the log-likelihood estimation
method is superior to the IMA estimator for the integrated
DCC models.

The con� dence with which these conclusions can be drawn
can also be investigated. One simple approach is to repeat the
experiment with different sets of random numbers. The entire
Monte Carlo was repeated two more times. The results are
very close with only one change in ranking that favors the
DCC LL MR over the DCC LL INT.

7. EMPIRICAL RESULTS

Empirical examples of these correlation estimates are pre-
sented for several interesting series. First the correlation
between the Dow Jones Industrial Average and the NASDAQ
composite is examined for 10 years of daily data ending
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Table 1. Mean Absolute Error of Correlation Estimates

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT DCC IMA EX .06 MA 100 O-GARCH

FAST SINE .2292 .2307 .2260 .2555 .2581 .2737 .2599 .2474
SINE .1422 .1451 .1381 .1455 .1678 .1541 .3038 .2245
STEP .0859 .0931 .0709 .0686 .0672 .0810 .0652 .1566
RAMP .1610 .1631 .1546 .1596 .1768 .1601 .2828 .2277
CONST .0273 .0276 .0070 .0067 .0105 .0276 .0185 .0449
T(4) SINE .1595 .1668 .1478 .1583 .2199 .1599 .3016 .2423

Table 2. Fraction of 5% Tests Finding Autocorrelation in Squared Standardized Second Residual

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT DCC IMA EX .06 MA 100 O-GARCH

FAST SINE .3100 .0950 .1300 .3700 .3700 .7250 .9900 .1100
SINE .5930 .2677 .1400 .1850 .3350 .7600 1.0000 .2650
STEP .8995 .6700 .2778 .3250 .6650 .8550 .9950 .7600
RAMP .5300 .2600 .2400 .5450 .7500 .7300 1.0000 .2200
CONST .9800 .3600 .0788 .0900 .1250 .9700 .9950 .9350
T(4) SINE .2800 .1900 .2050 .2400 .1650 .3300 .8950 .1600

Table 3. Fraction of 5% Tests Finding Autocorrelation in Squared Standardized First Residual

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT DCC IMA EX .06 MA 100 O-GARCH

FAST SINE .2250 .0450 .0600 .0600 .0650 .0750 .6550 .0600
SINE .0804 .0657 .0400 .0300 .0600 .0400 .6250 .0400
STEP .0302 .0400 .0505 .0500 .0450 .0300 .6500 .0250
RAMP .0550 .0500 .0500 .0600 .0600 .0650 .7500 .0400
CONST .0200 .0250 .0242 .0250 .0250 .0400 .6350 .0150
T(4) SINE .0950 .0550 .0850 .0800 .0950 .0850 .4900 .1050

Table 4. Fraction of 5% Dynamic Quantile Tests Rejecting Value at Risk, Equal Weighted

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT DCC IMA EX .06 MA 100 O-GARCH

FAST SINE .0300 .0450 .0350 .0300 .0450 .2450 .4350 .1200
SINE .0452 .0556 .0250 .0350 .0350 .1600 .4100 .3200
STEP .1759 .1650 .0758 .0650 .0800 .2450 .3950 .6100
RAMP .0750 .0650 .0500 .0400 .0450 .2000 .5300 .2150
CONST .0600 .0800 .0667 .0550 .0550 .2600 .4800 .2650
T(4) SINE .1250 .1150 .1000 .0850 .1200 .1950 .3950 .2050

Table 5. Fraction of 5% Dynamic Quantile Tests Rejecting Value at Risk, Long-Short

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT DCC IMA EX .06 MA 100 O-GARCH

FAST SINE .1000 .0950 .0900 .2550 .2550 .5800 .4650 .0850
SINE .0553 .0303 .0450 .0900 .1850 .2150 .9450 .0650
STEP .1055 .0850 .0404 .0600 .1150 .1700 .4600 .1250
RAMP .0800 .0650 .0800 .1750 .2500 .3050 .9000 .1000
CONST .1850 .0900 .0424 .0550 .0550 .3850 .5500 .1050
T(4) SINE .1150 .0900 .1350 .1300 .2000 .2150 .8050 .1050
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in March 2000. Then daily correlations between stocks and
bonds, a central feature of asset allocation models, are
considered. Finally, the daily correlation between returns on
several currencies around major historical events including the
launch of the Euro is examined. Each of these datasets has
been used to estimate all the models described previously. The
DCC parameter estimates for the integrated and mean revert-
ing models are exhibited with consistent standard errors from
(33) in Appendix A. In that Appendix, the statistic referred to
as likelihood ratio is the difference between the log-likelihood
of the second-stage estimates using the integrated model and
using the mean reverting model. Because these are not jointly
maximized likelihoods, the distribution could be different from
its conventional chi-squared asymptotic limit. Furthermore,
nonnormality of the returns would also affect this limiting
distribution.

7.1 Dow Jones and NASDAQ

The dramatic rise in the NASDAQ over the last part of
the 1990s perplexed many portfolio managers and delighted
the new internet start-ups and day traders. A plot of the
GARCH volatilities of these series in Figure 2 reveals that the
NASDAQ has always been more volatile than the Dow but
that this gap widens at the end of the sample.

The correlation between the Dow and NASDAQ was esti-
mated with the DCC integrated method, using the volatili-
ties in Figure 2. The results, shown in Figure 3, are quite
interesting.

Whereas for most of the decade the correlations were
between .6 and .9, there were two notable drops. In 1993 the
correlations averaged .5 and dropped below .4, and in March
2000 they again dropped below .4. The episode in 2000 is
sometimes attributed to sector rotation between new economy
stocks and “brick and mortar” stocks. The drop at the end
of the sample period is more pronounced for some estimators
than for others. Looking at just the last year in Figure 4, it
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Figure 2. Ten Years of Volatilities.
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Figure 3. Ten Years of Dow Jones–NASDAQ Correlations.

can be seen that only the orthogonal GARCH correlations fail
to decline and that the BEKK correlations are most volatile.

7.2 Stocks and Bonds

The second empirical example is the correlation between
domestic stocks and bonds. Taking bond returns to be minus
the change in the 30-year benchmark yield to maturity, the
correlation between bond yields and the Dow and NASDAQ
are shown in Figure 5 for the integrated DCC for the last 10
years. The correlations are generally positive in the range of
.4 except for the summer of 1998, when they become highly
negative, and the end of the sample, when they are about 0.
Although it is widely reported in the press that the NASDAQ
does not seem to be sensitive to interest rates, the data suggests
that this is true only for some limited periods, including the
� rst quarter of 2000, and that this is also true for the Dow.
Throughout the decade it appears that the Dow is slightly more
correlated with bond prices than is the NASDAQ.

7.3 Exchange Rates

Currency correlations show dramatic evidence of nonsta-
tionarity. That is, there are very pronounced apparent structural
changes in the correlation process. In Figure 6, the breakdown
of the correlations between the Deutschmark and the pound
and lira in August of 1992 is very apparent. For the pound
this was a return to a more normal correlation, while for the
lira it was a dramatic uncoupling.

Figure 7 shows currency correlations leading up to the
launch of the Euro in January 1999. The lira has lower cor-
relations with the Franc and Deutschmark from 93 to 96, but
then they gradually approach one. As the Euro is launched,
the estimated correlation moves essentially to 1. In the last
year it drops below .95 only once for the Franc and lira and
not at all for the other two pairs.
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From the results in Appendix A, it is seen that this is the
only dataset for which the integrated DCC cannot be rejected
against the mean reverting DCC. The nonstationarity in these
correlations presumably is responsible. It is somewhat surpris-
ing that a similar result is not found for the prior currency
pairs.

7.4 Testing the Empirical Models

For each of these datasets, the same set of tests that were
used in the Monte Carlo experiment can be constructed. In this
case of course, the mean absolute errors cannot be observed,
but the tests for residual ARCH can be computed and the tests
for value at risk can be computed. In the latter case, the results
are subject to various interpretations because the assumption
of normality is a potential source of rejection. In each case
the number of observations is larger than in the Monte Carlo
experiment, ranging from 1,400 to 2,600.

The p-statistics for each of four tests are given in Appendix
B. The tests are the tests for residual autocorrelation in squares
and for accuracy of value at risk for two portfolios. The two
portfolios are an equally weighted portfolio and a long-short
portfolio. They presumably are sensitive to rather different
failures of correlation estimates. From the four tables, it is
immediately clear that most of the models are misspeci� ed for
most of the data sets. If a 5% test is done for all the datasets
on each of the criteria, then the expected number of rejec-
tions for each model would be just over 1 of 28 possibilities.
Across the models there are from 10 to 21 rejections at the
5% level!

Without exception, the worst performer on all of the tests
and datasets is the moving average model with 100 lags. From
counting the total number of rejections, the best model is the
diagonal BEKK with 10 rejections. The DCC LL MR, scalar
BEKK, O_GARCH, and EX .06 all have 12 rejections, and
the DCC LL INT has 14. Probably, these differences are not
large enough to be convincing.

If a 1% test is used re� ecting the larger sample size, then
the number of rejections ranges from 7 to 21. Again the MA
100 is the worst but now the EX .06 is the winner. The DCC
LL MR, DCC LL INT, and diagonal BEKK are all tied for
second with 9 rejections each.

The implications of this comparison are mainly that a big-
ger and more systematic comparison is required. These results
suggest � rst that real data are more complicated than any of
these models. Second, it appears that the DCC models are
competitive with the other methods, some of which are dif� -
cult to generalize to large systems.

8. CONCLUSIONS

In this article a new family of multivariate GARCH mod-
els was proposed that can be simply estimated in two steps
from univariate GARCH estimates of each equation. A maxi-
mum likelihood estimator was proposed and several different
speci� cations were suggested. The goal for this proposal is to
� nd speci� cations that potentially can estimate large covari-
ance matrices. In this article, only bivariate systems were
estimated to establish the accuracy of this model for sim-
pler structures. However, the procedure was carefully de� ned
and should also work for large systems. A desirable practical
feature of the DCC models is that multivariate and univari-
ate volatility forecasts are consistent with each other. When
new variables are added to the system, the volatility fore-
casts of the original assets will be unchanged and correlations
may even remain unchanged, depending on how the model is
revised.

The main � nding is that the bivariate version of this
model provides a very good approximation to a variety of
time-varying correlation processes. The comparison of DCC
with simple multivariate GARCH and several other estimators
shows that the DCC is often the most accurate. This is true
whether the criterion is mean absolute error, diagnostic tests,
or tests based on value at risk calculations.

Empirical examples from typical � nancial applications are
quite encouraging because they reveal important time-varying
features that might otherwise be dif� cult to quantify. Statisti-
cal tests on real data indicate that all these models are mis-
speci� ed but that the DCC models are competitive with the
multivariate GARCH speci� cations and are superior to moving
average methods.
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APPENDIX A

Mean Reverting Model Integrated Model

Asset 1 Asset 2 Asset 1 Asset 2
NQ DJ NQ DJ

Parameter T-stat Log-likelihood Parameter T-stat Log-likelihood

alphaDCC 0039029 60916839405 lambdaDCC 0030255569 4066248 18062079651
betaDCC 0941958 92072739572 1807905857 LR TEST 33057836423

Asset 1 Asset 2 Asset 1 Asset 2
RATE DJ RATE DJ

Parameter T-stat Log-likelihood Parameter T-stat Log-likelihood

alphaDCC 0037372 20745870787 lambdaDCC 002851073 30675969 13188063653
betaDCC 0950269 44042479805 13197082499 LR TEST 18037690833

Asset 1 Asset 2 Asset 1 Asset 2
NQ RATE NQ RATE

Parameter T-stat Log-likelihood Parameter T-stat Log-likelihood

alphaDCC 0029972 20652315309 lambdaDCC 0019359061 20127002 12578006669
betaDCC 0953244 46061344925 12587026244 LR TEST 18039149373

Asset 1 Asset 2 Asset 1 Asset 2
DM ITL DM ITL

Parameter T-stat Log-likelihood Parameter T-stat Log-likelihood

alphaDCC 00991 30953696951 lambdaDCC 0052484321 40243317 2097605062
betaDCC 0863885 21032994852 21041071874 LR TEST 1304250734

Asset 1 Asset 2 Asset 1 Asset 2
DM GBP DM GBP

Parameter T-stat Log-likelihood Parameter T-stat Log-likelihood

alphaDCC 003264 10315852908 lambdaDCC 0024731692 10932782 19480021203
betaDCC 0963504 37057905053 1950806083 LR TEST 56079255661

Asset 1 Asset 2 Asset 1 Asset 2
rdem90 rfrf90 rdem90 rfrf90

Parameter T-stat Log-likelihood Parameter T-stat Log-likelihood

alphaDCC 0059413 40154987386 lambdaDCC 0047704833 20880988 12416084873
betaDCC 0934458 59019216459 12426089065 LR TEST 20008382828

Asset 1 Asset 2 Asset 1 Asset 2
rdem90 ritl90 rdem90 ritl90

Parameter T-stat Log-likelihood Parameter T-stat Log-likelihood

alphaDCC 0056675 30091462338 lambdaDCC 0053523717 20971859 11442050983
betaDCC 0943001 5077614662 11443023811 LR TEST 10456541924

NOTE: Empirical results for bivariate DCC models. T -statistics are robust and consistent using (33). The estimates in the left column are DCC LL MR and the estimates in the right column are
DCC LL INT. The LR statistic is twice the difference between the log likelihoods of the second stage. The data are all logarithmic differences: NQDNasdaq composite, DJDDow Jones Industrial
Average, RATEDreturn on 30 year US Treasury, all daily from 3/23/90 to 3/22/00. Furthermore: DMDDeutschmarks per dollar, ITLDItalian Lira per dollar, GBPDBritish pounds per dollar, all from
1/1/85 to 2/13/95. Finally rdem90DDeutschmarks per dollar, rfrf90DFrench Francs per dollar, and ritl90DItalian Lira per dollar, all from 1/1/93 to 1/15/99.
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APPENDIX B

P-Statistics From Tests of Empirical Models
ARCH in Squared RESID1

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT EX .06 MA100 O-GARCH

NASD&DJ .0047 .0281 .3541 .3498 .3752 .0000 .2748
DJ&RATE .0000 .0002 .0003 .0020 .0167 .0000 .0001
NQ&RATE .0000 .0044 .0100 .0224 .0053 .0000 .0090
DM&ITL .4071 .3593 .2397 .1204 .5503 .0000 .4534
DM&GBP .4437 .4303 .4601 .3872 .4141 .0000 .4213
FF&DM90 .2364 .2196 .1219 .1980 .3637 .0000 .0225
DM&IT90 .1188 .3579 .0075 .0001 .0119 .0000 .0010

ARCH in Squared RESID2

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT EX .06 MA100 O-GARCH

NASD&DJ .0723 .0656 .0315 .0276 .0604 .0000 .0201
DJ&RATE .7090 .7975 .8251 .6197 .8224 .0007 .1570
NQ&RATE .0052 .0093 .0075 .0053 .0023 .0000 .1249
DM&ITL .0001 .0000 .0000 .0000 .0000 .0000 .0000
DM&GBP .0000 .0000 .0000 .0000 .1366 .0000 .4650
FF&DM90 .0002 .0010 .0000 .0000 .0000 .0000 .0018
DM&IT90 .0964 .1033 .0769 .1871 .0431 .0000 .5384

Dynamic Quantile Test VaR1

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT EX .06 MA100 O-GARCH

NASD&DJ .0001 .0000 .0000 .0000 .0002 .0000 .0018
DJ&RATE .7245 .4493 .3353 .4521 .5977 .4643 .2085
NQ&RATE .5923 .5237 .4248 .3203 .2980 .4918 .8407
DM&ITL .1605 .2426 .1245 .0001 .3892 .0036 .0665
DM&GBP .4335 .4348 .4260 .3093 .1468 .0026 .1125
FF&DM90 .1972 .2269 .1377 .1375 .0652 .1972 .2704
DM&IT90 .1867 .0852 .5154 .7406 .1048 .4724 .0038

Dynamic Quantile Test VaR2

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT EX .06 MA100 O-GARCH

NASD&DJ .0765 .1262 .0457 .0193 .0448 .0000 .0005
DJ&RATE .0119 .6219 .6835 .4423 .0000 .1298 .3560
NQ&RATE .0432 .4324 .4009 .6229 .0004 .4967 .3610
DM&ITL .0000 .0000 .0000 .0000 .0209 .0081 .0000
DM&GBP .0006 .0043 .0002 .0000 .1385 .0000 .0003
FF&DM90 .4638 .6087 .7098 .0917 .4870 .1433 .5990
DM&IT90 .2130 .4589 .2651 .0371 .3248 .0000 .1454

NOTE: Data are the same as in the previous table and tests are based on the results in the previous table.

[Received January 2002. Revised January 2002.]
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